WNT信号转导通路及其在子宫内膜疾病中的研究进展

时间:2022-10-05 07:22:54

WNT信号转导通路及其在子宫内膜疾病中的研究进展

[摘要] WNT(wingless-type MMTV integration site family)基因是重要的细胞信号分子,在胚胎发育过程中参与决定细胞命运、细胞增殖、分化、运动及凋亡,其靶基因包括参与细胞发育、细胞增殖及细胞迁移的相关因子,信号转导过程发生异常会导致细胞生长、分化、代谢及生物学异常,引起多种疾病发生。WNT通路可能参与了子宫发育及维持子宫内膜的功能,与雌激素诱导的子宫内膜增殖有关,本文对WNT信号通路与子宫内膜发育、子宫内膜异位症及子宫内膜癌相关关系的研究进展加以综述。

[关键词] WNT;信号转导;子宫内膜异位症;子宫内膜癌

[中图分类号] R737.33 [文献标识码] A [文章编号] 1673-7210(2015)08(a)-0051-04

Research progress on WNT signal transduction pathway and endometrial diseases

LIANG Yanming

Department of Obstetrics and Gynecology, Jinzhou Central Hospital, Liaoning Province, Jinzhou 121000, China

[Abstract] WNT (wingless-type MMTV integration site family) genes are important cell signal molecules, participating in cell fatedecision, cell proliferation, differentiation, movement and apoptosis during embryonic development. The target genes of WNT and the pathway include agents relative to cell growth, proliferation and cell migration. Abnormalities in the signal transduction process will lead to abnormalities in cell growth, differentiation, metabolism, causing many diseases. The WNT pathway may be involved in the development and maintenance of uterine endometrial function, in the process of estrogen-induced endometrial proliferation. The research progresses on WNT signaling pathway and endometrial development, endometriosis and endometrial cancer were reviewed.

[Key words] WNT; Signal transduction; Endometriosis; Endometrial carcinoma

WNT基因是高度保守的发育基因的大家族,为重要的细胞信号分子,在胚胎发育过程中参与决定细胞命运、细胞增殖、分化、运动及凋亡,在成人组织中参与维持组织平衡,最近其在调节多种干细胞和祖细胞的分化和/或增殖中的作用引起了学者的关注,信号转导过程发生异常会导致细胞生长、分化、代谢及生物学异常,引起多种疾病发生。WNT通路可能参与了子宫发育及维持子宫内膜的功能,与雌激素诱导的子宫内膜增殖有关,本文对WNT信号通路与子宫内膜发育、子宫内膜异位症及子宫内膜癌相关关系的研究进展加以综述。

1 WNT基因及其信号通路

WNT基因是高度保守的发育基因的大家族,第1个WNT基因――WNT-1,是Nusse等[1]在有关小鼠乳腺癌的一项研究中发现的,研究使用小鼠瘤病毒(mouse mammary tumor virus,MMTV)诱导乳腺癌,由于该基因中存在MMTV激活位点,因此被命名为int-1[2]。之后又有研究证明,int-1与果蝇属体节极性基因Wingless为同源基因,又将二者结合, 称为WNT基因。目前已克隆出19种WNT基因家族的成员,编码具有22个或24个半胱氨酸残基的保守糖蛋白,是重要的细胞信号分子,其在胚胎发育过程中参与决定细胞命运、细胞增殖、分化、运动及凋亡;在成人组织中参与维持组织平衡;最近其在调节多种干细胞和祖细胞的分化和/或增殖中的作用引起了学者的关注[3-5]。

WNT信号通路是对控制发育起重要作用的信号途径,信号转导过程发生异常或障碍,会导致细胞生长、分化、代谢及生物学异常,通路异常与多种疾病有关,如骨质疏松、各种退行性疾病甚至肿瘤[6-8]。WNT信号转导通路主要分为3种类型:经典的WNT信号转导途径(canonical WNT/β-catenin pathway),通过β-catenin核易位,激活靶基因的转录活性,其靶基因包括参与细胞发育、细胞增殖及细胞迁移的相关因子,如c-myc,细胞周期素蛋白D1(cyclin D1),CD44,基质裂解蛋白(matrilysin),基质金属蛋白酶(matrix metalloproteinases,MMPs),尿激酶型纤溶酶原激活物受体(urokinase plasminogen activator receptor,uPAR)等[9]。非经典的WNT信号转导途径主要包括细胞平面极性途径(the planar cell polarity pathway,PCP途径)及WNT/Ca2+途径,这2个途径不通过β-catenin来发挥作用甚至还会对核内β-catenin活性起抑制作用[10]。PCP途径涉及RhoA蛋白和Jun激酶(JNK),主要控制胚胎的发育时间和空间。在细胞水平上,此途径通过重排细胞骨架来调控细胞极性[11]。WNT/Ca2+途径可诱导细胞内Ca2+浓度增加并激活Ca2+敏感的信号转导组分,可以拮抗WNT/β-catenin通路,对其起抑制作用[10-13]。

此外,WNT信号转导通路可以被多种拮抗因子所拮抗,包括分泌性卷曲相关蛋白(secreted frizzled-related protein,sFRP)、WNT抑制因子1(WNT inhibitory factor 1,WIF1)、分泌蛋白SOST以及DKK家族的分泌蛋白(Dickkopf family of secreted proteins,Dkk)[14]。sFRPs及WIF与WNT结合,sFRPs还与受体FZD结合,同时作用于经典及非经典的WNT信号途径,从而发挥拮抗剂的作用[15]。DKK家族成员及SOST可以通过与LRP5/LRP6联合受体相互作用来阻止经典途径中WNT-FZD-LRP5/LRP6复合物形成[16]。WNT信号通路拮抗因子在很多疾病如乳腺癌等肿瘤、骨质疏松等退行性疾病中出现异常,提示其可能通过与WNT通路的相互作用而参与了疾病的发病过程[9]。

2 WNT信号通路在子宫内膜发育及子宫内膜疾病中的作用研究

2.1 WNT信号通路在子宫内膜发育中的作用研究

WNT配体家族在胚胎发育、调节干细胞作用、细胞分化及组织稳态中起重要作用,越来越多的研究依据显示该通路在多物种的生殖系统的发育和分化中起关键作用。在鼠类,WNT信号通路已被认为是子宫发育、着床以及早期滋养细胞发育的基本信号通路。通过基因敲除方法进行研究,发现WNT-4、WNT-5缺乏可以导致雌性小鼠生殖道发育异常[17-18],WNT4还与小鼠子宫内膜的蜕膜化有关[19]。WNT7a基因敲除的小鼠出现子宫内膜蜕膜化异常从而可导致不孕[20]。最近的研究也显示,多种WNT基因配体如WNT4、WNT5a、WNT7a、WNT11、WNT16、FZD10与新生小鼠的子宫内膜腺体发育有关[21]。在人类,WNT通路也与子宫内膜细胞增殖及蜕膜化等有关[22-23]。Nei等[24]在增殖期子宫内膜细胞核内发现了β-catenin聚集,而在内膜分泌期这种核内聚集消失,Hou等[25]发现WNT/β-catenin途径抑制剂sFRP2可以抑制雌激素诱导的子宫内膜增殖,表明WNT/β-catenin途径与雌激素引起的内膜增殖有关,该途径参与维持了雌激素诱导的内膜增殖与孕激素诱导的内膜分化间的平衡[26]。

2.2 WNT通路在子宫内膜异位症中的研究

随着WNT通路在子宫内膜发育中作用的研究,有研究者对其在子宫内膜异位症中的可能作用也进行了研究。Wu等[27]通过基因芯片筛查发现WNT信号通路中WNT2及FZD1在子宫内膜异位症中存在差异表达。Gaetje等[28]采用实时定量多聚合酶链反应(real-time PCR)及原位杂交方法对内异症患者的腹膜中WNT4、WNT5a、WNT7a的表达进行了研究,结果发现在15例患者中有8例患者的腹膜中有WNT7a的表达,而18例对照组中仅3例有WNT7a的表达,从而证明了化生途径可能参与了内异症的发病。Cheng等[29]研究发现WNT通路抑制因子sFRP1在增殖期子宫内膜及内异症异位组织中表达增加,可能与sFRP1能诱导血管形成有关。而Aghajanova等[30]发现子宫内膜异位症组细胞中sFRP1及DKK1均明显下调,并发现内异症中存在WNT经典及非经典途径的激活。

子宫内膜异位症为一种复杂性疾病,国外有学者采用全基因组关联研究(genome-wide association study,GWAS)来发现与疾病发病相关的特定基因,Uno等[31]研究发现:位于染色体1p36上的WNT4基因包含的位点rs16826658与子宫内膜异位症的发病有关,WNT4 基因对于女性生殖道发育起重要作用,也与卵泡发育和类固醇激素生成有关,很有可能是为子宫内膜异位症的候选基因之一。Painter等[32]采用相同方法对英国和澳大利亚的3194名子宫内膜异位症患者及7060名对照人群进行了研究,除了发现与子宫内膜异位症发病最强的相关位点位于染色体7p15.2上,可能与NFE2L3和HOXA10基因有关外,该研究还同时进一步证实了1p36染色体上rs7521902位点与子宫内膜异位症的发病有关,这一位点与WNT4基因接近。

这些研究结果表明WNT通路在内异症发病中起作用,但仅仅局限于基因表达的研究还远远不够,还需要深入探讨其在发病机制中的作用,以为早期诊断、预测复发及进行新的治疗提供依据。

2.3 WNT信号通路在子宫内膜癌中的研究

WNT信号通路与细胞发育、细胞分化增殖、细胞迁移有关,其中某个因子发生突变或蛋白表达异常均可导致疾病包括肿瘤的发生,近年来WNT通路在肿瘤发病中的作用已经成为研究热点。Bui等[33]研究发现子宫内膜癌患者内膜中WNT4 mRNA表达明显下调,表明WNT4可能参与了内膜癌的发病,该研究同时发现了WNT2、WNT3、WNT5a在内膜癌中表达也出现了下调。随后的研究表明,WNT/β-catenin信号通路包括β-catenin基因激活突变及APC基因失活突变等可能在内膜癌发病早期起很大的作用[34],与正常子宫内膜相比,子宫内膜癌中β-catenin聚集明显升高,与β-catenin基因发生单个碱基的错义突变有关[35]。近期Liu等[36]研究也发现:β-catenin的编码基因――CTNNB1基因第3外显子突变可能与低分化、低分期的年轻妇女的子宫内膜样腺癌的侵袭启动有关。基因突变可能是导致β-catenin聚集进而引起子宫内膜癌发生的重要分子事件,这可能为子宫内膜癌的早期诊断及预后判断提供新的方法和依据,以β- catenin作为基因或药物治疗的靶点可望改善子宫内膜癌的疗效。

3 展望

成人组织中WNT信号的异常活化还与很多其它肿瘤的发病有关,如直肠癌[37]、卵巢癌[4]、乳腺癌[38]、肺癌[39]等。可能机制与WNT途径与其下游分子相互作用而加速细胞周期、细胞增殖及抑制凋亡有关,与WNT途径激活细胞间黏附分子及细胞外基质蛋白从而提高肿瘤细胞的运动迁移和转移能力有关。

目前关于WNT信号通路与子宫内膜疾病发病的研究仅仅局限于该通路上的因子的表达研究,但却为我们进一步探讨WNT信号通路的作用机制提供了可信的依据,深入地研究通路中各因子疾病发病中的作用及其机制将为通路特异性的靶基因治疗在子宫内膜疾病治疗中的可能应用提供理论依据。

[参考文献]

[1] Nusse R,Brown A,Papkoff J,et al. A new nomenclature for int-I and related genes: the WNT gene family [J]. Cell,1991, 64:231-232.

[2] Nusse R and Varmus HE.WNT genes [J]. Cell,1992,69:1073-1087.

[3] Sonderegger S,Pollheimer J,Kn■fler M. WNT signalling in implantation,decidualisation and placental differentiation--review [J]. Placenta,2010,31(10):839-847.

[4] Boyer A,Goff AK,Boerboom D. WNT signaling in ovarian follicle biology and tumorigenesis [J]. Trends Endocrinol Metab,2010,21(1):25-32.

[5] Nemeth,MJ,Bodine,DM. Regulation of hematopoiesis and the hematopoietic stem cell niche by WNT signaling pathways [J]. Cell Res,2007,17(9):746-758.

[6] Logan CY,Nusse R. The WNT signaling pathway in development and disease [J]. Annu Rev Cell DevBiol 2004, 20:781-810.

[7] Clevers H. WNT/beta-catenin signaling in development and disease [J]. Cell,2006,127(3):469-480.

[8] Polakis P. WNT signaling and cancer [J]. Genes Dev,2000, 14:1837-1851.

[9] MacDonald BT,Tamai K,He X. WNT/beta-catenin signaling:components,mechanisms,and diseases [J]. Dev Cell, 2009,17(1):9-26.

[10] Ishitani T,Kishida S,Hyodo-Miura J,et al. The TAK1-NLK mitogen-activated protein kinase cascade functions in the WNT-5a/Ca(2+) pathway to antagonize WNT/beta-catenin signaling[J]. Mol Cell Biol,2003,23:131,139.

[11] Heinonen KM,Vanegas JR,Lew D,et al. WNT4 enhances murine hematopoietic progenitor cell expansion through a planar cell polarity-like pathway [J] PLoS One,2011,6(4):e19279.

[12] Tanigawa S,Wang H,Yang Y,et al. WNT4 induces nephronic tubules in metanephric mesenchyme by a non-canonical mechanism [J]. Dev Biol,2011,352(1):58-69.

[13] Slusarski DC,Pelegri F. Calcium signaling in vertebrate embryonic patterning and morphogenesis [J]. Dev Biol,2007,307(1):1-13.

[14] Niehrs C. Function and biological roles of the Dickkopf family of WNT modulators [J]. Oncogene,2006,25(57):7469-7481.

[15] Bovolenta P,Esteve P,Ruiz JM,et al. Beyond WNT inhibition: new functions of secreted Frizzled-related proteins in development and disease [J]. Journal of Cell Science,2008,121(PT):737-746.

[16] Semenov M,Tamai K,He X. SOST is a ligand for LRP5/LRP6 and a WNT signaling inhibitor [J]. The Journal of Biological Chemistry,2005,280(29):26770-26775.

[17] Mericskay M,Kitajewski J,Sassoon D. WNT5a is required for proper epithelial-mesenchymal interactions in the uterus [J]. Development,2004,131(9):2061-2072.

[18] Vainio S,Heikkila M,Kispert A,et al. Female development in mammals is regulated by WNT-4 signalling [J]. Nature,1999,397(6718):405-409.

[19] Li Q,Kannan A,Wang W,et al. Bone morphogenetic protein2 functions via a conserved signaling pathway involving WNT4 to regulate uterine decidualizationin the mouse and the human [J]. J Biol Chem,2007,282(43):31725-31732.

[20] Miller C,Sassoon DA. WNT-7a maintains appropriate uterine patterning during the development of the mouse female reproductive tract [J]. Development,1998,125(16):3201-3211.

[21] Hayashi K,Yoshioka S,Reardon SN,et al. WNTs in the neonatal mouse uterus: potential regulation of endometrial gland development [J]. Biol Reprod,2011,84(2):308-319.

[22] Tulac S,Nayak NR,Kao LC,et al. Identification,characterization,and regulation of the canonical WNT signaling pathway in human endometrium [J]. J Clin Endocrinol Metab,2003,88(8):3860-3866.

[23] Kao LC,Tulac S,Lobo S,et al. Global gene profiling in human endometrium during the window of implantation [J]. Endocrinology,2002,143(6):2119-2138.

[24] Nei H,Saito T,Yamasaki H,et al. Nuclear localization of β-catenin in normal and carcinogenic endometrium [J]. Mol Carcinog,1999,25:207-218.

[25] Hou X,Tan Y,Li M,et al. Canonical WNT signaling is critical to estrogen-mediated uterine growth [J]. Mol Endocrinol 2004,18(12):3035-3049.

[26] Wang Y,Hanifi-Moghaddam P,Hanekamp EE,et al. Progesterone inhibition of WNT/beta-catenin signaling in normal endometrium and endometrial cancer [J]. Clin Cancer Res,2009,15(18):5784-5793.

[27] Wu Y,Kajdacsy-Balla A,Strawn E,et al. Transcriptional characterizations of differences between eutopic and ectopic endometrium. Endocrinology,2006,147(1):232-246.

[28] Gaetje R,Holtrich U,Engels K,et al. Endometriosis may be generated by mimicking the ontogenetic development of the female genital tract [J]. Fertil Steril,2007,87(3):651-656.

[29] Cheng CW,Smith SK,Charnock-Jones DS. Transcript profile and localization of WNT signaling- related molecules in human endometrium [J]. Fertil Steril,2008,90(1):201-204.

[30] Aghajanova L,Horcajadas JA,Weeks JL,et al. The protein kinaseA pathway-regulated transcriptome of endometrial stromal fibroblasts reveals compromised differentiation and persistent proliferative potential in endometriosis [J]. Endocrinology,2010,151(3):1341-1355.

[31] Uno S,Zembutsu H,Hirasawa A,et al. A genome-wide association study identifies genetic variants in the CDKN2 BAS locus associated with endometriosis in Japanese [J].Nat Genet,2010,42(8):707-710.

[32] Painter JN,Anderson CA,Nyholt DR,et al. Genome-wide association study identifies a locus at 7p15.2 associated with endometriosis [J]. Nat Genet,2011,43(1):51-54.

[33] Bui TD,Zhang L,Rees MC,et al. Expression and hormone regulation of WNT2,3,4,5a,7a,7b and 10b in normal human endometrium and endometrial carcinoma [J]. Br J Cancer,1997,75(8):1131-1136.

[34] Schlosshauer PW,Pirog EC,Levine RL,et al. Mutational analysis of the CTNNB1 and APC genes in uterine endometrioid carcinoma [J]. Mod Pathol,2000,13(16):1066-1071.

[35] Konopka B,Janiec-Jankowska A,Czapczak D,et al. Molecular genetic defects in endometrial carcinomas: microsatellite instability,PTEN and beta-catenin(CTNNB1) genes mutations [J]. J Cancer Res Clin Oncol,2007,133(6):361-371.

[36] Liu Y,Patel L,Mills GB,et al. Clinical significance of CTNNB1 mutation and Wnt pathway activation in endometrioid endometrial carcinoma [J]. J Natl Cancer Inst,2014,106(9):245. doi: 10.1093/jnci/dju245.

[37] SegditsasS,Tomlinson I. Colorectal cancer and genetic alterations in the WNT pathway [J]. Oncogene,2006,25(57),7531-7537.

[38] Benhaj K,Akcali KC,Ozturk M. Redundant expression of canonical WNT ligands in human breast cancer cell lines [J]. Oncol Rep,2006,15(3):701-707.

[39] Garnis C,Campbell J,Davies JJ,et al. Involvement of multiple developmental genes on chromosome 1p in lung tumorigenesis [J]. Hum Mol Genet,2005,14(4):475-482.

(收稿日期:2015-01-14 本文编辑:苏 畅)

上一篇:吸入性糖皮质激素对稳定期慢性阻塞性肺疾病治... 下一篇:足三里穴位注射改善脾肾气虚、阳虚型维持性透...