简论政府、居民消费与中国经济增长的因果关系

时间:2022-07-14 11:35:17

简论政府、居民消费与中国经济增长的因果关系

摘要:本文运用协整、格兰杰因果检验和向量自回归模型,利用1978-2006年的年度经济数据对我国政府消费、居民消费和经济增长的关系进行层次递进的实证分析,实证结果表明:我国居民消费、政府消费和经济增长之间存在长期均衡关系,居民消费增长是经济增长的因果原因,政府消费增长是居民消费增长的因果原因。

关键词:政府消费;居民消费;经济发展;格兰杰因果检验;脉冲响应

一、引 言

投资、消费、出口是拉动一国经济发展的“三驾马车”,三者均衡增长,国民经济才能健康、平稳地发展。但是,投资需求只是中间需求,只有消费需求才是真正的最终需求,消费需求规模的扩大和结构升级才是经济增长的源动力。马克思的消费理论和西方经济学理论都肯定了消费在经济增长中的重要作用。马克思的消费理论指出,消费是生产的最终目的,因而最终消费是引导经济发展的源动力。西方经济学理论认为消费需求是真正的最终需求,对于投资需求进而对整个经济增长起着直接的和最终的制约作用,是经济增长的根本动力。因此,如何增强消费对经济的拉动作用,进而确立消费主导拉动的经济增长模式,始终是经济学界和国家实际部门研究的热点问题。

改革开放以来,在“三驾马车”的拉动下,我国经济经历了近30年的高增长。但是,近年来,我国消费率不断下降,投资率持续上升,经济增长主要依靠投资需求拉动。在投资与出口双双大幅增长的同时,我国消费率明显下降,1978年到2006年间,我国的消费率总体呈现下降趋势,已经从1981年最高的67.1%,下降到2006年最低的49.9%。尤其是2000年以后,下降幅度明显加大[1]。消费率过低、消费需求持续低迷所引发的一系列问题,已经成为

协整关系说明ln?gdp?与ln?pce?、ln?gce?之间存在协整关系,揭示了ln?pce?、ln?gce?对ln?gdp?的影响度,而且表明ln?gdp?与ln?pce?、ln?gce?之间存在长期均衡关系。可以看出,在长期内,ln?gdp?与ln?pce?、ln?gce?之间具有很密切的相关性,ln?pce?、ln?gce?的扩大对经济增长具有促进作用;从回归方程可以看出,ln?pce?、ln?gce?相关比率每增加1%,ln?gdp?分别增长0.3%和0.5%。可见ln?gce?更有效的促进了经济的增长。

(三)格兰杰(granger)因果性检验

上述协整检验结果告诉我们变量之间存在长期的均衡关系,但这种关系是否构成因果关系,还需要进一步验证。c.w.j.granger在1969年提出的因果关系检验的基本思想是“过去可以预测现在”,?即如果x是y变化的原因,则x的变化应该发生在y变化之前。如果x是引起y的原因,则在y关于y滞后变量的回归中,添加x的滞后变量作为独立的解释变量,应该显著增加回归的解释能力,此时,称x为y的格兰杰原因,如果添加x的滞后变量后,没有显著增加回归模型的解释能力,则称x不是y的格兰杰原因。

?由于因果关系检验对滞后的阶数非常敏感,本文采取依次多滞后几阶,看结果是否具有同一性。对消费与经济增长之间的granger因果关系检验结果见表2。

表2 格兰杰检验结果表 零假设[]滞后期[]f统计量[]概率[]结论ln?pce?对ln?gdp?不存在granger因果关系[]ln?gdp?对ln?pce?不存在granger因果关系[]1[] 8.243[] 0.008[]拒绝9.178[]0.006[]拒绝ln?pce?对ln?gdp?不存在granger因果关系[]ln?gdp?对ln?pce?不存在granger因果关系[]2[] 3.316[] 0.056[]拒绝 5.789[] 0.001[]拒绝ln?pce?对ln?gdp?不存在granger因果关系[]ln?gdp?对ln?pce?不存在granger因果关系[]3[]1.678[]0.207[]不拒绝3.786[]0.029[]拒绝ln?gce?对ln?gdp?不存在granger因果关系ln?gdp?对ln?gce?不存在granger因果关系[]1[] 1.207[] 0.283[]拒绝 3.316[] 0.081[]不拒绝ln?gce?对ln?gdp?不存在granger因果关系[]ln?gdp?对ln?gce?不存在granger因果关系[]2[] 1.172[] 0.329[]拒绝[] 1.871[] 0.179[]拒绝ln?gce?对ln?gdp?不存在granger因果关系[]ln?gdp?对ln?gce?不存在granger因果关系[]3[]1.296[]0.306[]拒绝 2.328[] 0.109[]拒绝ln?gce?对ln?pce?不存在granger因果关系ln?pce?对ln?gce?不存在granger因果关系[]1[]4.832[]0.038[]不拒绝0.992[]0.329[]拒绝ln?gce?对ln?pce?不存在granger因果关系[]ln?pce?对ln?gce?不存在granger因果关系[]2[]3.761[]0.040[]不拒绝1.613[]0.223[]拒绝[]ln?gce?对ln?pce?不存在granger因果关系[]ln?pce?对ln?gce?不存在granger因果关系[]3[]2.587[]0.085[]不拒绝[]1.712[]0.200[]拒绝

由表2可以看出:

在滞后1-2期情况下,存在ln?pce?和ln?gdp?之间的双向granger意义上的因果关系。在滞后3期情况下,仅存在ln?gdp?到ln?pce?的单向granger意义上的因果关系。

在滞后1期情况下,仅存在ln?gdp?到ln?gce?的单向granger意义上的因果关系。

在滞后1-3期情况下,仅存在ln?gce?到ln?pce?的单向granger意义上的因果关系。

(四)var模型的估计

1980年c.a.sims将向量自回归(vector auto regressive,var)模型引入到经济学中,推动了经济系统动态性分析的广泛应用。这种模型采用多方程联立形成,它是用模型中所有内生当期变量对它们的若干滞后值进行回归,从而估计全部内生变量的动态关系。其明显的优点在于对外生变量和内生变量不必加以区别而同等对待,因而var模型估计的结果具有更高的可靠性,并且可以被看作是更精确的因果关系检验。

1.本文构造的var模型可以表示为:

?y?t=α+∑p[]i=1β?iy??t-i?+u?t(2)

其中:y?t=?ln?gdp?i

?ln?pce?i

?ln?gce?i,α=α?1

α?2

α?3,

β?i=β??11,i?[]β??12,i?[]β??13,i?

β??21,i?[]β??22,i?[]β??23,i?

β??31,i?[]β??32,i?[]β??33,i?,u=u??1t?

u??2t?

u??3t?,u??it??n(0,σ?2)?在实际应用中面临如何选择滞后阶数的问题,滞后阶数越大,越能完整反映模型的动态特征,但是滞后期越长,模型待估参数越多,自由度越少,因此应在滞后期与自由度间寻求平衡。表3综述了根据各种准则选定的var滞后阶数。

表3 选择var滞后阶数的各种准则 内生变量:ln?gdp?,ln?pce?, ln?gce?;外生变量:?c?;样本区间:1985~2006年 lag[]logl[]lr[]fpe[]aic[]sc[]hq[]0[]141.697[]na [] 3.05e-09[]-11.096[]-10.950[]-11.0551[]159.857[]30.509?*[]1.48e-09?*[] -11.829?*[] -11.244?*[] -11.666?*2[]165.773[]8.518[]1.96e-09[]-11.582[]-10.558[]-11.2983[]176.460[]12.825[]1.89e-09[]-11.717[]-10.254[]-11.311

注:*表示根据该准则选定的阶数。lr:连续修正lr检验统计量(在5%水平显著);fpe:最终预测误差;aic(akaike):信息准则;sc ( schwarz ):信息准则;hq ( harman-quinn)信息准则。

因此我们选则var的滞后阶数为1。构建的var模型为:

?δ?ln?gdp?i=1.38525δ?ln?gdp??t-1?-0.876792δ?ln?pce??t-1?+0.174980δ?ln?gce??t-1?+0.039279

t=[3.964][-2.771][0.993][1.78212]

r?2=0.628?r?2?=0.580f=12.954

δ?ln?pce?i=0.860081δ?ln?gdp??t-1?-0.292779δ?ln?pce??t-1?+0.234451δ?ln?gec??t-1?+0.016839

(3)

t=[2.286][-0.860][1.236][0.710]

r?2=0.585?r?2?=0.531f=10.809

δ?ln?gce?i=0.826969δ?ln?gdp??t-1?-0.444377δ?ln?pce??t-1?+0.080339δ?ln?gce??t-1?+0.072780

t=[1.865][-1.107][0.359][2.602]

r?2=0.302?r?2?=0.211f=3.318

由以上的模型中可以看出,经济增长主要受自身?ln?gdp(-1)和?ln?pce(-1)的影响;居民消费主要受?ln?gdp(-1)的影响。这也对照了前面格兰杰因果关系检验的论断。经过检验,模型是显著的,且所有特征根根模的倒数都小于1,说明该?var?模型的结构是稳定的(见图1)。所以,满足脉冲响应函数和方差分解分析的前提条件。下面,运用脉冲响应函数和方差分解做出合理的解释。

?

图1 var稳定性检验图2.脉冲响应函数

var模型的脉冲反应函数(irf)可以反映来自随机扰动项的一个标准差冲击对内生变量当前值和未来值的影响,刻画内生变量对随机扰动的动态反应,显示任意变量的随机扰动(新息innovation)如何通过模型影响其他变量,并反馈到自身的动态过程。如果随机扰动存在相关性,他们将包含不与特定变量相联系的共同部分,通常将共同部分的效应归属于var系统中第一个出现的变量(依照方程顺序)。图2为基于上述var模拟的脉冲响应函数曲线,横轴代表响应函数的追踪期数,纵轴代表因变量对解释变量的响应程度。在模型中,将响应函数的追踪基数设定为十年。图中实线部分为响应函数的计算值,虚线为响应函数值加或减两倍标准差的置信带。

从图2可以看出:

??ln?gdp对自身的一个标准差新息冲击立即有较强的反应,在第1期达最大后开始慢慢回落,到第5期为负值,负值的最大值出现在第7期后开始逐渐回升;?ln?gdp对来自?ln?pce的一个标准差新息冲击的反应一开始较弱,但这种负面冲击效应逐步增强并在第3期下降到低谷,然后又逐渐回升;?ln?gdp对来自?ln?gce的一个标准差新息冲击的反应立即有较强的反应,在第2期达最大后开始慢慢回落,到第4期为负值,负值的最大值出现在第6期后开始逐渐回升,多数观察为负值。

?ln?pce对自身的一个标准差新息冲击反应相对不是很大,在第1期达最大后开始慢慢回落,在第3期达到谷底随后又开始回升;?ln?pce对?ln?gdp的冲击反应强烈,在第1期达到最高点后从第6期开始趋于平缓;?ln?pce对来自?ln?gce的一个标准差新息冲击的反应立即有较强的反应,在第2期达最大后开始慢慢回落,从第4期开始趋于平缓。

?ln?gce对其自身的冲击反应一开始就很强,在第1期达到最大,随后一直趋于回落;?ln?gce对?ln?gdp的冲击反应强烈,在第1期达到最高点后从第6期开始趋于平缓;?ln?gce对来自?ln?pce的一个标准差新息冲击的反应立即有较强的反应,从第1期开始就慢慢上升,从第8期开始趋于平缓。

图2 脉冲响应函数曲线图

可见,经济增长对居民消费的提高在短期内会带来一定的正面冲击效应,但随着滞后期增加,正面冲击效应会随着时间慢慢减弱,即在长期来看经济增长会带来居民消费的增长;同时,居民消费的提高对经济增长在短期内会带来一定的负面冲击效应,但经过一定时间,这种效应会改变为正面冲击效应;经济增长对政府消费的提高在短期内会带来一定的正面冲击效应,但随着滞后期增加,正面冲击效应会随着时间慢慢减弱;同时,政府消费对经济增长有一定的促进作用,效应不是很强但一直比较稳定。

?3.预测方差分解

var模型的方差分解是将系统中每个内生变量的波动按其成因分解为与各方程新息相关联的组成部分,从而了解各新息对模型内生变量的相对重要性。方差分解表示的是当系统的某个变量受到了一个单位的冲击以后,以变量的预测误差方差百分比的形式反映变量之间的交互作用程度,它的基本思想是把系统中每一个内生变量的变动按其成因分解为与各方程随机扰动项(新息)相关联的各组成部分,以了解各新息对模型内生变量的相对重要性。本文利用方差分解技术分析了各个变量对经济增长的贡献率。方差分解的结果见表4。

?表4 ?ln?gdp方差分解表 ?ln?pce方差分解表 ?ln?gce方差分解表 period[]?se?[]?ln?gdp[]?ln?pce[]?ln?gce[]period[]?se?[]?ln?gdp[]?ln?pce[]?ln?gce[]period[]?se?[]?ln?gdp[]?ln?pce[]?ln?gce1[]0.042[]100.000[]0.000[]0.000[]1[]0.045[]77.304[]22.696[]0.000[]1[] 0.053[]从表4可以发现:

从?ln?gdp方差分解影响结果可以看出?ln?gdp的预测误差主要是由自身引起的,在第1期受自身波动的影响,随着滞后时期的增多,?ln?pce对?ln?gdp的影响越来越大,但是最终也未超过35%。?ln?gce对?ln?gdp的影响一直很弱。可见居民消费的冲击对?gdp?的影响是逐渐递增的,但是经济增长的大部分波动还是由自身引起的,由自身引起的波动的影响始终在64%以上,而政府消费对经济增长的影响很小,可忽略不计。

从?ln?pce的方差分解的结果可以看出?ln?pce的波动大部分可由自身的波动和?ln?gdp的影响引起的,?ln?gce的影响太微不足道,可忽略不记。其中?ln?pce自身的波动是趋于递增的,而来自?ln?gdp的影响是趋于递减的,随着滞后时期的推进,?ln?pce大部分预测误差可由?ln?gdp的影响来解释。可见从短期还是长期来看?ln?gdp对?ln?pce的影响都是很显著的。

从?ln?gce的方差分解的结果可以看出?ln?gce一开始的预测误差是由自身和?ln?gdp来解释的,但随时间的推进,?ln?gce的波动大部分可由?ln?pce和?ln?gdp共同来解释。也可以说,从第5期开始?ln?gce的波动受自身和?ln?pce、?ln?gdp的影响趋于稳定,但?ln?gdp对?ln?gce的影响还是占主导地位的。

从方差分解表的信息来看,我国的?ln?gdp、?ln?gce和?ln?pce的惯性比较大,一开始大部分都是由自身和?ln?gdp的影响造成的,除?ln?pce外,?ln?gdp、?ln?gce随着时间的推移,由自身的扰动带来的影响趋于减弱。还有长期来看?ln?pce对?ln?gdp影响是逐渐增大的,因此应注重发展居民消费。

四、结论与启示

以上根据1978~2006年的数据对消费与经济增长的关系进行了分析,得出如下结论:

1. ?ln?gdp与?ln?pce、?ln?gce之间存在着稳定的长期均衡关系,具有长期稳定和短期波动的特性并且?ln?gce更有效地促进了经济的增长。

??2. 在滞后1-2期情况下,存在?ln?pce和?ln?gdp之间的双向?granger?意义上的因果关系。在滞后3期情况下,仅存在?ln?gdp到?ln?pce的单向?granger?意义上的因果关系。在滞后1期情况下,仅存在?ln?gdp到?ln?gce的单向?granger?意义上的因果关系。在滞后1-3期情况下,仅存在?ln?gce到?ln?pce的单向?granger?意义上的因果关系。

?3.从脉冲函数上分析,政府消费对gdp影响很小,而我国政府消费占gdp的比重在10%~14%之间波动,已经快要超过15%的上限。政府消费随着经济发展和工业化进程城市化进程的加快,规模会扩大,但是在今后的发展中应尽力控制好规模,以达到最优,也可以避免政府消费对居民消费的挤出效应。从方差分解来看,居民消费对gdp的影响要超过政府消费。因此,扩大内需的重要是扩大居民消费,而不是扩大政府消费。但是消费对经济的冲击并没有预想的那么大,从实证分析来看却没有发挥其真正作用。在稳健的财政政策的背景下我们应该实行扩大居民消费,适当缩减政府消费,我们应当从观念机制和制度上大力发展消费信贷减轻居民的流动性约束,而且要增加居民尤其是农村居民的收入。

不论是理论分析还是各国经验均表明,消费对经济增长具有非常重要的拉动作用。消费率高,经济增长就快。消费率低,经济增长就慢。深入分析发现,上述的结论与我国实际情况相吻合。改革开放以来,我国的经济得到了迅速的发展,它带来了消费的增长,而消费的增长,又反过来推动着经济的迅速发展。我国虽然在消费率很低的情况下依然保持经济的高速增长,但主要依赖于投资和出口贸易推动。因此,这种投资推动的经济增长是很难持续的,没有最终消费的支持,经济增长的质量也就上不去。针对我国居民消费率严重偏低的情况,政府不应该是束手无策,而应该积极通过调整政府消费将最终消费率保持在一个适度的水平上。最理想的状态当然是政府消费能够有效促进居民消费,因为居民消费才是最终消费的主体。但即使政府消费不能拉动居民消费,也至少应当根据居民消费的消费进行调整,以补充居民消费之不足,从而使最终消费率保持在适度水平上。可喜的是,我们的实证检验的结果均肯定了上述两种假设关系的存在,这说明政府的消费政策是有效的。

但是,总的来说我国目前消费率偏低,这在一定程度上严重制约着国民经济的健康快速发展。因此我们要了解妨碍消费需求增长的因素并采取相应的策略以求我国经济能够得到更快的发展。

参考文献:

[1] 中华人民共和国国家统计局.2007年

上一篇:中国证券投资基金管理人行为研究 下一篇:国际证券税制对我国的启示