千峡湖库区金钟大桥桥梁设计构思

时间:2022-09-20 03:12:14

千峡湖库区金钟大桥桥梁设计构思

摘要:文章简要介绍了浙江省丽水市景宁县千峡湖库区金钟大桥的设计,包括桥位自然条件、地形特点、设计构思、方案比选和施工工艺等,通过对库区桥梁建设的关键性技术问题进行了分析和探讨,为库区桥梁的设计提供借鉴。

关键词:千峡湖库区 预应力砼连续刚构 钢管砼桁架拱桥

中图分类号:U448 文献标识码: A

近年来,随着大型水电站的修建,坝址上游水位显著抬高,原有道路大多被完全淹没,新建公路工程线位选择必将跨越更多更宽的深沟。作为库区新建公路工程的关键――桥梁工程大多是在库区狭窄的两岸选址、实施,施工难度较大,为此库区桥梁的设计构思显得尤为重要。

本文结合金钟大桥新建工程中的具体桥梁的设计对库区桥梁设计构思进行探讨。

1、库区桥梁的特点

1.1桥位自然条件

滩坑水库(千峡湖)于2008年蓄水至标高160m,原溪流两侧道路基本淹没,为了方便库区附近群众出行,急需恢复水库两侧道路设施,并架设跨水库桥梁联系水库两岸道路。

拟建项目所经过的地区为低山丘陵区,地形地势相对较陡,地面标高一般在161~189m之间,沿线多为林地及旱地。路线跨越滩坑水库,水库水面宽度约230~450米,最大水深约40米,雨季时水流湍急,枯水期沟谷流量较小。路线所经区域主要河流为小溪,小溪属瓯江水系,自西南向东北斜贯景宁全境。滩坑水库建设后,于2008年蓄水至160m高程。千峡湖100年一遇洪水回水位为162.5m作为该桥的设计洪水位。桥下航道通航等级为Ⅳ级,设计最高通航水位160.8m,桥梁设计标高满足泄洪和通航要求。水库蓄水后库区内水流平缓,流速较小。拟建项目场地未发现有影响工程稳定性的不良地质作用,地基土层均匀性尚好,场地整体稳定性较好。

1.2技术标准及主要材料

(1)道路等级:按规范规定的设计速度为20km/h的四级公路标准进行设计,路基宽6.5m,金钟大桥宽9m。考虑到路线起终点路基部分与桥台距离较近,路基宽度渐变无法实施,故两侧路基宽度也按9.0 m进行设计。

(2)设计荷载:公路―Ⅱ级

(3)通航情况:滩坑水库Ⅵ级航道,通航净空22×4.5m,航道轴线与桥梁中心线夹角0°。

(4)设计最高通航水位:160.8m

(5)设计洪水位频率及设计洪水位:设计洪水频率1/100,设计洪水位162.5m。

(6)地震烈度:本区属地震动峰值加速度小于0.05g,地震基本烈度小于Ⅵ度区,地震反应谱特征周期为0.35s,桥梁仅进行构造措施设防。

(7)设计纵坡:路线纵断面采用0.5%、0.549%的缓坡进行设计。

(8)设计横坡:1.5%的双向坡,由厚度变化的混凝土桥面铺装形成桥梁横坡。

1.3主要材料

(1)砼:

预应力混凝土连续箱梁(含齿板): C55混凝土

主桥合拢段、施工人孔补强: C55微膨胀混凝土

伸缩缝预留槽: C55钢纤维混凝土

桥面混凝土铺装: C50防水混凝土

主桥主墩墩身:C40混凝土

主桥主墩承台、主桥主墩桩基、桥面防撞护栏、台帽及耳背墙: C30混凝土

桥台台身、侧墙及桥台基础: C20混凝土

(2)钢材:

⑴ 预应力钢束:采用高强度低松驰的预应力钢绞线,标准强度fpk=1860Mpa,弹性模量Ep=1.95×105MPa。

⑵ 普通钢筋: 钢筋直径≤10mm者采用HPB300光圆钢筋,直径>10mm者采用HRB400带肋钢筋。

⑶ 预应力锚具:必须采用成品锚具及其配套设备。

⑷ 预应力体系:应符合国际预应力砼协会(FIP)《后张预应力体系的验收建议》的要求,波纹管采用塑料波纹管。

⑸ 其它钢材:除特殊规定外,其余均采用Q235钢。

2、桥型方案设计与结构分析

2.1设计意图和原则

本桥属低等级农村公路桥梁,桥梁在满足使用功能的前提下控制造价,不求过高、过大,故桥型方案的选择在安全性的前提下,首先应考虑其使用功能。考虑到桥址位置水深较深,且河水冲刷能力较强,下部结构施工难度高,故设计时选择跨径较大的桥型,一方面减少水中墩的数量,可降低水中施工难度,另一方面减少桥梁下部结构对河床断面约束,减小桥梁建设对滩坑库区整体自然景观的影响。

结合目前的桥梁设计、施工技术水平及桥位处建设条件等因素考虑,在方案选择过程中,考虑采用预应力砼连续刚构桥方案和一跨过河的钢管砼桁架拱桥方案,对上述两种桥型分别做了比选,从中选出比较适合的桥型方案。

2.2大桥总体设计

2.2.1方案一:预应力砼连续刚构

图1 预应力砼连续刚构桥总体布置图

为主跨120m的预应力混凝土连续刚构,桥梁配孔:68+120+68m,桥梁全长262米。桥梁宽9米,采用单箱单室结构。桥台均采用U型台、扩大基础,桥墩采用双肢薄壁墩接承台,钻孔灌注桩基础。桥面总宽度为9米,桥面横坡为1.5%双向坡,桥面布置双向两个车道。桥梁平面位于直线上。该方案施工采用挂篮悬臂浇筑,工艺简单且非常成熟,但基础为深水基础,施工难度较大。

2.2.2方案二:钢管砼桁架拱桥

图2 钢管砼桁架拱桥总体布置图

桥梁上部结构形式:有推力中承式钢管混凝土桁架拱桥,桥梁布跨为8+240+8米,桥面总宽度为9米,桥面横坡为1.5%双向坡,桥面布置双向两个车道。

拱肋:拱肋净跨径240米,矢跨比1/5,拱轴线形式为二次抛物线。主拱肋为等截面双肢桁架式钢管混凝土结构,肋高4.65m,钢管采用Q345c钢板卷制而成,管径115cm,跨中段钢管壁厚度为20mm,拱脚段钢管壁厚度为30mm,拱肋内灌C50微膨胀泵送混凝土,形成钢管混凝土结构。主拱肋采用分段预制缆索吊装施工,每条拱肋分9段预制,标准段长度为30m,跨中段长度为23.49m。受水库水深的限制,拱肋只能采用缆索吊分阶段焊接拼装,施工难度较高。

2.3 施工方案

深水桩基础一般有两种施工方案,第一种是从两岸向主墩位置搭设施工栈桥、施工平台,第二种是采用浮式平台进行深水钻孔桩施工。其主墩位置的地面线顶面覆盖层为卵石层,卵石层层厚较薄,桥墩施工时不能将钢护筒很好地打入岩层、不能形成施工平台时,可以考虑采用栽设工艺,用冲击钻进行无护筒的冲坑后将相应的钢护筒埋设入冲坑中并将多个钢护筒连接成施工平台。上部结构采用挂篮悬臂现浇施工。该施工方法工艺简单,技术相当成熟。

钢管砼桁架拱桥下部结构采用明挖施工。桥梁上部结构的钢管拱节段及吊杆横梁、桥道板的安装采用缆索吊装系统无支架吊装。此安装架设方法工艺成熟,且施工期间受力对结构成桥受力无影响,易于保证结构成桥线形和受力状态。目前国内采用相同结构体系的桥梁大多采用上述方法施工。

3、桥型方案确定

3.1两种桥型方案比较分析

3.2推荐方案的确定

通过分析比较,两个方案在技术上都是可行的,均能满足金钟大桥的使用要求和滩坑水库的通航要求,均体现桥梁技术的先进水平,均有较成熟的施工工艺,但从本项目所在区域的建设条件、运输条件以及后期养护费用考虑,变截面预应力砼连续刚构方案要优于中承式钢管混凝土桁架拱桥方案,故推荐方案为变截面预应力砼连续刚构桥。

4、结语

大跨径连续刚构桥除具有前面所分析的许多优点外,还具有整体性能好、抗震能力强、抗扭潜力大、结构受力合理、选型简洁明快的特点。这种抗压刚度较大、抗推刚度较小的双肢薄壁连续刚构桥较为容易适应连续结构的变形,对减少连续结构引温度变化、混凝土收缩徐变等原因而产生的次内力非常有利,我们相信它必将被更多的引入到库区新建、复建公路工程中,为改变库区的交通状况作出巨大的贡献。

参考文献:

[1]《公路桥涵设计通用规范》(JTG D60-2004);

[2]《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004);

[3]《高墩大跨连续刚构桥》(马保林编著 人民交通出版社);

[4]《悬臂浇筑预应力混凝土连续梁桥》(张继尧 王昌将编著 人民交通出版社);

[5]《深水裸岩大直径桥桩施工技术研究与应用》(周联英 2010年1月);

[6]《深水高墩预应力混凝土连续刚构特大桥的设计分析研究》(杜引光 2007年5月);

上一篇:欧盟绿色贸易壁垒对我国农产品出口影响及对策... 下一篇:浅述绿色节能建筑施工技术