氮氧化物污染防治技术分析

时间:2022-10-12 12:47:09

氮氧化物污染防治技术分析

摘 要:文章简述了氮氧化物的污染防治技术,主要从低氮燃烧技术和烟气脱硝技术两类进行介绍。低氮燃烧技术方面主要介绍了我们自主研发的双尺度低氮燃烧控制技术、高级复合空气分级低氮燃烧技术、MACT低氮燃烧技术等一系列先进的自主燃烧技术;烟气脱硝技术方面。

关键词:氮氧化物;脱硝;技术

中图分类号:R122.7 文献标志码:A 文章编号:2095-2945(2017)19-0033-02

前言

近年来,全国范围内出现了长时间、大范围的雾霾天气,引发社会热议,环保问题越来越成为公众关注的焦点。氮氧化物是导致雾霾产生的主要污染因子之一,如何进一步提高氮氧化物治理技术水平已经成为环保行业关注的焦点。NOx排放控制技术主要分为低氮燃烧技术和烟气脱硝技术两类。低氮燃烧技术是通过各种技术手段控制燃烧过程中NOx的生成。烟气脱硝技术是指对烟气中已经生成的NOx进行治理。

1 低氮燃烧技术

低氮燃烧技术是通过优化燃料在炉内的燃烧状况或采用低氮燃烧器来减少NOx 产生的控制技术,主要包括低过量空气燃烧、燃料分级燃烧、空气分级燃烧、烟气再循环技术等。该技术特点是锅炉改造容易、投资的费用相对较少,但由于其氮氧化物减排效果的限制,单独使用很难满足较为严格的NOx控制要求。近十几年来,我国开展了大量的低氮燃烧技术研究和改进工作。上海理工大学、华中科技大学、宝钢发电厂联合进行燃煤锅炉气体燃料分级低氮燃烧技术的研发,在引进消化吸收以及自主创新的基础上,我国已经开发形成了双尺度低氮燃烧控制技术、高级复合空气分级低氮燃烧技术、MACT低氮燃烧技术等一系列先进的自主燃烧技术和低氮燃烧器。

1.1双尺度低氮燃烧控制技术

该技术是由烟台龙源电力技术股份有限公司自主研发的低氮燃烧技术,可以有针对性地解决燃煤锅炉运行和环保方面的难题,具有强防渣、防腐蚀、高效稳燃、超低NOx排放等功能。目前该技术发展较成熟,已在国内外130余台锅炉上成功应用,经测试在燃用烟煤或褐煤的四角切圆锅炉上能够将NOx的排放量降低到200mg/m3以下,下一步将向100mg/m3以下的排放目标迈进。2014年初,在该技术的基础上,烟台龙源研究完成了具有自主知识产权的一双尺度低NOx燃烧控制系统,该系统实现了环境因素变化情况下锅炉低氮燃烧的智能调风和NOx排放指标的动态向稳,针对生产过程历史数据进行趋势分析,有利于提高火电机组运行的自动化水平,实现电厂节能增效的目标,具有较好的效益前景。

1.2 高级复合空气分级低氮燃烧技术

该系统是上海锅炉厂在第一代对冲同心正反切圆燃烧、第二代引进型低NOx切向燃烧系统LNCFS的基础上自主研发的第三代技术,拥有多项专利。2012年,该技术成果通过专家鉴定,被认定达到国际领先水平。该技术的特点在于建立早期的稳定着火和空气分段燃烧技术,在实现NOx排放值大幅降低的同时,提高了燃烧效率、减轻了炉膛结渣问题。目前,该技术已在台山电厂、渭河电厂、北仑电厂等多台300MW、600MW的燃煤发电机组上实现成功应用。

1.3 MACT低氮燃烧技术

该系统采用燃料分级燃烧,以PM型燃烧器作为主燃烧器,80%~85%的煤粉通过一次燃料主燃烧器送入炉膛下部的一级燃烧区,在主燃烧区上部火焰中形成过量空气系数接近1的燃烧条件,以尽可能地提高燃料的燃尽率。二次燃料也采用煤粉,其中15%~20%的煤粉用再循环烟气作为输送介质将其喷入炉膛的再燃区,在过量空气系数远小于1的条件下将NOx还原,同时抑制了新的NOx的生成。该系统燃烧稳定,在不影响锅炉燃烧效率的情况下,可将NOx的排放控制在308~328mg/m3之间。我国福建漳州后石电厂、浙江玉环电厂均采用该燃烧系统,NOx排放浓度在369mg/m3左右。[1]

2 气脱硝技术

单纯依靠低氮燃烧技术的氮氧化物减排效果,不能满足日益严格的排放要求, 因此需要结合烟气脱硝技术联合作用脱除氮氧化物。烟气治理脱硝技术,是指对烟气中已经生成的NOx进行治理,烟气NOx治理技术主要包括SCR、SNCR、 SNCR/SCR、脱硫脱硝一体化、等离子体法、直接催化分解法、生物质活性炭吸附法等。这些方法主要是利用氧化或者还原化学反应将烟气中的NOx脱除。

2.1 SCR技术

SCR技术是指利用NH3、CO、H2、烃类等还原剂,在催化剂作用下有选择性地将烟气中的 NOx还原成 N2和H2O的过程。在几种主要脱硝技术中,SCR的脱硝效率最高,基于反应器和催化剂的合理选型和优化布置情况下脱硝效率最高可达 90%以上,是目前世界上商业化应用最多、最为成熟的氮氧化物控制技术。“十二五”期间,燃煤火电厂脱硝改造呈全面爆发的增长趋势,其中SCR技术占火电机组脱硝项目的95%以上。催化剂是SCR技术的核心,目前国内外采用的催化剂主要为V2O5-TiO2体系(添加WO3或MoO3作为助剂),该催化剂效率高、稳定可靠,但仍存在催化剂本身具有一定的毒性、价格昂贵、易受煤质成分影响而失活、低温下性较低以及温度窗口受限等问题。

2.2 SNCR技术

SNCR 技术是指在不使用催化剂的情况下,在炉膛烟气温度适宜处(850~1150℃)喷入含氨基的还原剂(一般为氨或尿素),利用炉内高温促使氨和NO选择性还原,将烟气中的 NOx还原为N2和H2O。由于不需要催化剂和催化塔,该技术具有建设周期短、投资少、对锅炉改造方便、技术成熟等特点,在欧美发达国家、 韩国、日本、我国台湾地区以及内地电厂均有一定的应用[2]。据统计,其脱硝效率(30-50%)未能达到现阶段NOx的控制需求,因此常与低NOx技术协同应用。SNCR 脱硝技术的实际应用受到锅炉设计和运行条件的种种限制,且存在反应温度范围窄、 炉内混合不均匀、工况变化波动影响大以及NH3逃逸和N2O排放等问题,很大程度上影响其工业应用。[3]

2.3 SNCR/SCR合脱硝技术

SNCR/SCR联合脱硝技术是将SNCR工艺中还原剂喷入炉膛的技术同SCR工艺中利用逸出氨进行催化反应的技术结合起来,从而进一步脱除NOx。利用这种联合脱硝技术可以实现SNCR出口的NOx浓度再降低50%~60%,氨的逃逸量小于5mg/m3,上游SNCR技术的使用降低了SCR入口的NOx负荷,可以减少SCR催化剂使用量,从而降低催化剂投资;而SCR利用SNCR系统逃逸的NH3,可减少氨逃逸量,是一种结合SCR技术高效、SNCR技术投资省的特点而发展起来的新型组合工艺。[4]

3 结束语

就目前而言,无论是国内还是国外对于脱硝技术的研究都十分的活跃,除了本论文介绍的这几种脱硝的方法之外还有更多好的方法值得我们去探析。因此加强脱硝技术的监测以及研发是国内外共同要研究的话题,不仅有利于我国又好又快的可持续发展,更加有利于保护我们赖以生存的环境。

参考文献:

[1]Xu Guangwen. Adap tive sorbent for the combined desulfuriza2 tion /denitration p rocess using a power-particle fluidized bed. Industrial and Engineering Chemistry Research, 2000,39(7):2190-2198.

[2]Xu Guangwen. Removal efficiency of the combined desulfuriza2 tion /denitration process using power-particle fluidized bed[J].Journal of Chemical Engineering of Japan,1999,32(1):82-90.

[3]陈子彤.锅炉排污水用于烟气脱硫脱氮的技术[J].煤炭加工与综合利用,1999(1):39-41.

[4]Hashimoto K,Wasada K, ToukaiN, et al. Photocatalytic oxida2 tion of nitrogen monoxide over titanium(Ⅵ)oxide nanocrystals large size areas[J].Photochem and Photobiol. A:Chemistry,2000,136:103-109.

上一篇:超净电袋复合除尘技术研究及应用 下一篇:基于排队论的机场除冰坪投入量研究