CDKAL1、CDKN2A/2B、FTO基因多态性与维吾尔族2型糖尿病的关联以及基因间交互作用研究

时间:2022-09-20 12:35:46

CDKAL1、CDKN2A/2B、FTO基因多态性与维吾尔族2型糖尿病的关联以及基因间交互作用研究

[摘要] 目的 研究基因CDKAL1、CDKN2A/2B、FTO的魏塑账岫嗵性(SNPs)与维吾尔族2型糖尿病的关联以及基因间的交互作用。 方法 通过病例-对照研究的方法,收集新疆医科大学第一附属医院(以下简称“我院”)2012年3月~2013年9月期间住院的维吾尔族2型糖尿病患者1000例作为病例组,选择同期在我院进行体检的维吾尔族非糖尿病者1010例作为对照组。采用Sequenom MassARRAYRSNP技术检测CDKAL1、CDKN2A/2B、FTO基因的7个SNPs位点,最终纳入研究的是所有位点均检测成功的病例组879例和对照组895例。两组各SNPs的基因型及等位基因频率的比较采用χ2检验。使用Logistic回归分析各SNPs的遗传模型。使用GMDR 0.9软件分析各基因间交互作用。 结果 7个位点的基因型分布均符合Hardy-Weinberg平衡(P > 0.05)。位点rs10811661、rs7195539、rs8050136、rs9939609的基因型和位点rs8050136、rs9939609的等位基因分布在两组间分布差异有统计学意义(P < 0.05),两位点的风险等位基因均是A。两组间位点rs10811661、rs8050136、rs9939609的基因型分布在遗传模型中差异有统计学意义(P < 0.05)。通过GMDR软件进行基因-基因交互作用分析,二阶交互作用模型rs10811661-rs7195539为最佳模型,进行1000次置换检验后P=0.014。 结论 CDKAL1的基因多态性可能与维吾尔族2型糖尿病的发病风险无关。CDKN2A/2B(rs10811661)、FTO(rs7195539、rs8050136、rs9939609)的基因多态性可能与维吾尔族2型糖尿病的发病风险有关,其中,rs8050136和rs9939609的等位基因A可能是维吾尔族2型糖尿病发病的风险等位基因。在维吾尔族2型糖尿病发病过程中CDKN2A/2B(rs10811661)与FTO(rs7195539)间可能存在交互作用。

[关键词] 2型糖尿病;维吾尔族;基因多态性;交互作用

[中图分类号] R587.1 [文献标识码] A [文章编号] 1673-7210(2017)03(c)-0016-07

Gene polymorphisms of CDKAL1, CDKN2A/2B, FTO association with type 2 diabetes mellitus and gene-gene interaction in Uygur Population

XIAO Shan1,3 Aleteng Qiqige1,3 YAO Hua2,3 SU Yinxia2,3 WANG Zhiqiang2,3 MA Qi2,3 ZHU Jun1,3

1.Department of Endocrinology, the First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi 830000, China; 2.Key Laboratory of Metabolic Disease in Xinjiang, the First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi 830000, China; 3.Center of Prevention, Diagnosis, and Treatment of Diabetes, the First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi 830000, China

[Abstract] Objective To investigate the relationship among single nucleotide polymorphisms of CDKAL1, CDKN2A/2B, FTO, and type 2 diabetes mellitus (T2DM) in Uygur, and further to analyze the possible gene-gene interaction. Methods A case-control study was designed. 1000 cases of hospitalized Uygur with T2DM were selected as cases group in the First Affiliated Hospital of Xinjiang Medical University from March 2012 to September 2013. 1010 Uygur without diabetes mellitus (DM) who did physical examination during the same time in the same hospital were selected as the control group. Seven SNPs in CDKAL1, CDKN2A/2B and FTO were tested using the technology of Sequenom MassARRAYRSNP. Finally the cases, in which all the loci were successfully detected, were 879 in cases group and 895 in control group. Chi-square was used to analyze the distribution of genotype and allele. Logistic regression analysis was used to analyze the genetic models. Gene-gene interaction was analyzed by Generalized Multifactor Dimensionality Reduction 0.9 software. Results The genotype distributions of the 7 loci were in accordance with Hardy-Weinberg equilibrium (P > 0.05). Genotype distributions of rs10811661, rs7195539, rs8050136, rs9939609 and allele frequencies of rs8050136, rs9939609 were significantly different between cases group and control group (all P < 0.05). The risk allele was A in loci rs8050136 and rs9939609. The genotype distributions of rs10811661, rs8050136, and rs9939609 differed significantly in genetic models (P < 0.05). In the GMDR analysis, the second-order interaction of rs10811661-rs7195539 was the best model, after the 1000 times replacement tests, P=0.014. Conclusion The gene polymorphism in CDKAL1 may be unrelated with T2DM. The polymorphisms in CDKN2A/2B (rs10811661) and FTO (rs7195539, rs8050136, rs9939609) may be associated with T2DM, and A allele of rs8050136 and rs9939609 are likely risk alleles for T2DM in Uygur. There is potential interaction among CDKN2A/2B (rs10811661)-FTO (rs7195539) in the pathogenesis of T2DM in Uygur population.

[Key words] Type 2 diabetes; Uygur; Gene polymorphisms; Interaction

目前糖尿病(DM)的患病率呈快速上升的趋势,成为继心脑血管疾病、肿瘤之后另一个严重危害人民健康的重要慢性非传染性疾病。2010年中国疾病预防控制中心和中华医学会内分泌学分会应用世界卫生组织(WHO)1999年的诊断标准发现我国DM患病率为9.7%,再次证实我国可能已成为DM患病人数最多的国家,若同时以糖化血红蛋白(HbA1c)≥6.5%作为DM诊断标准之一,则其患病率为11.6%[1]。新疆位于亚欧大陆中部,占全国陆地总面积的1/6,是一个多民族聚居的地区,其中维吾尔族约占总人口的46%。2012年Yang等[2]通过流行病学调查发现,维吾尔族T2DM的患病率为6.23%,这些维吾尔族DM患者中仅有35%清楚DM诊断,7.3%使用降糖药物,3.13%血糖控制达标。以上数据均说明维吾尔族DM防治工作刻不容缓。

2型糖尿病(T2DM)是由遗传和环境因素共同作用的复杂疾病,其中,遗传因素在T2DM的发病过程中扮演着至关重要的角色。全基因组关联研究(genome-wide association studies,GWAS)通^寻找整个基因组的遗传差异成功确定与T2DM有很强关联的基因位点,位点数由2006年的3个增加至目前的大约70个[3],其中包括CDKAL1、CDKN2A/2B、FTO 3个基因的易感位点。目前HapMap计划已经提供了汉族人群、欧洲人群等不同种族全基因组SNPs基因型数据,但以上3个基因在维吾尔族人群中尚未进行验证。本研究通过分析维吾尔族各单核苷酸多态性(single nucleotide polymorphisms,SNPs)与T2DM的关联,以及基因间的交互作用,为将来进一步揭示维吾尔族T2DM的分子发病机制奠定基础。

1 资料与方法

1.1 一般资料

选择2012年3月~2013年9月在新疆医科大学第一附属医院(以下简称“我院”)住院的维吾尔族T2DM患者1000例作为病例组,选择同期在我院体检的无DM、无血缘关系的维吾尔族1010例作为对照组。最终纳入研究的是所有位点均检测成功的病例组879例,其中,男543例,女336例,年龄21~83岁,平均(51.3±9.7)岁;对照组895例,其中,男571例,女324例,年龄21~79岁,平均(50.4±9.9)岁。病例组及对照组年龄及性别构成差异无统计学意义(P > 0.05),具有可比性。参加本研究之前,所有调查对象均填写了知情同意书,研究方案已得到我院伦理委员会批准。DM的诊断符合1999年WHO的糖尿病诊断标准[4]或既往已明确诊断为T2DM。

1.2 方法

所有调查对象均抽取静脉抗凝血4 mL,分装至EP管中,置于-80℃冰箱保存,以备提取DNA。

使用北京百泰克生物技术有限公司的核酸自动提取仪提取外周血DNA,具体操作步骤参照核酸自动提取仪的使用方法进行。提取出DNA后,经1%琼脂糖凝胶电泳仪进行检测,估计浓度和DNA降解程度。质检合格的DNA A260/A280比值(OD值)为1.8~2.0,电泳图中条带好,且浓度大于50 ng/μL方可使用。随后样本转移至96孔板,-20℃储存备用。

选取CDKAL1、CDKN2A/2B、FTO基因的7个研究热点SNPs进行研究,包括rs10946398、rs7754840、rs10811661、rs3088440、rs7195539、rs8050136、rs9939609。SNPs的检测均由北京博奥生物有限公司进行,采用Sequenom MassARRAYRSNP技术检测,本研究的基因分型成功率和准确率>98%。

1.3 统计学方法

采用SPSS 21.0统计学软件进行数据分析,计算对照组的Hardy-Weinberg平衡判断样本的群体代表性。两组各SNPs基因型及等位基因频率的比较采用χ2检验。使用Logistic回归分析维吾尔族T2DM各SNPs的共显性、加性、显性及隐性遗传模型。使用GMDR 0.9软件分析各基因间交互作用,选择交叉验证一致性及测试平衡准确性均较高的模型作为最佳模型。以P < 0.05为差异有统计学意义。

2 结果

2.1 维吾尔族各SNPs在两组间的分布

7个位点对照组的基因型分布均符合Hardy-Weinberg平衡(P > 0.05),具有群体代表性,进行进一步统计分析。两组间各SNPs基因型及等位基因的分布、遗传模型Logistic回归分析结果显示,位点rs10946398、rs7754840、rs3088440的基因型和等位基因分布在两组间差异无统计学意义(P > 0.05)。位点rs10811661、rs7195539、rs8050136、rs9939609的基因型分布和位点rs8050136、rs9939609的等位基因分布在两组间差异有统计学(P < 0.05),两位点的风险等位基因均是A,OR值分别为1.198(95%CI 1.037~1.384)、1.238(95%CI 1.075~1.427)。两组间位点rs10811661基因型分布在共显性、加性和隐性模型中差异有统计学意义(P < 0.05),OR值分别为1.484(95%CI 1.010~2.183)、1.230(95%CI 1.057~1.431)、1.276(95%CI 1.057~1.541)。两组间位点rs8050136基因型分布在共显性、加性和显性模型中差异有统计学意义(P < 0.05),OR值分别为1.472(95%CI 1.045~2.072)、1.196(95%CI 1.035~1.382)、1.220(95%CI 1.012~1.470)。两组间位点rs9939609基因型分布在共显性、加性、显性和隐性模型中差异有统计学意义(P < 0.05),OR值分别为1.224(95%CI 1.004~1.492)、1.513(95%CI 1.106~2.070)、1.228(95%CI 1.069~1.411)、1.279(95%CI 1.061~1.542)、1.377(95%CI 1.021~1.858)。见表1。

2.2 各SNPs之间基因-基因交互作用

将各SNPs位点按照共显性模型赋值。通过GMDR软件进行基因-基因交互作用分析结果显示,二阶交互作用模型rs10811661-rs7195539为最佳模型,其交叉验证一致性为10/10,测试平衡准确性最高为0.5483,且P=0.011,进行1000次置换检验后P=0.014,见表2。图1为最佳模型的基因-基因间交互作用图。

3 讨论

在过去的近10年,GWAS成为确定与复杂疾病有关联的常见基因变异的首选方法。GWAS中陆续发现了很多与T2DM相关的易感基因,包括CDKN2A/2B[5]、CDKAL1[5]和FTO[6]。本研究首次在维吾尔族人群分析CDKN2A/2B、CDKAL1和FTO这三个基因与T2DM的关联。

CDK5调节亚基相关蛋白1样因子1(CDK5 regulatory subunit associated protein 1-like 1,CDKAL1)基因,目前的生理学功能仍然是个谜,顾名思义,该基因的氨基酸序列与CDK5调节相关蛋白1高度类似,该蛋白做为CDK5调节亚基p35和p39的结合蛋白而被发现[7]。目前发现,CDKAL1基因有5个SNPs与T2DM有关,包括rs4712523、rs10946398、rs7754840、rs7756992、rs9465871。以上所有的SNPs均位于CDKAL1上6p22.3区域的5号内含子,为非编码的SNPs[8]。Stancakova等[9]在芬兰男性受试者进行的病例-对照研究中发现位点rs7754840与芬兰男性T2DM有关联。Zeggini等[10]在英国的研究发现,rs10946398与T2DM的关联很引人注目,P值=8.4×10-5,OR值=1.14(95%CI 1.07~1.22)。本研究未发现CDKAL1基因的常见易感位点rs10946398、rs7754840与维吾尔族T2DM的发病风险有关联。

细胞周期素依赖性蛋白激酶抑制因子2A/2B(cyclin-dependent kinase inhibitor 2A/2B,CDKN2A/2B)基因,CDKN2A和CDKN2B位于染色w9p21,是两个邻近的细胞周期蛋白依赖性激酶抑制基因。CDKN2A和CDKN2B分别编码CDK抑制剂p16INK4a和p15IN K4b,抑制CDK4和CDK6的活性。在包括欧洲和亚洲的多项研究[11-19]中均证实了rs10811661多态性与T2DM有关联。然而也有部分研究[15,20-22]未发现rs10811661多态性与T2DM的关联。本研究中位点rs10811661的基因型分布在两组间存在统计学差异,提示rs10811661基因多态性可能与维吾尔族T2DM发病风险有关联。同时,其基因型分布在共显性、加性和隐性模型中均有统计学差异,OR值分别为1.484、1.230、1.276,提示TT基因型携带者发生T2DM的风险增加。迄今为止多项研究关注的均是CDKN2A/2B基因位点rs3088440的多态性与恶性肿瘤发病的相关性,包括其SNP增加唾液腺癌[23]和黑色素瘤[24]的发病风险,与宫颈癌[25]和分化型甲状腺癌[26]发病无关联。既往尚未进行该位点与T2DM相关性的研究。本研究发现,位点rs3088440的基因型及等位基因分布在两组间差异均无统计学意义,提示其与维吾尔族T2DM发病风险无关。

脂肪量及肥胖相关基因(fat mass and obesity-associated,FTO),是2007年由Frayling等[27]研究白色人种时发现的脂肪量与肥胖相关基因,它定位于染色体16q12.2上,全长约430 kb,包含9个外显子、8个内含子。既往有关FTO的研究中尚未针对位点rs7195539进行过研究。位点rs8050136及rs9939609与T2DM的关联在多个研究中均得到证实,但研究结果不一致。部分研究[27-31]认为上述位点的SNP与T2DM的关联是通过BMI介导的,但部分研究[32-35]认为上述位点SNP与T2DM的关联是独立于BMI的。本研究中位点rs7195539、rs8050136、rs9939609的基因型分布在两组间差异有统计学意义,提示其SNP可能与维吾尔族T2DM的发病风险有关联。位点rs8050136、rs9939609的等位基因分布在两组间差异有统计学意义,两位点的风险等位基因均是A,OR值分别为1.198、1.238,提示rs8050136、rs9939609上携带等位基因A的维吾尔族发生T2DM的风险是增加的。两组间位点rs8050136的基因型分布在共显性、加性、显性模型中差异有统计学意义,OR值分别为1.472、1.196、1.220;两组间位点rs9939609的基因型分布在共显性、加性、显性、隐性中差异均有统计学意义,OR值分别为1.224、1.513、1.228、1.279、1.377,提示位点rs8050136上携带基因型CA或AA的维吾尔族较携带CC者、位点rs9939609上携带基因型TA或AA的维吾尔族较携带TT者发生T2DM的风险增加。

多因子降维法(multifactor dimensionality reduction,MDR)是近年来发展起来的一种非参数、无需遗传模式的高阶交互作用分析方法[36],被成功应用于在多发性硬化、T2DM等疾病的病因研究中[37]。但由于该法不能用于数量性状的研究,为此Lou等[38]在2007年提出了一种基于MDR基本原理的扩展方法――广义多因子降维法(generalized multifactor dimensionality,GMDR),又称基于计分的多因子降维法。该法可以通过将广义线性模型的概念引入到MDR中,使其不但能够分析连续变量,且能够纳入协变量,从而控制协变量引起的干扰,提高预测的准确度。通过GMDR软件进行基因-基因交互作用分析,二阶交互作用模型rs10811661-rs7195539为最佳模型,提示在维吾尔族T2DM发病过程中,rs10811661-rs7195539间可能存在交互作用。

综上所述,CDKAL1的基因多态性可能与维吾尔族T2DM的发病风险无关。CDKN2A/2B(rs10811661)、FTO(rs7195539、rs8050136、rs9939609)的基因多态性可能与维吾尔族T2DM的发病风险有关,其中rs8050136和rs9939609的等位基因A可能是维吾尔族T2DM发病的风险等位基因。在维吾尔族T2DM发病过程中CDKN2A/2B(rs10811661)-FTO(rs7195539)间可能存在交互作用。

[参考文献]

[1] Xu Y,Wang L,He J,et al. Prevalence and control of diabetes in Chinese adults [J]. JAMA,2013,310(9):948-959.

[2] Yang YN,Xie X,Ma YT,et al. Type 2 diabetes in Xinjiang Uygur autonomous region,China [J]. PLoS One,2012,7(4):e35270.

[3] Kato N. Insights into the genetic basis of type 2 diabetes [J]. J Diabetes Investig,2013,4(3):233-244.

[4] Puavilai G,Chanprasertyotin S,Sriphrapradaeng A. Diagnostic criteria for diabetes mellitus and other categories of glucose intolerance:1997 criteria by the Expert Committee on the Diagnosis and Classification of Diabetes Mellitus(ADA),1998 WHO consultation criteria,and 1985 WHO criteria. World Health Organization [J]. Diabetes Res Clin Pract,1999,44(1):21-26.

[5] Saxena R,Voight BF,Lyssenko V,et al. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels [J]. Science,2007,316(5829):1331-1336.

[6] Frayling TM. Genome-wide association studies provide new insights into type 2 diabetes aetiology [J]. Nat Rev Genet,2007,8(9):657-662.

[7] Ching YP,Pang AS,Lam WH,et al. Identification of a neuronal Cdk5 activator-binding protein as Cdk5 inhibitor [J]. J Biol Chem,2002,277(18):15237-15240.

[8] 花巍,]昊颖,黄海超,等.细胞周期素依赖性激酶5调节亚单位相关蛋白1类似物1基因多态性与2型糖尿病相关性的研究进展[J].中国慢性病预防与控制,2012, 20(4):471-474.

[9] Stancakova A,Pihlajamaki J,Kuusisto J,et al. Single-nucleotide polymorphism rs7754840 of CDKAL1 is associated with impaired insulin secretion in nondiabetic offspring of type 2 diabetic subjects and in a large sample of men with normal glucose tolerance [J]. J Clin Endocrinol Metab,2008,93(5):1924-1930.

[10] Zeggini E,Weedon MN,Lindgren CM,et al. Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes [J]. Science,2007,316(5829):1336-1341.

[11] Han X,Luo Y,Ren Q,et al. Implication of genetic variants near SLC30A8,HHEX,CDKAL1,CDKN2A/B,IGF2BP2,FTO,TCF2,KCNQ1,and WFS1 in Type 2 Diabetes in a Chinese population [J]. BMC Medical Genetics,2010,11(1):81.

[12] Qian Y,Lu F,Dong M,et al. Cumulative effect and predictive value of genetic variants associated with type 2 diabetes in han chinese:a case-control study [J]. PLoS One,2015,10(1):e116537.

[13] Chen G,Xu Y,Lin Y,et al. Association study of genetic variants of 17 diabetes-related genes/loci and cardiovascular risk and diabetic nephropathy in the Chinese She population [J]. J Diabetes,2013,5(2):136-145.

[14] Gamboa-Melendez MA,Huerta-Chagoya A,Moreno-Macias H,et al. Contribution of common genetic variation to the risk of type 2 diabetes in the Mexican Mestizo population [J]. Diabetes,2012,61(12):3314-3321.

[15] Wen J,Ronn T,Olsson A,et al. Investigation of type 2 diabetes risk alleles support CDKN2A/B,CDKAL1,and TCF7L2 as susceptibility genes in a Han Chinese cohort [J]. PLoS One,2010,5(2):e9153.

[16] Hu C,Zhang R,Wang C,et al. PPARG,KCNJ11,CDKAL1,CDKN2A-CDKN2B,IDE-KIF11-HHEX,IGF2BP2 and SLC30A8 are associated with type 2 diabetes in a Chinese population [J]. PLoS One,2009,4(10):e7643.

[17] Takeuchi F,Serizawa M,Yamamoto K,et al. Confirmation of multiple risk Loci and genetic impacts by a genome-wide association study of type 2 diabetes in the Japanese population [J]. Diabetes,2009,58(7):1690-1699.

[18] Lee YH,Kang ES,Kim SH,et al. Association between polymorphisms in SLC30A8,HHEX,CDKN2A/B,IGF2BP2,FTO,WFS1,CDKAL1,KCNQ1 and type 2 diabetes in the Korean population [J]. J Hum Genet,2008,53(11-12):991-998.

[19] Cauchi S,Meyre D,Durand E,et al. Post genome-wide association studies of novel genes associated with type 2 diabetes show gene-gene interaction and high predictive value [J]. PLoS One,2008,3(5):e2031.

[20] Herder C,Rathmann W,Strassburger K,et al. Variants of the PPARG,IGF2BP2,CDKAL1,HHEX,and TCF7L2 genes confer risk of type 2 diabetes independently of BMI in the German KORA studies [J]. Horm Metab Res,2008,40(10):722-726.

[21] Hubacek JA,Neskudla T,Klementova M,et al. Tagging rs10811661 variant at CDKN2A/2B locus is not associated with type 2 diabetes mellitus in Czech population [J]. Folia Biol(Praha),2013,59(4):168-171.

[22] Nemr R,Almawi AW,Echtay A,et al. Replication study of common variants in CDKAL1 and CDKN2A/2B genes associated with type 2 diabetes in Lebanese Arab population [J]. Diabetes Res Clin Pract,2012,95(2):e37-e40.

[23] Jin L,Xu L,Song X,et al. Genetic variation in MDM2 and p14ARF and susceptibility to salivary gland carcinoma [J]. PLoS One,2012,7(11):e49361.

[24] Maccioni L,Rachakonda P,Bermejo J,et al. Variants at the 9p21 locus and melanoma risk [J]. BMC Cancer,2013,13(1):325.

[25] Chansaenroj J,Theamboonlers A,Junyangdikul P,et al. Polymorphisms in TP53(rs1042522),p16(rs11515 and rs3088440)and NQO1(rs1800566)genes in Thai cervical cancer patients with HPV 16 infection [J]. Asian Pac J Cancer Prev,2013,14(1):341-346.

[26] Zhang F,Xu L,Wei Q,et al. Significance of MDM2 and P14 ARF polymorphisms in susceptibility to differentiated thyroid carcinoma [J]. Surgery,2013,153(5):711-717.

[27] Frayling TM,Timpson NJ,Weedon MN,et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood andobesity [J]. Science,2007,316(5826):889-894.

[28] Zeggini E,Weedon MN,Lindgren CM,et al. Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes [J]. Science,2007,316(5829):1336-1341.

[29] Andreasen CH,Stender-Petersen KL,Mogensen MS,et al. Low physical activity accentuates the effect of the FTO rs9939609 polymorphism on body fat accumulation [J]. Diabetes,2008,57(1):95-101.

[30] Scott LJ,Mohlke KL,Bonnycastle LL,et al. A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants [J]. Science,2007,316(5829):1341-1345.

[31] Tan JT,Dorajoo R,Seielstad M,et al. FTO variants are associated with obesity in the Chinese and Malay populations in Singapore [J]. Diabetes,2008,57(10):2851-2857.

[32] Yajnik CS,Janipalli CS,Bhaskar S,et al. FTO gene variants are strongly associated with type 2 diabetes in South Asian Indians [J]. Diabetologia,2009,52(2):247-252.

[33] Hertel JK,Johansson S,Sonestedt E,et al. FTO,type 2 diabetes,and weight gain throughoutlife:a meta-analysis of 41,504 subjects from the Scandinavian HUNT,MDC,and MPP studies [J]. Diabetes,2011,60(5):1637-1644.

[34] Horikoshi M,Hara K,Ito C,et al. Variations in the HHEX gene are associated with increased risk of type 2 diabetes in the Japanese population [J]. Diabetologia,2007,50(12):2461-2466.

[35] Qian Y,Liu S,Lu F,et al. Genetic variant in fat mass and obesity-associated gene associated with type 2 diabetes risk in Han Chinese [J]. BMC Genetics,2013,14(1):86.

[36] Ritchie MD,Hahn LW,Roodi N,et al. Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer [J]. Am J Hum Genet,2001,69(1):138-147.

[37] 唐迅,李娜,大方,等.多因子降维法分析基因-基因交互作用的应用进展[J].中华流行病学杂志,2007,28(9):918-921.

[38] Lou XY,Chen GB,Yan L,et al. A generalized combinatorial approach for detecting gene-by-gene and gene-by-environment interactions with application to nicotine dependence [J]. Am J Hum Genet,2007,80(6):1125-1137.

(收稿日期:2016-11-20 本文编辑:程 铭)

上一篇:系统护理干预在髓内钉治疗胫骨骨不连中的临床... 下一篇:新常态下河北省低碳经济发展策略研究