多传感器融合组合导航技术研究

时间:2022-10-08 02:58:12

多传感器融合组合导航技术研究

摘 要:该文对民用飞机组合导航系统多传感器器技术进行了研究,提出了一种在飞行管理系统内按照各种导航设备定位精度的顺序,实现包括了全球导航卫星系统(GNSS)、惯性基准系统(IRS)、甚高频全向信标(VOR)、测距器(DME)等机载设备的多传感器融合方法,为国产民机机载航电系统研制提供参考。

关键词:多传感器 组合导航 民用飞机

中图分类号:TP274. 2 文献标识码:A 文章编号:1674-098X(2014)09(a)-0021-01

近年来,随着GPS、格洛纳斯、伽利略和北斗全球导航卫星系统的日益完善,以飞行管理系统为核心的民用飞机机载导航设备对GNSS的依赖程度逐渐增大,特别是CAAC近年的PBN实施路线图要求机载导航系统逐步向RNP技术全面过渡。然而作为PBN导航技术核心定位源的GNSS有着一系列先天不足,在某些特定情况下,满足不了PBN对导航精度和连续性的较高要求,因此民用飞机必须采用多传感器融合的导航技术,提高瞬时定位精度以及GNSS不可用的情况下的导航能力。

1 多传感器组合导航技术

作为民用飞机机载航电系统的重要组成部分,机载导航设备为飞机提供全天候实时的高精度位置定位、飞行导引和完好性监控,其组成包括飞行管理系统(FMS)、全球导航卫星系统(GNSS)、惯性基准系统(IRS)、甚高频全向信标(VOR)、测距器(DME)等设备。[1]

导航系统的核心是飞行管理系统,它是一台具备各种复杂导航算法的高性能计算机,将其他导航设备发送的导航数据经过组合导航算法综合处理后得出飞机精确位置,并依据飞行员编制的飞行计划给出指引指令,引导飞机沿着既定航线飞行,取代了传统领航员的作用,大量减轻了飞行员的负担。因此,作为计算性能最强和接收信息最全的FMS理所当然是多传感器组合导航技术的实施主体。[2]

以GPS为主的GNSS是一种覆盖全球的无源定位系统,通过接收机接收来自至少4颗卫星发出的时钟信号和星历,计算传播延时实现高精度自主实时定位,不依赖地面导航设施,在偏远地区和洋面飞行时具有突出优点,但也会受到可用卫星个数、卫星几何分布、空间射线干扰和地面地形遮蔽等因素影响,难以独自满足PBN对导航信号连续性的高要求。[3]

VOR/DME是传统的路基导航设施,通过接收地面台站发出的甚高频无线电信号结算成相对台站的方位和距离信息,结合已知的台站位置实现定位,性能可靠、便于使用,但是具有技术水平落后、导航精度不高和无法覆盖偏远山区和洋面的缺陷。

在所有的导航子系统中,惯性系统能提供的信息最全,且自主性、连续性、短期稳定性好,因此在整个区域或航路导航中始终以惯性导航系统作为基本导航手段,其它导航子系统(特别是GNSS)作为辅助手段以改善惯性系统的长期稳定性,保证导航性能符合所需导航性能要求。

导航系统的组合一般有两种基本方法:

(1)回路反馈法。即采用经典的反馈控制方法,抑制系统误差,并使子系统间性能互补。

(2)最优估计法。即采用现代控制理论中的最优估计法(卡尔曼滤波算法),从概率统计最优的角度估计出系统误差并消除之。

由于各子系统的误差源和量测中引入的误差都是随机的,所以第二种方法远优于第一种方法,卡尔曼滤波器也成为组合导航系统中最常用的算法。[4]

由于GNSS定位的高精度和实时性,采用IRS/GNSS为主用组合导航算法,可分别基于输出校正、位置组合和伪距组合的卡尔曼滤波模式。具体是用惯导和GPS输出的位置之差作为量测值,经卡尔曼滤波器估计惯导系统的各项误差,然后对惯导系统进行校正。伪距组合是一种复杂、紧密的信息综合。惯导输出位置结合GPS可见卫星位置,可以求出相应的计算距离,然后将之与GPS测量得到的距离之差作为量测值,通过卡尔曼滤波器估计惯导系统和GPS的误差量,然后进行反馈校正。在各IRS内部进行闭环修正,IRS系统的速度和姿态误差趋于收敛,即组合导航可以准确估计IRS的速度和姿态误差。在IRS/GPS组合导航状态,不使用气压高度进行高度阻尼,对GPS位置噪声有明显的抑制作用。[4]

在GNSS不可用的情况下(接收机故障或不满足信号接收要求),可采用IRS/无线电组合导航,包含IRS/DME/DME和IRS/VOR/DME这2种组合方式。IRS/无线电组合在飞行管理控制系统中进行,仅进行开环校正,目的在于对无线电推算的位置噪声进行抑制,经过对当前组合系统的性能评估,如当前状态位置精度明显优于即将引入的校准系统精度,则将延迟其进入组合状态的时间。

由于DME/DME定位精度由于VOR/DME,因此当DME台站信号良好且数量大于2时,可优先采用IRS/DME/DME组合导航,此方法基于双斜距组合方式,将DME斜距的测量误差看作由偏置误差和测量噪声误差构成,偏置误差与被测距离的远近有关,因此用刻度因子误差来描述。在构造量测前还需进行交会角判断。利用两套DME系统来确定飞机位置的定位误差却因飞机与两个地面台相对位置的不同而有较大的差异,当交会角为90°时,测距误差造成的定位误差区最小,为正方形;交会角大于90°,定位误差区域增大为菱形;若交会角接近180°,则定位误差最大。因此,在交会角在30°~150°时可采用此方法。

IRS/VOR/DME组合处理方式采用斜距/方位角组合,允许VOR和DME不在同一位置,尽管多数情况下VOR/DME地面台站是布置在同一位置的。将VOR、DME的方位和斜距测量误差看作由偏置误差和测量噪声误差构成,而DME的偏置误差与被测距离的远近有关,因此用刻度因子误差来描述。[4]

2 结语

随着航空电子技术的日新月异,以及未来对PBN技术导航精度和连续性的要求日益提高,民用飞机采用多传感器组合导航技术将成为主流,本文提出一种在FMS内部按照设备可用状态优先级实现IRS/GNSS、IRS/DME/DME、IRS/VOR/DME组合导航技术方法,可获得较为理想的导航精度和连续性。

参考文献

[1] 钦庆生.飞行管理计算机系统[M].国防工业出版社,1991.

[2] Lan Moir,Allan Seabridge. Civil Avionics Systems[M]. Professional Engineering Publishing Limited,2006.

[3] Cary R.Spitzer.The Avionics Handbook[M].CRC Press LLC, 2001.

[4] 西北工业大学自动化学院.组合导航技术研究[Z].2010.

上一篇:基于双边匹配理论下的个性化职业指导模型研究 下一篇:冷藏冷冻食品中李斯特菌污染状况分析