盾叶薯蓣中甾体皂苷及其体外血小板活性研究

时间:2022-09-10 08:12:22

盾叶薯蓣中甾体皂苷及其体外血小板活性研究

[摘要]利用大孔吸附树脂柱色谱、硅胶柱色谱、ODS柱色谱及制备液相等方法,从盾叶薯蓣Dioscorea zingiberensis 70%乙醇提取物中分离得到10个化合物,并通过核磁和质谱等波谱学方法分别鉴定它们的结构为胡芦巴皂苷XIIIa(1)、小花盾叶薯蓣皂苷(2)、胡芦巴皂苷 IVa(3)、三角薯蓣皂苷(4)、protobioside(5)、lilioglycoside K(6)、盾叶新苷(7)、三角叶皂苷(8)、薯蓣次苷 A(9)、延龄草皂苷(10)。其中,化合物1,3,5,6均为首次从该植物中分离得到。化合物1~10的体外血小板活性筛选表明,化合物7和8能够诱导血小板聚集,而化合物9具有显著抑制血小板聚集的作用。

[关键词]盾叶薯蓣;甾体皂苷;分离鉴定;血小板聚集

盾叶薯蓣Dioscorea zingiberensis C.H. Wright,又称黄姜,为薯蓣科薯蓣属多年生草本攀援植物,广泛分布在河南、四川、湖北和陕西南部。盾叶薯蓣为我国特有薯蓣属植物,资源丰富,是生产激素类药物合成前体皂素(薯蓣皂苷元)的主要生产原料之一。盾叶薯蓣作为中药,具有清肺止咳、利尿通淋、通经止痛、解毒消肿等功效[1],也被用于中药新药的研究开发。目前,上市药物盾叶冠心宁片就是由盾叶薯蓣根茎提取物生产而成的中成药,可用于治疗高血脂、心绞痛和冠心病等症。甾体皂苷是盾叶薯蓣中的主要化学成分,前人已经从盾叶薯蓣中分离得到一系列的甾体皂苷类成分[2-5]。早期的研究多集中在皂苷元,近年报道的成分包括螺甾皂苷及呋甾皂苷,但研究的系统性不足,特别是对其中微量成分的分离鉴定研究较少。本文以盾叶薯蓣为研究对象,利用多种分离手段从其70%乙醇提取物中共分离得到10个单体化合物,并鉴定它们的结构分别为胡芦巴皂苷XIIIa(1,trigoneoside XIIIa)、小花盾叶薯蓣皂苷(2,parvifloside)、胡芦巴皂苷 IVa(3,trigoneoside IVa)、三角薯蓣皂苷(4,deltoside)、protobioside(5)、lilioglycoside K(6)、盾叶新苷(7,zingiberensis newsaponin I)、三角叶皂苷(8,deltonin)、薯蓣次苷 A(9,prosapogenin A of dioscin)、延龄草皂苷(10,trillin)。其中化合物1,3,5,6为首次从该植物中分离得到。基于盾叶冠心宁片的临床应用和已报道的盾叶薯蓣甾体皂苷的心血管活性,对得到的各单体化合物进行了体外血小板聚集活性的筛选,初步探讨其构效关系。

1 材料

Waters SYNAPT质谱仪(Waters,美国); Varian UNITY INOVA 600 超导核磁共振谱仪(Palo Alto,美国) 和JNM-ECA-400超导核磁共振谱仪(日本电子,日本);Waters 2695型高效液相色谱仪,Venusil XBP C18色谱柱(4.6 mm×250 mm,5 μm,艾杰尔,天津),PL-ELS 2100 型蒸发光检测器(漂移管温度 70℃, 雾化温度 50 ℃,气流量 1.6 L・min-1,Polymer,英国); Primeline solvent delivery module(ASI,美国) 制备型高效液相色谱仪,Shodex RID 102 型示差检测器(Showa Denko,日本),Venusil XBP C18色谱柱(10.0 mm×250 mm, 5 μm,艾杰尔,天津)。SP825型大孔吸附树脂(三菱,日本);ODS-A(120 , 50 μm;YMC,日本);柱色谱硅胶用硅胶H(青岛海洋化工厂),薄层色谱硅胶板(青岛海洋化工厂)。MonoBloc AB104-S型1/1万天平(Mettle-Toledo,美国);RE-2000型旋转蒸发仪(亚荣,上海);SHZ-III型循环水真空泵(亚荣,上海);CHRIST ALPHA 1-2LD型冷冻干燥机(Marin Christ, 德国);560CA型血小板聚集仪(CHRONOLOG,美国),Centra MP4R型离心机(IEC,美国),15 mL硅化离心管(金麦克,中国);MEK-2-7226血细胞计数仪(Chronolog,美国)。分析纯试剂甲醇、乙醇、乙腈、氯仿等有机溶剂(北京化学试剂厂);所用色谱纯试剂甲醇(安徽时联特种溶剂股份有限公司)、乙腈(美国Fisher公司);肝素钠(Merck,德国);戊巴比妥钠(Merck,德国)。Wistar雄性大鼠200 g(军事医学科学院动物中心)。

盾叶薯蓣根茎采购自陕西安康,由天津中医药大学张丽娟教授鉴定为盾叶薯蓣D. zingiberensis,标本(HJ1004) 保存于北京军事医学科学院放射与辐射医学研究所生物技术研究室中药化学组。

2 提取与分离

盾叶薯蓣药材5.5 kg,切片,70%乙醇回流提取(2次,每次1h),过滤,合并滤液,减压浓缩至无醇味,离心。上清液经SP825型大孔吸附树脂柱色谱,依次用10%,50%,95%乙醇梯度洗脱。收集50%,95%乙醇洗脱部分,浓缩后冷冻干燥分别得Fr. A(90 g) 和 Fr. B(45 g)。Fr. A进行加压硅胶柱色谱,氯仿-甲醇-水(65∶20∶3~65∶35∶10) 梯度洗脱,得到4个组分(Fr. A1~A4)。Fr. A2进行开放C18柱色谱,25%乙腈洗脱,分份收集,其中10~58流分进行半制备液相制备(28%乙腈-水为流动相,流速4.5 mL・min-1) 得化合物6(12.4 mg, tR 28.2 min),60~62份进行半制备液相制备(28%乙腈-水为流动相, 流速4.5 mL・min-1) 得化合物5(130.4 mg, tR 32.5 min)。将Fr. A3进行半制备液相制备分离,27%乙腈为流动相(流速4.0 mL・min-1),得化合物4(160 mg, tR 25.4 min),3(3.3 mg, tR 24.2 min)。将Fr. A4进行开放C18柱色谱,22%乙腈洗脱,分份收集,合并50~65流分得到化合物2(309 mg),74~84份再经制备液相(27%乙腈-水为流动相, 流速4.5 mL・min-1) 制备得化合物1(10.2 mg, tR 18.8 min)。Fr. B 进行加压硅胶柱色谱,氯仿-甲醇-水梯度(9∶1∶0~65∶35∶10下层) 洗脱,分份收集,10~14流分重结晶得到化合物10(11.5 mg),52~59流分重结晶得到化合物9(103 mg),78~102流分重结晶得到化合物8(740 mg),126~140流分重结晶得到化合物7(1.5 g)。

3 结构鉴定

化合物1 白色无定形粉末。ESI-MS m/z 1 225.6[M-H]-。1H-NMR(C5D5N,600 MHz)δ:0.88(3H,s,H-18),1.05(3H,s,H-19),1.31(3H,d,J=6.6 Hz,H-21),1.02(3H,d,J=6.6 Hz,H-27),4.91(1H,J=7.2,Glc1-H-1),6.22(1H,br s,Rha-H-1),5.07(1H,d,J=7.8 Hz,Glc2-H-1),5.28(1H,d,J=7.8 Hz,Glc3-H-1),4.81(1H,d,J=7.8 Hz,Glc4-H-1),4.06(1H,m,H-26a),3.48(1H,dd,J=9.0,6.0 Hz,H-26b);13C-NMR(C5D5N,150 MHz)δ:37.5(C-1),30.2(C-2),78.3(C-3),39.0(C-4),140.9(C-5),121.9(C-6),32.4(C-7),31.7(C-8),50.4(C-9),37.2(C-10),21.1(C-11),40.0(C-12),40.8(C-13),56.6(C-14),32.5(C-15),81.1(C-16),63.8(C-17),16.5(C-18),19.4(C-19),40.7(C-20),16.5(C-21),110.7(C-22),37.2(C-23),28.3(C-24),34.5(C-25),75.6(C-26),17.4(C-27),100.0(Glc1-C-1),77.3(Glc1-C-2),76.2(Glc1-C-3),81.5(Glc1-C-4),77.6(Glc1-C-5),61.8(Glc1-C-6),101.8(Rha-C-1),72.4(Rha-C-2),72.8(Rha-C-3),74.2(Rha-C-4),69.5(Rha-C-5),18.7(Rha-C-6),104.6(Glc2-C-1),73.7(Glc2-C-2),88.3(Glc2-C-3),69.5(Glc2-C-4),78.3(Glc2-C-5),61.8(Glc2-C-6),106.0(Glc3-C-1),75.4(Glc3-C-2),78.2(Glc3-C-3),71.7(Glc3-C-4),78.6(Glc3-C-5),62.6(Glc3-C-6),105.2(Glc4-C-1),75.3(Glc4-C-2),78.7(Glc4-C-3),71.6(Glc4-C-4),78.5(Glc4-C-5),62.9(Glc4-C-6)。以上数据与文献[6]报道的trigoneoside XIIIa的数据一致,故鉴定化合物1结构为trigoneoside XIIIa(胡芦巴皂苷 XIIIa)。

化合物2 白色无定形粉末。ESI-MS m/z 1 225.6[M-H]-。1H-NMR(C5D5N,600 MHz)δ:0.90(3H,s,H-18),1.04(3H,s,H-19),1.33(3H,d,J=6.6 Hz,H-21),0.98(3H,d,J=6.6 Hz,H-27),4.90(1H,d,J=7.2,Glc1-H-1),6.22(1H,s,Rha-H-1),5.08(1H,d,J=7.8 Hz,Glc2-H-1),5.28(1H,d,J=7.8 Hz,Glc3-H-1),4.81(1H,d,J=7.8 Hz,Glc4-H-1),3.93(1H,m,H-26a),3.61(1H,dd,J=9.0,6.0 Hz,H-26b)。13C-NMR(C5D5N,150 MHz)δ:37.5(C-1),30.2(C-2),78.2(C-3),39.0(C-4),140.8(C-5),121.9(C-6),32.4(C-7),31.7(C-8),50.4(C-9),37.2(C-10),21.1(C-11),40.0(C-12),40.5(C-13),56.6(C-14),32.4(C-15),81.5(C-16),63.9(C-17),16.5(C-18),19.4(C-19),40.8(C-20),16.3(C-21),110.7(C-22),37.2(C-23),28.4(C-24),34.3(C-25),75.2(C-26),17.5(C-27),100.0(Glc1-C-1),77.3(Glc1-C-2),76.3(Glc1-C-3),81.3(Glc1-C-4),77.7(Glc1-C-5),61.5(Glc1-C-6),101.8(Rha-C-1),72.5(Rha-C-2),72.8(Rha-C-3),74.2(Rha-C-4),69.3(Rha-C-5),18.7(Rha-C-6),104.6(Glc2-C-1),73.7(Glc2-C-2),88.4(Glc2-C-3),69.3(Glc2-C-4),78.3(Glc2-C-5),61.8(Glc2-C-6),105.9(Glc3-C-1),75.6(Glc3-C-2),78.3(Glc3-C-3),71.6(Glc3-C-4),78.7(Glc3-C-5),62.5(Glc3-C-6),105.0(Glc4-C-1),75.2(Glc4-C-2),78.5(Glc4-C-3),71.6(Glc4-C-4),78.5(Glc4-C-5),62.9(Glc4-C-6)。以上数据与文献[7-8]报道的parvifloside的数据一致,故鉴定化合物2结构为parvifloside(小花盾叶薯蓣苷)。

化合物3 白色无定形粉末。ESI-MS m/z 1 063.5[M-H]-。1H-NMR(C5D5N,600 MHz)δ:0.88(3H,s,H-18),1.04(3H,s,H-19),1.30(3H,d,J=6.6 Hz,H-21),1.01(3H,d,J=6.6 Hz,H-27),4.93(1H,J=7.2,Glc1-H-1),6.24(1H,br s,Rha-H-1),5.12(1H,d,J=7.2 Hz,Glc2-H-1),4.81(1H,d,J=7.8 Hz,Glc3-H-1),4.07(1H,m,H-26a),3.47(1H,dd,J=9.0,6.0 Hz,H-26b)。13C-NMR(C5D5N,150 MHz)δ:37.5 (C-1),30.2(C-2),78.3(C-3),39.0(C-4),140.9(C-5),121.9(C-6),32.4(C-7),31.7(C-8),50.4(C-9),37.2(C-10),21.1(C-11),40.0(C-12),40.8(C-13),56.6(C-14),32.5(C-15),81.1(C-16),63.8(C-17),16.5(C-18),19.4(C-19),40.7(C-20),16.5(C-21),110.7(C-22),37.2(C-23),28.4(C-24),34.5(C-25),75.4(C-26),17.5(C-27),100.0(Glc1-C-1),77.3(Glc1-C-2),76.2(Glc1-C-3),82.1(Glc1-C-4),77.8(Glc1-C-5),62.1(Glc1-C-6),101.8(Rha-C-1),72.5(Rha-C-2),72.8(Rha-C-3),74.2(Rha-C-4),69.5(Rha-C-5),18.7(Rha-C-6),105.3(Glc2-C-1),75.0(Glc2-C-2),78.4(Glc2-C-3),71.2(Glc2-C-4),78.3(Glc2-C-5),61.8(Glc2-C-6),105.2(Glc3-C-1),75.2(Glc3-C-2),78.6(Glc3-C-3),71.7(Glc3-C-4),78.5(Glc3-C-5),62.9(Glc3-C-6)。以上数据与文献[9]报道的trigoneoside IVa的数据一致,故鉴定化合物3结构为trigoneoside IVa(胡芦巴皂苷IVa)。

化合物4 白色无定形粉末。ESI-MS m/z 1 063.5[M-H]-。1H-NMR(C5D5N,600 MHz)δ:0.88(3H,s,H-18),1.04(3H,s,H-19),1.30(3H,d,J=6.6 Hz,H-21),1.01(3H,d,J=6.6 Hz,H-27),4.93(1H,J=7.2,Glc1-H-1),6.24(1H,br s,Rha-H-1),5.12(1H,d,J=7.2 Hz,Glc2-H-1),4.81(1H,d,J=7.8 Hz,Glc2-H-1),3.96(1H,m,H-26a),3.60(1H,dd,J=9.0,6.0 Hz,H-26b)。13C-NMR(C5D5N,150 MHz)δ:37.5(C-1),30.2(C-2),78.2(C-3),39.0(C-4),140.8(C-5),121.9(C-6),32.4(C-7),31.7(C-8),50.4(C-9),37.2(C-10),21.1(C-11),40.0(C-12),40.8(C-13),56.6(C-14),32.5(C-15),81.1(C-16),63.9(C-17),16.5(C-18),19.4(C-19),40.7(C-20),16.5(C-21),110.7(C-22),37.2(C-23),28.3(C-24),34.4(C-25),75.4(C-26),17.5(C-27),100.1(Glc1-C-1),77.3(Glc1-C-2),76.2(Glc1-C-3),82.1(Glc1-C-4),77.8(Glc1-C-5),62.1(Glc1-C-6),101.8(Rha-C-1),72.5(Rha-C-2),72.7(Rha-C-3),74.2(Rha-C-4),69.5(Rha-C-5),18.7(Rha-C-6),105.3(Glc2-C-1),75.0(Glc2-C-2),78.4(Glc2-C-3),71.2(Glc2-C-4),78.3(Glc2-C-5),61.8(Glc2-C-6),105.2(Glc3-C-1),75.2(Glc3-C-2),78.6(Glc3-C-3),71.7(Glc3-C-4),78.5(Glc3-C-5),62.9(Glc3-C-6)。以上数据与文献[7-8]报道的deltoside一致,故确定化合物4的结构为deltoside(三角薯蓣皂苷)。

化合物5 白色无定形粉末。ESI-MS m/z 901.5 [M-H]-。1H-NMR(C5D5N,400 MHz)δ:0.89(3H,s,H-18),1.05(3H,s,H-19),1.30(3H,d,J=6.6 Hz,H-21),1.01(3H,d,J=6.6 Hz,H-27),5.02(1H,J=7.4 Hz,Glc1-H-1),6.38(1H,br s,Rha-H-1),4.81(1H,d,J=7.8 Hz,Glc2-H-1),3.93(1H,m,H-26a),3.62(1H,dd,J=9.0,6.0 Hz,H-26b)。13C-NMR(C5D5N,100 MHz)δ:37.6(C-1),30.2(C-2),78.3(C-3),39.0(C-4),140.9(C-5),121.9(C-6),32.4(C-7),31.7(C-8),50.4(C-9),37.2(C-10),21.1(C-11),40.0(C-12),40.8(C-13),56.6(C-14),32.5(C-15),81.1(C-16) ,63.9(C-17),16.5(C-18),19.4(C-19),40.7(C-20),16.5(C-21),110.7(C-22),37.1(C-23),28.4(C-24),34.5(C-25),75.3(C-26),17.5(C-27),100.4(Glc1-C-1),79.7(Glc1-C-2),78.0(Glc1-C-3),71.9(Glc1-C-4),78.5(Glc1-C-5),62.9(Glc1-C-6),102.1(Rha-C-1),72.6(Rha-C-2),72.9(Rha-C-3),74.2(Rha-C-4),69.5(Rha-C-5),18.7(Rha-C-6),105.0(Glc2-C-1),75.2(Glc2-C-2),78.6(Glc2-C-3),71.7(Glc2-C-4),77.8(Glc2-C-5),62.7(Glc2-C-6)。以上数据与文献[7]中的protobioside一致,确定化合物5的结构为protobioside。

化合物6 白色无定形粉末。ESI-MS m/z 755.4 [M-H]-。1H-NMR(C5D5N,600 MHz)δ:0.88(3H,s,H-18),1.04(3H,s,H-19),1.30(3H,d,J=6.6 Hz,H-21) 和1.01(3H,d,J=6.6 Hz,H-27),4.93(1H,d,J=7.2 Hz,H-1′),4.81(1H,d,J=7.8 Hz,H-1′′),3.96(1H,m,H-26a),3.60(1H,dd,J=9.0,6.0 Hz,H-26b)。13C-NMR(C5D5N,150MHz)δ:37.5(C-1),30.3(C-2),78.2(C-3),39.0(C-4),140.9(C-5),121.8(C-6),32.3(C-7),31.7(C-8),50.4(C-9),37.2(C-10),21.1(C-11),40.0(C-12),40.8(C-13),56.6(C-14),32.5(C-15),81.1(C-16),62.9(C-17),16.5(C-18),19.4(C-19),40.7(C-20),16.5(C-21),110.9(C-22),37.2(C-23),28.3(C-24),34.3(C-25),75.4(C-26),17.5(C-27),102.6(Glc1-C-1),75.3(Glc1-C-2),78.2(Glc1-C-3),71.8(Glc1-C-4),78.2(Glc1-C-5),62.9(Glc1-C-6),105.0(Glc2-C-1),75.2(Glc2-C-2),78.6(Glc2-C-3),71.8(Glc2-C-4),78.5(Glc2-C-5),62.9(Glc2-C-6)。以上数据与文献[7]中的lilioglycoside K一致,确定化合物6的结构为lilioglycoside K。

化合物7 白色无定形粉末。ESI-MS m/z 1 045.5 [M-H]-。13C-NMR(C5D5N,100 Hz)δ:37.5(C-1),30.6(C-2),78.5(C-3),38.9(C-4),140.7(C-5),121.8(C-6),32.2(C-7),31.8(C-8),50.2(C-9),37.1(C-10),21.1(C-11),39.8(C-12),40.4(C-13),56.6(C-14),32.3(C-15),81.1(C-16),62.8(C-17),16.3(C-18),19.4(C-19),41.9(C-20),15.0(C-21),109.2(C-22),31.6(C-23),29.3(C-24),30.6(C-25),66.8(C-26),17.3(C-27),99.9(Glc1-C-1),77.2(Glc1-C-2),76.3(Glc1-C-3),81.5(Glc1-C-4),77.6(Glc1-C-5),61.4(Glc1-C-6),101.8(Rha-C-1),72.5(Rha-C-2),72.8(Rha-C-3),74.1(Rha-C-4),69.5(Rha-C-5),18.7(Rha-C-6),104.6(Glc2-C-1),73.7(Glc2-C-2),88.3(Glc2-C-3),69.3(Glc2-C-4),78.3(Glc2-C-5),61.7(Glc2-C-6),105.9(Glc3-C-1),75.6(Glc3-C-2),78.0(Glc3-C-3),71.5(Glc3-C-4),78.7(Glc3-C-5),62.5(Glc3-C-6)。以上数据与文献[10]中的zingiberensis saponin I 一致,故确定化合物7结构为zingiberensis saponin I(盾叶新苷)。

化合物8 白色无定形粉末。ESI-MS m/z 883.5 [M-H]-。13C-NMR(C5D5N,100 MHz)δ:37.4(C-1),30.1(C-2),78.5(C-3),38.9(C-4),140.7(C-5),121.8(C-6),32.2(C-7),31.8(C-8),50.2(C-9),37.1(C-10),21.1(C-11),39.8(C-12),40.4(C-13),56.6(C-14),32.3(C-15),81.1(C-16),62.8(C-17),16.3(C-18),19.4(C-19),41.9(C-20),15.0(C-21),109.2(C-22),31.6(C-23),29.2(C-24),30.6(C-25),66.8(C-26),17.3(C-27),99.9(Glc1-C-1),77.2(Glc1-C-2),76.2(Glc1-C-3),82.0(Glc1-C-4),77.7(Glc1-C-5),62.0(Glc1-C-6),101.8(Rha-C-1),72.5(Rha-C-2),72.8(Rha-C-3),74.1(Rha-C-4),69.5(Rha-C-5),18.7(Rha-C-6),105.3(Glc2-C-1),74.9(Glc2-C-2),71.2(Glc2-C-3),78.3(Glc2-C-4),78.0(Glc2-C-5),61.9(Glc2-C-6)。以上数据与文献[7]中的deltonin一致,故确定化合物8结构为deltonin(三角叶皂苷)。

化合物9 白色粉末。ESI-MS m/z 721.4 [M-H]-。13C-NMR(C5D5N,150 MHz)δ:37.5(C-1),30.2(C-2),78.3(C-3),39.0(C-4),140.9(C-5),121.8(C-6),32.2(C-7),31.7(C-8),50.3(C-9),37.2(C-10),21.1(C-11),39.9(C-12),40.5(C-13),56.7(C-14),32.3(C-15),81.1(C-16),62.9(C-17),16.3(C-18),19.4(C-19),42.0(C-20),15.0(C-21),109.3(C-22),31.8(C-23),29.3(C-24),30.6(C-25),66.9(C-26),17.3(C-27),100.4(Glc-C-1),79.7(Glc-C-2),77.9(Glc-C-3),71.8(Glc-C-4),78.0(Glc-C-5),62.7(Glc-C-6),102.1(Rha-C-1),72.6(Rha-C-2),72.9(Rha-C-3),74.2(Rha-C-4),69.5(Rha-C-5),18.7(Rha-C-6)。以上数据与文献[7]中的prosapogenin A of dioscin 一致,故确定化合物9结构为prosapogenin A of dioscin(薯蓣次苷 A)。

化合物10 白色粉末。ESI-MS m/z 575.4[M-H]-。13C-NMR(C5D5N,150 MHz)δ:37.5(C-1),30.4(C-2),78.2(C-3),39.0(C-4),140.8(C-5),121.8(C-6),32.3(C-7),31.7(C-8),50.3(C-9),37.2(C-10),21.1(C-11),39.9(C-12),40.5(C-13),56.7(C-14),32.2(C-15),81.1(C-16),62.9(C-17),16.3(C-18),19.4(C-19),42.0(C-20),15.0(C-21),109.3(C-22),30.6(C-23),29.3(C-24),30.6(C-25),66.9(C-26),17.3(C-27),102.5(Glc-C-1),75.5(Glc-C-2),78.2(Glc-C-3),71.8(Glc-C-4),78.2(Glc-C-5),62.7(Glc-C-6)。以上数据与文献[11-12]中的trillin 一致,确定化合物10的结构为trillin(延龄草皂苷)。

4 体外血小板活性的筛选

Wistar雄性大鼠以戊巴比妥钠(40~60 mg・kg-1)腹腔注射麻醉,预先用肝素润湿的注射器心脏取血,200U・mL-1肝素抗凝混匀装入15 mL硅化离心管。抗凝血在室温下以800 r・min-1离心约1 min,取富血小板血浆(PRP),其余部分室温以3 000 r・min-1继续离心10 min,取贫血小板血浆(PPP)。用血细胞计数仪以PPP调PRP浓度为3.0×1011・L-1。以PPP做空白对照,调节透光率到100%。取495 μL PRP于37 ℃预温3 min,放入检测仪后分别加入单体化合物,37 ℃孵育3 min,检测无诱导活性后加入5 μL U46619(终浓度0.5 μmol・L-1)诱导血小板聚集,记录5 min内的图形变化,读取相应数值,实验结果见表1。由实验结果可知在终浓度为100 μmol・L-1时化合物7,8具有诱导血小板聚集的作用,诱导率分别为70%,64%;化合物9有较强抑制血小板聚集的作用,抑制率为100%。

5 结果与讨论

盾叶薯蓣是我国特有的薯蓣属植物,甾体皂苷是其中的主要活性成分。从作者分离鉴定化合物的结构可知其甾体皂苷主要包括含有2个糖链的水溶性呋甾皂苷(化合物1~6)和含有1个糖链的螺甾皂苷(化合物7~10),他们对应的皂苷元主要为薯蓣皂苷元(diosgenin),另有少量的其C-25 S构型的异构体,即约莫皂苷元(yamogenin)。体外血小板聚集实验结果显示,呋甾皂苷均不具有直接诱导或抑制血小板聚集的活性,而对应的螺甾皂苷则显示一定的诱导或抑制血小板聚集活性。在100 μmol・L-1浓度时,含有3个和4个糖基的化合物7,8显示诱导血小板聚集的活性,而相同皂苷元、仅含2个糖基的化合物9则显示抑制血小板聚集活性,可见其糖基不仅影响活性的强弱,还决定活性的性质。

张楠、吕浩等报道了盾叶冠心宁片治疗高脂血症、心绞痛及冠心病的临床研究[12-15],黄文等[16-17]进行了盾叶薯蓣总皂苷及其单体化合物的体内外抗血栓作用研究。甾体皂苷口服或灌胃后,往往被肠道菌群或体内酶代谢,生成一系列次生苷及苷元(主要为糖基水解产物),要想真正阐明其体内药效物质基础(吸收进入体内发挥药理作用的分子结构)及作用机制,是一项十分复杂而艰难的工作。本文分离鉴定了盾叶薯蓣中一系列甾体皂苷单体化合物,并对其体外血小板活性进行了筛选,为日后阐明盾叶薯蓣治疗心血管疾病的药效物质基础及作用机制靶点、开发新的药物奠定了基础。

[参考文献]

[1]全国中草药汇编编写组. 全国中草药汇编.上册 [M]. 北京:人民卫生出版社, 1996.

[2]Sun W J, Tu G Z,Zhang Y M. A new steroidal saponin from Dioscorea zingiberensis C.H. Wright [J]. Nat Prod Res, 2003, 17(4):287.

[3]钱士辉,袁丽红,杨念云, 等. 盾叶薯蓣中甾体类化合物的分离与结构鉴定[J]. 中药材, 2006, 29(11): 1174.

[4]Wang Y H, Lai D W, Zhang H M, et al. Study of steroidal saponins in Dioscorea zingiberensis C.H. Wright [J]. Int J Nat Prod, 2009, 2: 123.

[5]Zheng L, Zhou Y, Zhang J Y, et al. Two new steroidal saponins from the rhizomes of Dioscorea zingiberensi [J]. Chin J Nat Med, 2014, 12(2): 142.

[6]Murakami T, Kishi A, Matsuda H, et al. Medicinal food stuffs. XVII. fenugreek seed.(3): structures of new furostanol type steroidal saponins, trigoneosides Xa, Xb, XIb, XIIa, XIIb, and XIIIa from the seeds of Egyptian Trigonella foenum-graecum L [J]. Chem Pharm Bull,2000, 48(7): 994.

[7]Jin J M, Liu X K, Teng R W, et al. Enzymatic degradation of parvifloside [J]. Acta Bo Tanica Sin, 2002, 44(10): 1243.

[8]杨顺丽, 马银海, 刘锡葵. 小花盾叶薯蓣中的甾体成分 [J]. 药学学报, 2005, 40(2): 145.

[9]Yoshikawa M, Murakami T, Komatsu H, et al. Medicinal food stuffs. VIII. fenugreek seed.(2): Structures of trigoneosides IVa, Va, Vb, VI, VIIb and VIIIb, from the seeds of Indian Trigonella foenum-graecum L [J]. Heterocyles, 1998, 47(1): 397.

[10]Sun W J, Tu G Z, Zhang Y M. A new steroidal saponin from Dioscorea zingiberensis Wright [J]. Nat Prod Res, 2003, 14(4): 287.

[11]刘承来, 陈延镛, 唐易芳, 等. 盾叶薯蓣中甾体皂甙的分离和鉴定[J]. 植物学报, 1984, 26(3): 283.

[12]Peng Y, Wang Y X, Yang Z H, et al. Content increase of spirostanol saponins during enzymatic hydrolysis of Dioscorea zingiberensis C. H. Wright [J]. Ind Eng Chem Res, 2010, 49(17), 8279.

[13]张楠, 张杰, 刘志礼, 等. 盾叶冠心宁片治疗高脂血症的临床试验研究[J]. 中西医结合心脑血管病杂志, 2009, 7(3): 255.

[14]吕浩, 张楠, 张杰, 等. 盾叶冠心宁片治疗气滞血瘀型冠心病心绞痛临床研究[J]. 上海中医药杂志, 2008, 42(11): 30.

[15]盾叶冠心宁临床科研协作组. 盾叶冠心宁双盲法治疗冠心病的临床观察[J].江苏医药, 1985(11): 16.

[16]Li H, Huang W, Wen Y, et al. Anti-thrombotic activity and chemical characterization of steroidal saponins from Dioscorea zingiberensis C.H. Wright [J]. Fitoterapia, 2010, 81(8): 1147.

[17]Zhang R, Huang B, Du D, et al. Anti-thrombosis effect of diosgenyl saponins in vitro and in vivo[J]. Steroids, 2013, 78(11): 1064.

Study on steroidal saponins from Dioscorea zingiberensis and

their platelet aggregation activities

WANG Jing-jing1, LIU Yi-xun2, WEN Di2, YU He-shui2, KANG Li-ping2, PANG Xu2, ZHAO Yang2,

MA Bai-ping2, CHEN Yun-dai1*

(1. Department of Cardiology, Chinese PLA General Hospital, Beijing 100853, China;

2. Beijing Institute of Radiation Medicine, Academy of Military Medical Sciences, Beijing 100850, China)

[Abstract] Using the absorbent resin, silica gel and ODS column chromatography as well as semi-preparative HPLC, ten compounds were isolated from 70% ethanol extract of tubers of Dioscorea zingiberensis C.H. Wright, and their structures were elucidated as trigoneoside XIIIa (1), parvifloside (2), trigoneoside IVa (3), deltoside (4), protobioside (5), lilioglycoside k (6), zingiberensis newsaponin I (7), deltonin (8), prosapogenin A of dioscin (9), and trillin (10) on the basis of NMR and MS spectral data analysis. Among these compounds, 1, 3, 5 and 6 were isolated from this plant for the first time. In the screening test on platelet aggregation, compounds 7 and 8 exhibited induction effect on platelet aggregation, while compound 9 exhibited significant inhibitory effect on platelet aggregation in vitro.

[Key words] Dioscorea zingiberensis; steroidal saponin; separation and identification; platelet aggregation

doi:10.4268/cjcmm20141924

上一篇:从化学、药效和毒性角度比较认识正品大黄与土... 下一篇:漫漫水吧 11期