金丝草总黄酮大孔树脂纯化工艺优化

时间:2022-10-09 04:51:26

金丝草总黄酮大孔树脂纯化工艺优化

摘要:比较了5种大孔树脂对金丝草(Pogonatherum crinitum)中总黄酮的吸附及解吸性能,采用静态和动态的吸附-解吸试验,利用紫外可见分光光度计测量金丝草总黄酮的浓度,研究不同的工艺条件对总黄酮纯化的影响。结果表明,静态分离纯化工艺的最佳参数为DA-201大孔树脂质量与吸附液体积的比值1∶10(m/V,g∶mL)、吸附液pH 3.00、恒温振荡时间3 h、解吸液为70%的乙醇溶液。动态分离纯化工艺的最佳参数为采用2 mL/min流速上样,用3个柱体积的70%乙醇,以2 mL/min流速洗脱可较好地分离纯化金丝草总黄酮。

关键词:金丝草(Pogonatherum crinitum);总黄酮;纯化;DA-201大孔树脂

中图分类号:TS201.1 文献标识码:A 文章编号:0439-8114(2013)10-2393-04

金丝草(Pogonatherum crinitum)又名落苏、猫尾草、猫毛草等,为禾本科金丝草属植物金丝草的干燥全草。文献记载金丝草性寒,无毒,具有清热、解暑、利尿之功效[1]。金丝草资源十分丰富,含有多种活性成分,其中主要的活性成分为黄酮类化合物[2,3],而黄酮类化合物具有多种生物活性。近年来掀起了黄酮类化合物研究、开发利用的热潮,促使其在化妆品、医药、食品等工业中有广泛的应用[4]。因此将金丝草总黄酮高效、快速地提取分离出来,并通过纯化得到一定纯度的产品,具有很高的经济价值与现实意义。且目前对金丝草总黄酮的研究甚少,尚未发现有对其进行纯化工艺的研究报道。本研究采用大孔树脂分离纯化金丝草总黄酮,对5种大孔树脂进行了筛选,并研究金丝草总黄酮的分离纯化工艺,为金丝草的开发利用提供参考。

1 材料与方法

1.1 材料

1.1.1 原料与试剂 金丝草购于潮州市南桥市场,洗净,自然晾干,于60 ℃烘干,研碎过40目筛,备用;所有试剂均为分析纯;FL-1、FL-2、FL-3、AB-8大孔树脂购于天津欧瑞生物科技有限公司;DA-201大孔树脂购于西安朴天吸附材料有限公司。

1.1.2 仪器与设备 752S型紫外可见分光光度计购于上海棱光技术有限公司,BT-100B型数显恒流泵购于上海泸西分析仪器厂,ET-Q型气浴恒温振荡器购于常州荣冠实验分析仪器厂等。

1.2 方法

1.2.1 标准曲线的绘制 参照文献[5]中的方法,以吸光度(A)为纵坐标,芦丁浓度(C)为横坐标,绘制标准曲线,得芦丁标液浓度(C)与吸光度(A)标准曲线的线性回归方程式为:A= 9.031 8C-0.004 0,r=0.998 9。

1.2.2 金丝草总黄酮提取液的制备及浓度测定 准确称取已烘干粉碎的金丝草样品5.0 g,加入100 mL石油醚回流除去色素后烘干,并用100 mL 60%的乙醇浸泡过夜,然后用超声波辅助提取两次,减压抽滤得到萃取液并定容至250 mL备用。按照绘制标准曲线的方法测定总黄酮浓度。

1.2.3 大孔树脂的预处理 将5种大孔树脂用80%的乙醇浸泡过夜,洗涤至洗涤液无乳白色,再用去离子水洗去乙醇至洗涤液无醇味,备用[6]。

1.2.4 大孔树脂的筛选 精确称取经预处理过的5种干树脂各1.0 g,分别装入50 mL锥形瓶中,各加入总黄酮浓度为0.780 6 mg/mL的样品溶液10 mL。由于黄酮类化合物为多羟基酚类,呈弱酸性,因而要达到较好的吸附效果,必须在弱酸性条件下吸附[7],试验吸附液pH控制在4~6之间。用恒温振荡培养箱以120 r/min于25 ℃振摇12 h,使其达到饱和吸附,抽滤,取吸附液1.0 mL于10 mL比色管中,按1.2.1测量方法操作,测定吸附液中总黄酮的剩余浓度(mg/mL)[8],按下式计算树脂吸附率:吸附率=[(初始浓度-剩余浓度)/初始浓度]×100%。

滤出经静态饱和吸附后的树脂,用滤纸吸干表面水分,精密加入95%乙醇10 mL,于恒温振荡培养箱以120 r/min在25 ℃振摇12 h,抽滤,取解吸液1.0 mL,按1.2.1测量方法操作,测定解吸液中总黄酮的浓度(mg/mL),按下式计算解吸率:解吸率=[(解吸液浓度×解吸液体积)/[(初始浓度-剩余浓度)×吸附液体积]]×100%。

1.2.5 树脂静态分离纯化参数的优化

1)树脂质量与吸附液体积的比值对吸附率的影响。准确称取筛选好的树脂0.50、0.67、1.00和2.00 g,分别加入20.00 mL 0.771 7 mg/mL的金丝草总黄酮提取液(即吸附液),置于气浴恒温振荡器上不断振摇12 h,并分别测定吸附饱和后提取液的总黄酮浓度,计算吸附率。以树脂质量(g)与吸附液体积(mL)的比值为横坐标、吸附率(%)为纵坐标,绘制曲线[9]。

2)乙醇体积分数对解吸率的影响。选用40%、50%、60%、70%、80%、95%乙醇溶液为解吸剂对吸附饱和的树脂进行解吸,测定解吸液中总黄酮浓度,计算解吸率,绘制曲线[9]。

3)pH对吸附率的影响。用酸度计测得金丝草总黄酮提取液的pH约5.2。分别用HCl和5 g/L NaOH调节至pH 2.00、3.00、4.00、5.00、6.00、7.00,静置备用。准确称取经预处理的DA-201大孔树脂1.0 g于50 mL锥形瓶中,分别加入不同pH的金丝草总黄酮提取液各10.0 mL,置于气浴恒温振荡器上,以120 r/min于25 ℃振摇12 h,并分别测定吸附饱和后提取液的总黄酮浓度,计算吸附率。以pH为横坐标、吸附率(%)为纵坐标,绘制曲线[9]。

4)作用时间对吸附率的影响。准确称取处理好的DA-201大孔树脂2.0 g于50 mL锥形瓶中,加入20.0 mL金丝草总黄酮提取液,置于气浴恒温振荡器上,以120 r/min于25 ℃振摇,在24 h内每小时吸取1 mL测定总黄酮浓度,绘制静态吸附动力学特征曲线[6]。

1.2.6 树脂动态分离纯化参数的优化

1)吸附流速的确定。将浓度为1.203 5 mg/mL的样品液300 mL通过3根层析柱(一个柱体积为25 mL),分别以1、2和3 mL/min的流速在同一试验条件下进行动态吸附考察,收集流分,取各种溶液1.0 mL,分别测定吸光度,计算吸附率,确定吸附流速[6,8]。

2)吸附液体积的确定。将浓度为1.203 5 mg/mL的样品溶液通过层析柱(一个柱体积为25 mL),按上述所确定的最佳吸附流速进行动态吸附,分段收集吸附液。每5.0 mL为1份,共收集20份。取各种吸附液1.0 mL,分别测定吸光度,计算吸附率,以吸附率(%)为纵坐标,吸附液体积(mL)为横坐标,绘制吸附曲线[6,8]。

3)洗脱流度的确定。将浓度为1.203 5 mg/mL的样品溶液50 mL通过3根层析柱(一个柱体积为25 mL),按上述所确定的吸附条件进行吸附。吸附饱和湿法装柱后用50 mL 70%乙醇分别以1、2和3 mL/min的速度进行洗脱。取各种溶液1.0 mL,分别测定吸光度,计算洗脱液浓度,综合考虑总黄酮解吸率及工作效率,确定最佳洗脱流速[6,8]。

4)洗脱液体积的确定。将浓度为1.203 5 mg/mL的样品溶液通过树脂柱(一个柱体积为25 mL),按上述所确定的吸附条件进行动态吸附,吸附饱和后水洗,至洗涤液为无色为止,湿法装柱,分别用不同体积的70%乙醇,按确定的最佳洗脱流速进行洗脱,分段收集洗脱液。每5.0 mL为1份,共收集20份。取各种洗脱液0.5 mL,分别测定吸光度,计算洗脱液浓度,以洗脱液浓度(mg/mL)为纵坐标,洗脱液体积(mL)为横坐标,绘制洗脱曲线[6,8],确定洗脱液体积。

2 结果与分析

2.1 大孔树脂的筛选结果

在相同试验条件下进行静态吸附与解吸,其中解吸剂采用95%的乙醇溶液,静态吸附与解吸结果见表1。一般来说,树脂的极性与被吸附分子的极性相同或相近时吸附效果更好;树脂有较大比表面积时吸附量更大,因此筛选树脂时要综合考虑树脂的极性、比表面积等因素。多数黄酮类化合物分子极性不太高,在弱极性或非极性树脂上会有更好的吸附效果[8]。由表1可知,FL-1吸附总黄酮的能力强,但解吸率比较低;FL-3的总黄酮得率处于中等水平。综合考虑各树脂的吸附与解吸性能,DA-201大孔树脂吸附与解吸效果更好,故本试验拟定选用DA-201大孔树脂来分离纯化金丝草总黄酮。

2.2 静态纯化分离参数的优化结果

2.2.1 树脂质量与吸附液体积的比值对吸附率的影响 对于一定量的吸附质而言,吸附剂用量增大,意味着吸附比表面积增大,吸附质在吸附剂上的分布较松散,从而吸附剂对吸附质的物理作用和化学作用加强,吸附量增加。但从经济角度讲,吸附剂用量过多,会导致成本增加、吸附选择性差等[9]。由图1A可知,树脂质量与吸附液体积的比值为1∶10时,即可达到较好的吸附效果。

2.2.2 乙醇体积分数对解吸率的影响 由图1B可知,解吸率随乙醇体积分数的增大而增加,尤其是在乙醇体积分数为40%~70%时,解吸率从59.68%增加到98.37%,但乙醇体积分数为70%~95%时,解吸率增幅缓慢。综合考虑解吸率和生产成本,选择70%为最佳的乙醇体积分数。

2.2.3 pH对吸附率的影响 由图1C可知,吸附液的pH对树脂的吸附有较大的影响,在pH 3.00时,树脂的吸附率达到最大。总黄酮显酸性,在酸性条件下呈分子状态,以氢键方式被吸附,因而树脂吸附率大,但若酸性过强,总黄酮易生成烊盐,使吸附效果变差[10]。本试验以pH 3.00的吸附液上柱。

2.2.4 作用时间对吸附率的影响 由图1D可知,大孔树脂对金丝草总黄酮的吸附为快速平衡型。在3 h后就几乎不再吸附,吸附率为76.18%。8 h时吸附率为76.90%,增幅很小;最终24 h时的吸附率为78.48%,与3 h时的相差不大。因此,DA-201大孔树脂对金丝草总黄酮具有良好的吸附动力学特性,吸附速度快,符合工业化生产的需要。

2.3 动态纯化分离参数的优化结果

吸附流速主要是影响溶质在树脂表面的扩散。如果流速太高,溶质分子来不及扩散到树脂的表面,树脂不能充分吸附溶质。随着吸附流速的加快,总黄酮的吸附量越来越少。综合考虑总黄酮吸附率及工作效率,最终确定最佳的吸附流速为2 mL/min(图2A)。由图2B可知,当上柱的吸附液体积为1/5个柱体积即5 mL时吸附趋于平衡,树脂不再吸附。洗脱液的洗脱流速过快或者过慢都不好,洗脱流速过快,洗脱液还未来得及吸附总黄酮,就已流出层析柱;因而洗脱流速慢有利于对总黄酮的吸附,但是洗脱流速过慢耗时,在生产上很不经济,特别是大工业生产时大大增加了生产成本。因此洗脱流速应首先保证大部分的总黄酮能基本被洗脱下来,洗脱流速越快越好[11]。由图2C可知,最佳洗脱流速为2 mL/min。由图2D可知,当洗脱液体积为15 mL时,洗脱液中总黄酮浓度最高,当体积为75 mL时,几乎洗脱完全。考虑到洗脱液用量过多会增加洗脱时间,造成浪费,故确定以3个柱体积为最佳的洗脱液体积。

3 结论

根据5种大孔树脂静态吸附和解吸动力学特性所显示的树脂性能,DA-201大孔树脂的综合性能较佳,有较高的吸附率和解吸率,适合于金丝草总黄酮的吸附纯化。

DA-201大孔树脂对金丝草总黄酮的静态吸附与解吸优化条件:吸附液pH 3.00,树脂质量与吸附液体积的比值为1∶10,洗脱液乙醇的体积分数为70%,恒温振荡时间3 h。

DA-201大孔树脂动态纯化分离金丝草总黄酮的工艺参数为:吸附液为1.203 5 mg/mL,吸附流速为2 mL/min,当吸附液体积为1/5个柱体积时吸附趋于平衡,树脂不再吸附。洗脱剂用量为3个柱体积,洗脱速度为2 mL/min,应用DA-201大孔树脂纯化总黄酮得到了满意的效果。

参考文献:

[1] 黄泰康,丁志遵,赵守训,等. 现代本草纲目[M].北京:中国医药科学技术出版社,2001.

[2] 陈国伟,李 鑫,史志龙,等.金丝草脂溶性化学成分研究[J].承德医学院学报,2010,27(2):216-217.

[3] ZHU D,YANG J,LAI M X,et al. A new C-glycosylflavone from Pogonatherum crinitum[J]. Chinese Journal of Natural Medicines,2010,8(6):411-413.

[4] 李巧玲.黄酮类化合物提取分离工艺的研究进展[J].山西食品工业,2003(4):6-7.

[5] 李凤林,李青旺,高大威,等.超声波法提取甘薯叶总黄酮的工艺研究[J].江苏调味副食品,2008,25(3):13-18.

[6] 王 薇,余陈欢,刘晶晶,等.大孔树脂吸附纯化白苏总黄酮的工艺研究[J].食品科技,2009,34(1):152-155.

[7] 张素华,王正云.大孔树脂纯化芦笋黄酮工艺的研究[J].食品科学,2006,27(2):182-186.

[8] 闫克玉,高远翔.大孔吸附树脂法纯化槐米总黄酮的研究[J].现代食品科技,2009,25(6):596-599.

[9] 蔡碧琼,吴琼洁,陈新香. 大孔吸附树脂分离纯化稻壳总黄酮的研究[J]. 河南工业大学学报(自然科学版),2009,30(3):20-24.

[10] 何春霞,苏力坦·阿巴白克力.AB-8大孔树脂纯化欧洲鳞毛蕨总黄酮的研究[J].生物技术,2007,17(2):57-59.

[11] 闫克玉,于 静.大孔吸附树脂法纯化杭白菊总黄酮[J].现代食品科技,2008,24(1):35-38.

上一篇:豹猫和金猫针毛红外光谱比较研究 下一篇:马氏珠母贝蛋白盐提及其美拉德反应产物研究