光学细分激光测量技术论文

时间:2022-07-19 08:05:06

光学细分激光测量技术论文

1实验系统

在前面的分析中,本文具体讨论了光学细分系统的设计方案。运动距离测量实验选取光学四细分的光学系统,实验系统如图6所示。系统分为光路部分和信号处理部分。mW和0.5mW,反射镜M4由硅片制成,其反射率大约为0.4。硅片反射镜M4可调节反射方向。角锥棱镜M1、M2和M3的型号为Agilent10767A,具有非常好的光学性能。测量导轨选用的是PI公司的M-5x1.DD型号。二维精密电控平移台(直流电机驱动)单向重复定位分辨率达0.1μm,直线度参数为0.1μm/200mm,最高运行速度50mm/s,量程为200mm。2个测量角锥棱镜被安装在导轨上,通过PI公司的控制软件在计算机上对导轨的运动进行控制,实现对外腔长度的改变。通过运动距离测量结果与PI导轨运动参数的一致性可验证测量方案的可行性。信号处理部分中,由PD探测到的激光自混合干涉信号首先由低噪声前置放大器(Standford,SR560C)进行滤波和放大,一路送入示波器而另一路接着由NI公司的数据采集卡(NI6251)进行AD转换。采集到的数字信号送入PC机中由专业的数据分析软件(LabVIEW)实现信号再次细分以及实时处理重构目标物体的运动距离。测量过程中,示波器可定性观察光学细分的现象,而数据采集卡采集到的信号经过计算机的处理可进行运动距离测量。

2实验过程与结果分析

实验在同一测量环境条件下进行:恒温(20℃±1℃),恒湿(50%±3%)。使激光器预热2h,激光波长稳定在632.8334nm,让导轨以某一速度匀速运动,然后对采集的信号加入电子五细分处理。在本实验系统中,由自混合干涉光路细分原理可知,一个条纹对应的运动距离为λ/8,将此波形通过阈值为0的比较器后得到对应的方波信号,再将方波信号n细分,通过计数方波的个数来得到外部物体实际的运动距离。这样处理后,可以得到的分辨率为λ/8n。一个周期内的正弦波通过过零比较器整形成方波信号,五细分后的波形如图7所示。这样通过计数的方法就可以再次提高分辨率。此外,细分处理前对干涉信号进行了整形,可以显著增强对于叠加在自混合干涉信号上的高斯噪声的抗干扰能力,使测量结果更加稳定可靠。在数字域进行细分时,将上面得到的方波信号改写成二进制码(1111100000),然后将其右移9次,将其奇数次和偶数次的右移结果两两异或,则可以得到(1010101010),即对应的五细分信号及其互补信号(0101010101),实现了对原自混合干涉信号的细分。将PD探测到的微弱信号进行电流-电压(I-V)转换后,变成电压信号,经高通电路去直流后,再经放大电路放大,通过NI公司的数据采集卡USB-6251采集,在PC机上编写LabVIEW程序进行细分计数处理。信号经数字域电子细分后,进行计数后就可以重构并显示物体的实时运动距离。测量实验使用PI精密导轨对实时测量数据进行校准。导轨的移动范围设置为0~200mm,每次匀速步进20mm,移动速度设置为5mm/s,步进10次,每次导轨的示数作为标准;该运动过程由电机自动完成,系统对每次的步进长度进行自动测量记录并给出实时误差,连续记录几十组,选择其中的5组实验数据进行分析。通过拟合曲线与误差分析可以看出,实验结果与实际运动距离有良好的线性关系,且重复性非常的好,实现了使用光学细分与电子细分相结合的方法对物体的运动距离进行实时监测,实验结果与理论分析吻合。

3讨论

激光器作为测量光路的一部分而不能成为一个独立的、波长稳定的光源,其稳定性对测量准确度有很大的影响。空气折射率的变化和角锥棱镜的直角误差也会影响系统的测试精度。1)激光器频率稳定性带来的累计误差。实验中的氦氖激光器输出光在空气中传播的中心波长为632.8334nm,短期频率稳定性为1.5×10-6,因此,在没有反馈时,激光器波长稳定性为δλ=λδν/ν≈0.9492×10-6μm。当自混合效应反馈系数很低时,频率波动极小。理论计算表明,当外腔长度在百毫米量级时,波长稳定度可以达到10-8的测量准确度,测量不确定度小于0.4μm[9-10]。2)空气折射率变化带来的误差。测量环境的初始条件:空气压强101325Pa,室温20℃,湿度1333Pa。测量过程中,由温度、湿度以及压强传感器可知,只有环境温度会有最大不超过1℃的改变。因此得到折射率的变化为δn≈0.929×10-6。当测量长度为200mm时,测距不确定度小于0.3μm[9]。3)角锥棱镜的直角误差。角锥棱镜的直角误差会直接影响其对光路的反射特性。对于Agilent10767A型号的角锥棱镜,其3个直角误差δθ<5″。玻璃的折射率为1.56,则测量长度为200mm的测距误差小于0.002μm[11]。由于本实验系统存在3个角锥,则测距不确定度应小于0.006μm。由以上讨论可以知道,影响测量精度的最大因素来自于激光的频率的稳定度。理论上实验系统的测量分辨率可达到波长的1/40。而实际上,受制于激光频率的稳定程度,在弱反馈条件下,百毫米量级运动距离的测量只能达到微米级的测量精度。

4结语

本文实现了一种基于光电混合细分原理的激光自混合干涉测量技术。对于单纯依靠电子细分提高条纹分辨率的测量系统,难以达到λ/40的分辨率,而对于本文的自混合干涉测量系统,无需大量的数字细分即可达到此分辨率。同时也大幅减轻了在条纹计数法中对信号进行大量电子细分的软硬件压力,节省了硬件成本,降低了测量系统的复杂程度。在使用高分辨率导轨进行运动距离测量的实验中,实验结果与实际运动距离有良好的线性关系,能够达到μm精度,且重复性非常的好。对本运动距离测量系统的误差来源以及影响实时测量精度的因素进行了分析。综合考虑光学细分极限以及系统误差来源,得出了系统实际的运动距离测量精度。该系统抗干扰能力强、结构简单,具有良好的应用前景。

作者:陈俊雹 刘强 郭冬梅 祝宏彬 王鸣 单位:南京师范大学物理科学与技术学院 江苏省光电技术重点实验室

上一篇:拱坝测量技术论文 下一篇:大功率测量技术论文