MPLS网络规划与快速重路由技术的应用

时间:2022-08-21 11:26:51

MPLS网络规划与快速重路由技术的应用

摘要:随着宽带业务的迅速发展,传统IP技术和路由协议已经不能满足用户对网络可靠性的需要。在IP城域网的MPLS域中,使用流量分担和网络备份、MPLS快速重路由方法,加快了网络故障恢复的时间,为用户提供了一个高可靠性的骨干网平台。

关键词:MPLS;OSPF;快速重路由;BFD协议

分类号:TP393文献标识码:A文章编号:1009-3044(2007)03-10695-02

1 引言

宽带城域网作为数据、语音、视频及其它新兴增值业务的承载平台,要求能提供99.999%的电信级可靠性。而传统的IP协议只能提供尽力而为的服务、传统的路由协议收敛也比较慢,只能提供99.9%的可靠性,已经不能满足承载实时业务的需求。

2 MPLS基本原理

MPLS(Multi-Protocol Label Switching,多协议标签交换)是一种将具有相同转发处理方式的分组归为一类(Forwarding Equivalent Class,转发等价类FEC)的分类转发技术。[1]在MPLS网络中,通过LDP(Label Distribution Protocol,标签分配协议)可以动态地建立一系列由源到目的LSR(Label Switching Router,标签交换路由器)的LSP(Label Switching Path,标签交换路径),形成逻辑的全网状拓扑结构。[2]进入MPLS网络的IP分组被封装成标签分组后基于标签高速网转发,而不需要进行复杂的路由查找和转发。MPLS结合了IP与ATM技术的优点,路由功能强大灵活,能满足各种新应用对网络的要求。

3 基于IP城域网的MPLS规划

3.1 规划基于IP城域网的MPLS域

使用华为Quidway S8016交换机组建基于IP城域网(Area 0)的MPLS域(MPLS Domain),其中核心层包括LSR1和LSR2两个节点,向上连接城域网出口LSR0,负责各种宽带业务的汇接。汇聚层节点与核心层使用主备线路互联,汇聚接入层业务,拓扑结构如图1所示:

图1 拓扑结构图

3.2 流量分担和网络备份

为了提高网络的可靠性,MPLS域中的流量一组主用到LSR1的链路上行,另一组主用到LSR2的链路上行,主用链路的cost(10)值小于备用链路的cost(30)值。在正常工作情况下,LSR1和LSR2共同分担整个网络流量,当其中一个节点失效后,另一个节点能够承担起所有的流量,保证业务的正常运行。[3]可以同时使用以下两种方式:

静态路由协议:静态路由是由管理员手工配置而成,优点是配置简单、易于维护、不消耗路由器和链路资源并可以为重要的应用保证带宽。因此,为保证骨干网核心层链路带宽和可靠性,在LSR1上配置两条静态默认路由,高优先级指向LSR0,低优先级指向LSR2。而且一定要使LSR1与LSR0互联的VLAN仅包含其和LSR0互联的物理接口,这样,在上行物理接口down掉后,VLANif接口也是down掉了。保证了高优先级的静态路由失效,而低优先的静态默认路由生效。LSR2也做同样配置。但是当网络故障发生后,静态路由不会发生自动变化,必须有管理员的介入。

动态路由协议:IP动态路由协议是最基本的网络层可靠性保障机制,负责进行网络层IP转发路径计算,当主用路由或者节点发生故障导致原数据转发路径中断时,对数据转发路径进行动态重新计算,自动使用备份链路。由于整个系统运行在一个区域AREA 0中,所以城域网的IGP选择OSPF(Open Shortest Path First,开放最短路径优先协议)协议。其优点是提供路由分级管理,在减少网络振荡的同时路由变化收敛速度快(平均水平在秒一级)。通过加快链路之间Hello消息的发送频率,加快SPF计算速度和为路由更新消息设定高优先级等优化措施,OSPF可以快速发现、处理故障,并且准确快速地进行路由更新,加快路由协议的收敛,通过优化IGP路由协议可以实现小于1s的收敛。对于传统IP业务这个恢复时间可以接受,但是对于承载实时业务等多业务的电信级IP网来说要求毫秒级恢复响应时间,传统IP动态路由技术和这一要求有很大差距。

3.3 MPLS快速重路由

MPLS快速重路由(Fast Reroute,FRR)技术优势是:可以提高保护恢复的速度;通过有选择的在网络薄弱环节配置保护能力,避免了在可靠网络重复保护、无谓消耗核心网络资源;可以实现在没有信令介入情况下,由故障检测点直接对故障链路流量根据预先设定的保护路径进行重定向。启动FRR的方法是在LSP的入口LSR使用“ip-reroute”命令,入口LSR会向LSP上的所有LSR发送信令,每个LSR都计算出一条旁路下一跳LSR的备份LSP,当LSP上的LSR检测到下游故障时,由该LSR将本地将流量切换到备份LSP内。

FRR切换时间由两部分组成:一部分是链路/节点失效的检测时间,可以通过双向失效检测协议(BFD协议)或RSVP Hello(Resource reSerVation Protocol,资源预留协议)实现。BFD是一种不依赖于任何其他协议或应用、不影响设备性能的硬件实现办法。BFD协议通过定期发送基于UDP的故障检测数据包,检测和判断传输链路、光接口和设备端口的中断故障以及链路层以上存在的误码、丢包等软故障。缺省检测间隔是10ms,连续3次检测到故障(即30ms)就判断链路故障。另一部分是切换流量的时间,主要由CPU及系统的负载程度决定。S8016的高可靠性设计(主控板和网板的主备倒换和路由表一致性检查)配合MPLS流量工程技术完全可以使切换在20ms内完成。因此MPLS FRR可以提供50ms内的保护切换,完全满足城域网承载实时多业务的可靠性需要。

4 结束语

对城域网MPLS域内链路进行系统地规划,使用FRR并结合BFP、流量工程等技术,完全能够满足骨干网络对电信级的高可靠性要求。

参考文献:

[1][美]Eric Osborne,Ajay Simha.基于MPLS的流量工程[M].张辉,卢炜.北京:人民邮电出版社,2003.18.

[2]王达等.虚拟专用网(VPN)精解[M].北京:清华大学出版社,2004.58-59.

[3]王柱.基于IP城域网的MPLS VPN规划与性能分析[D].天津:天津大学,2006.

本文中所涉及到的图表、注解、公式等内容请以PDF格式阅读原文。

上一篇:CDP――基于UDP的TCP协议实现 下一篇:浅谈用户输入对web程序安全的威胁及对策