基于数值模拟方法的覆盖件FEM分析

时间:2022-10-07 06:10:06

基于数值模拟方法的覆盖件FEM分析

摘要:随着有限元理论的发展,数值模拟技术提供了有效的方法。文章分析了汽车覆盖件有限元分析中涉及的关键技术,比较了各种方法的特点,总结了目前在覆盖件有限元分析中流行的方法,为利用数值模拟方法分析冲压成形过程提供了根据。

关键词:汽车覆盖件;数值模拟;有限元;冲压成形

中图分类号:TG386文献标识码:A

文章编号:1009-2374 (2010)21-0042-02

汽车覆盖件一般由钢板冲压而成,冲压成形是一种非常复杂的力学过程,用传统方法很难求解。近年来,随着计算机软硬件技术、图形学技术、人工智能技术、板料塑性变形理论和数值计算方法等的发展,以及与传统的工艺/模具设计技术的交叉集成开创了利用CAD/CAM/CAPP技术和CAE数值模拟分析技术进行覆盖件成型工艺设计的新领域。板料冲压过程的计算机分析与仿真技术已能在工程实际中帮助解决传统方法难以解决的模具设计和冲压工艺设计难题,如计算金属的流动、应力应变、板厚、模具受力、残余应力等,预测可能的缺陷及失效形式,如起皱、破裂、回弹等。在汽车覆盖件的设计中采用数值模拟技术能从设计阶段准确地预测各种工艺参数对成形过程的影响,进而优化工艺参数和模具结构,缩短模具的设计制造周期,降低产品生产成本,提高模具和冲压件产品质量。

1冲压成形数值模拟理论

板料成形过程及特点决定了其成形是涉及几何非线性、材料非线性和边界条件非线性的弹塑性大变形力学问题,如果用传统的理论分析方法来分析成形过程是不可能的,甚至根本无法实现。长期以来,国内外学者对板料成形性能、成形过程中应力、应变分布的研究基本建立在实验或经验公式的基础上。随着有限元数值模拟理论技术的发展,人们开始把眼光转移到其在汽车覆盖件冲压成形的应用上来。经过多年的研究,板料成形有限元技术在材料本构关系、单元技术、接触算法、求解格式等方面得到了发展。

1.1本构关系

目前在汽车覆盖件冲压过程进行分析中,凸模、凹模及压边圈在冲压过程中的变形小,通常采用刚体材料模型,而对于板料大多采用弹塑性本构关系,对于不同的金属有不同的弹塑性模型可以选择。

建立弹塑性本构关系模型首先要解决复杂受力情况下屈服状态以及屈服后的塑性流动,解决复杂受力情况下屈服状态就要建立屈服准则。冲压成形领域中经常采用的屈服准则有:von Mises屈服准则、Hill屈服准则以及3参数Barlat屈服准则。在早期的冲压分析中,板料被假设为各向同性材料,因此经常采用von Mises屈服准则,后来随着有限元的发展,研究人员证明板料是各向异性的。Hill提出了用二次函数来描述正交各向异性材料的塑,即Hill屈服准则。但Hill屈服准则却无法正确分析分析多晶体塑性材料,因此人们进一步研究建立了许多屈服函数和屈服准则来描述多晶体塑性材料。例如Barlat等人提出了一种形式化的方法来描述多晶体材料的屈服准则。

经实验分析表明:当厚向异性系数r较小时,使用Hill屈服准则建立的材料模型,计算结果误差很大,甚至大于使用von Mises屈服准则的材料模型。而采用3参数Barlat屈服准则进行分析时,则能够得到满意的结果。当厚向异性系数r较大时,则Hill准则和3参数Barlat屈服准则都能获得正确的结果。3参数Barlat屈服准则的结果要优于Hill准则,vonMises屈服准则结果最差。因此在汽车覆盖件冲压成形分析中3参数Barlat屈服准则是最常用的材料模型。

1.2单元技术

用于冲压成形有限元分析的单元有三种:基于薄膜理论的薄膜单元、基于板壳理论的壳单元和基于连续介质理论的实体单元。薄膜单元格式简单,但忽略了弯曲效应,因而只适用于分析胀形等弯曲效应不明显的成形过程。在薄板壳的成形分析中,又因为薄膜理论是二维理论,因此薄膜单元只适合二维成形问题分析。实体单元虽然考虑了弯曲效应和剪切效应,但由于计算时间太长,除非板料厚度非常大的情况下,一般在汽车覆盖件成形分析中不采用实体单元。基于板壳理论的壳单元不仅考虑了弯曲效应和剪切效应,而且板壳单元是处理薄板三维变形的工具。因此,在汽车覆盖件成形分析中常采用壳单元。

对于薄壳单元,人们提出采用Kirchhoff理论和Mindlin理论其应力或应变状态进行简化。Kirchhoff理论需要构造C1连续性插值函数,在三维分析中构造C1连续性插值函数是非常困难的,构造的壳单元效率也很低,因此在冲压成形分析中不采用基于Kirchhoff理论的C1型壳单元。Mindlin理论采用位移和转动独立插值的方法,从而使问题简化。近年来人们开发了很多种基于Mindlin理论的壳单元,例如BT壳单元,由于其计算结果准确、计算效率高,因此常用来建立汽车覆盖件成形分析中板料的有限元模型。

1.3接触算法

板料变形时,接触发生的时间和位置随着接触体的变形而改变,用有限元处理接触问题时必须建立正确的接触问题模型。接触界面的处理实际上找出所有接触对及状态,然后计算每个接触对的作用力。前者需要解决的是接触点、接触区域的搜索及接触状态,后者需要解决的是接触区域间法向接触力和切向摩擦力的计算。在进行有限元分析时寻找接触对的方法通常采用增量搜寻或桶式分类搜寻。接触力的计算主要应用的是罚函数法,切向摩擦力的计算采用修正的库仑摩擦定律。

2数值模拟软件

经过多年的发展,利用冲压成形模拟技术和相关理论,人们已经可以对部分板材冲压加工过程进行准确模拟,并且人们开发了许多商业软件应用于生产实践中,通常软件的开发往往基于不同的原理,不同的软件反映了冲压成形分析中有限元方法的差异,例如按变形原理可以分为基于刚塑性变形的SHEET-3软件和基于弹塑性变形的Auto-Form、PAM-Stamp和Dyna-Form软件,按求解格式又可以分为基于静力隐式格式的Auto-Form软件和基于动力显式格式的PAM-Stamp和Dyna-Form软件。虽然基于不同的原理,但实践表明利用这些软件对板料成形过程进行模拟从而指导实际生产过程的方法是切实可行的。

但是由于汽车覆盖件本身的复杂性,覆盖件冲压成形的影响因素极其复杂,覆盖件冲压成形涉及的领域极广,所以对汽车覆盖件冲压成形问题的研究依然存在许多问题,例如仿真建模的合理性和准确性;材料屈服模型;计算效率和计算精度问题;回弹问题等。这些问题涉及复杂覆盖件成形模拟的关键部分,因此它的解决定会使汽车覆盖件成形的数值模拟产生质的飞跃,因此也成为人们关注的重点。

3结论

随着计算机技术和数值计算方法的发展,有限元数值模拟技术在汽车覆盖件成形工业中发挥着越来越重要的作用。利用它可以指导实际的冲压成形过程,可以实现新产品开发周期短、质量高、低成本的目标。目前板料数值成形技术在汽车覆盖件制造领域的应用越来越广泛,经比较和分析表明采用3参数Barlat屈服准则,单元类型为BT壳单元和求解格式为动力显式格式的有限元方法更适于汽车覆盖件冲压问题的分析。

参考文献

[1] 危熠平,王健,雷君相.汽车覆盖件冲压模具仿真设计[J].模具工业,2005,(10).

[2] 代洪庆,刘晓晶,闫巍,刘江涛.汽车覆盖件冲压成型的计算机仿真[J].机械工程师,2006,(5).

[3] 林忠钦.车身覆盖件冲压成形仿真[M].北京:机械工业出版社,2005.

[4] 王勖成,邵敏.有限单元法基本原理和数值方法[M].北京:清华大学出版社,1997.

[5] 于汇泳,祁文军,李昌雪.有限元数值模拟技术在汽车冲压成形中的应用[J].现代制造工程,2005,(81).

[6] 杨曼云,孙希平,李琦.薄板冲压数值模拟技术在汽车覆盖件制造中的应用[J].CAD/CAM与制造业信息化,2005,(10).

上一篇:基于嵌入式蚁群算法优化的小波神经网络磁链观... 下一篇:基于层次分析法(AHP)的小城镇地下水饮水安全评...