传感器技术应用及发展趋势探析

时间:2022-09-12 05:25:27

传感器技术应用及发展趋势探析

摘 要

传感器技术是现代科技中极具发展潜力的一项应用,通过对当前新型传感器技术的应用现状分析,提出了传感器技术在未来发展中的难题和挑战,最后就传感器技术的发展趋势和应用前景进行了探讨。

【关键词】传感器技术 光电传感器 生物传感器 发展趋势

传感器技术水平在一定程度上反映了一个国家科技现代化的水平,传感器在实现自动化控制及测试控制中发挥着重要的作用。传感器技术在近些年来发展迅速,与计算机技术和通信技术一起被称为信息技术的三大支柱。现代科技中,自动化与智能化已经成为新的发展方向,传感器作为自动测量与控制中的关键环节,在社会的生产生活中应用十分广泛,且具有巨大的发展空间。

1 新型传感器技术的应用现状

随着微电子技术、微机械加工技术、光电科学以及当代生物科学等高新技术的推动下,传感器已经从过去单一功能转变为功能多样、科技含量高的新型产品。传感器技术所涉及的知识领域非常广泛,其研究和发展也越来越多地和其他学科技术的发展紧密联系。

1.1 光电传感器技术

光电式传感器是以光为测量媒介、以光电器件为转换元件的传感器,它具有非接触、响应快、性能可靠等卓越特性。随着光电科技的飞速发展,光电传感器已成为光电传感器已成为各种光电检测系统中实现光电转换的关键元件,并在传感器应用中占据着重要的地位,其中在非接触式测量领域更是扮演者无法替代的角色。光电传感器工作时,光电器件负责将光能(红外辐射、可见光及紫外辐射)信号转换为电学信号。光电器件不仅结构简单、经济性好,且具有响应快、可靠性强等优势,在自动控制、智能化控制等方面应用前景十分广阔。此外,光电传感器除了对光学信号进行测量,还能够对引起光源变化的构件或其它被测量进行信息捕捉,再通过电路对转换的电学信号进行放大和输出。

1.2 生物传感器技术

生物传感器的原理主要由两大部分组成:生物功能物质的分子识别部分和转换部分前者的作用是识别被测物质,当生物传感器的敏感膜与被测物接触时,敏感膜上的某种生化活性物质就会从众多化合物中挑选适合于自己的分子并与之产生作用,使其具有选择识别的能力;转换部分,是由于细胞膜受体与外界发生了共价结合,通过细胞膜的通透性改变,诱发了一系列的电化学过程,而这种变换得以把生物功能物质的分子识别转换为电信号,形成了生物传感器。

2 传感器技术发展中面临的挑战

传感器技术是利用现代科技来获取所需要的信息和信息量,以此来代替人类的感觉器官。传感器技术的发展不断更新着人们的观念,也为社会生产和生活的进步提供了新的思路,然而,在传感器技术的发展中仍存在着一些问题亟待解决。

2.1 通信能力有限

当前无论是生产还是生活中应用的传感器大多是基于Zig-Bee协议,这些传感器的通信距离虽然在理论上支持无限扩展,然而在实践中受到周围环境的干扰,并不能完全达到标准的通信距离。因此,如何应对复杂的地形,多变的天气,以及无处不在的电磁干扰,保证网络通信的可靠性,仍是传感器面临的一大挑战。

2.2 电源能量有限

传感器在工作中通常靠干电池或可充电电池提供电源,而这种电源的能量十分有限,严重影响着传感器的民用化应用。因此,针对传感器电源的研究也正在被研究者们日益重视。主要包括两个方面,一方面是研究传感器在网络工作中的节能技术;另一方面是选择可长时间供电的新型能源。

2.3 计算能力有限

嵌入式处理器以及存储器满足了传感器微型化设计的需要,且具有信息和数据处理的能力,虽然它们有一定信息处理的能力,但是数据经过A/D转换后,只经过少许处理就输出出去,很容易产生大量的数据,而有些数据是不需要的。因此,尽可能地提高传感器的数据处理能力,并能够进行协作分布式信息处理是当前研究的另一难点。

2.4 传感器数量大、范围广难维护

在未来的传感器应用中,很多都不是依靠单一的个体工作,而是由许多传感器组成的系统,系统中的传感器不仅数量巨大,且其分布具有广泛性,传感器组成的网络系统维护难度就显得异常突出。管理数目庞大的传感器系统,需要可靠的软硬件网络,同时传感器网络必须具备可重构性及自调整性,这也是需要研究的另一重点。

3 传感器技术的发展趋势和应用前景

随着传感器技术在科学发展中的重要地位日益显现,对传感器的研究和应用也逐渐受到人们的普遍关注。当今传感器技术的研究与发展,特别是基于光电通信和生物学原理的新型传感器技术的发展,已成为推动国家乃至世界信息化产业进步的重要标志与动力。

3.1 利用新材料开发新型传感器

随着光导纤维、纳米材料、超导材料等材料科学的深入,智能材料的应用和发展正成为人们关注的热点。智能材料是指材料本身就具备传统传感器的功能,能够对外界及自身性能的变化进行识别和判断,进而通过一定功能的转换,最终采取相应的行动来调整以适应外界变化和避免自身性能受损。新材料这种敏感功能为新型传感器的出现提供了技术支持。

3.2 集成化多功能传感器的开发

集成化是指传感器同一功能的多元件并列,以及功能上的一体化。同一功能的多元化并列能够实现传感器参数的多维立体化,再通过软件的编译,对传感器中的多个单一参数进行集成,进而完成对多个点或面的集中监测。传感器功能上的一体化主要是改变传感器功能单一的缺陷,转而向着单传感器集成多种功能自一体,实现一个传感器能够同时监测多种信号变化,简化监测系统,提高工作效率。运用集成化多功能理论研制出的传感器可以应用到更广泛的领域,并发挥出更加强大的功能效用利用集成化多功能原理,现代传感技术已制成带温度补偿的集成压力传感器,频率输出型集成压力传感器,霍尔集成传感器,半导体集成色敏传感器,多维化集成气敏传感器等。

4 结束语

当前我国在传感器的研发已经具备一定的规模和应用实力,在今后的研发中应重点关注基础性产品,在攻克传感器制造工艺技术的前提下,对产品的可靠性进行深入化分析,实现传感器技术的研究与应用平衡发展。

参考文献

[1]焦长兵,金勇杰,傅历光.无线传感器网络及其军事应用[J].黑龙江科技信息,2007(23).

[2]郝全义,王太宏.生物传感器及其在传染病检测中的应用[J].中国基础科学,2009(06).

作者单位

中航工业洪都 江西省南昌市 330024

上一篇:民航电子飞行仪表系统的发展与趋势 下一篇:Android 系统微课堂平台的初探