航空发动机电气附件线路绝缘性故障分析

时间:2022-07-06 05:18:44

航空发动机电气附件线路绝缘性故障分析

摘 要:航空发动机经常工作在高温、高速、高负荷、强振动的恶劣环境下,其内部的电气附件线路在这些恶劣环境中容易发生故障。电气线路的绝缘性故障是一种常见的故障,分析电气附件线路中可能出现的绝缘性故障种类,并针对每种故障画出等效电路,然后进行仿真,从而得出结论。总结并分析常见的绝缘性故障种类,可以提高发动机的维修效率,并保证飞机的飞行安全。

关键词:航空发动机;电气线路;绝缘性故障

电气附件是航空发动机的基本单元,其种类繁多,连接电气附件的线路称之为电气附件线路,发动机体积庞大,电气附件数量极多,其内部的电气附件线路错综复杂,导线粗细不一,长度最长可达几十公里,发生故障时排查起来非常困难。在此对常见的电气附件线路的绝缘性故障进行了分类,并对每类故障进行了仿真,从而得出故障产生的机理,在故障排查过程中更具有针对性,从而提高发动机的维修效率,并保证飞机的飞行安全。

1 航空发动机电气线路绝缘性故障原因

航空发动机工作环境恶劣,系统之间互相影响,高温、高速、高负荷、强振动等因素都有可能引起电气附件线路产生故障,线路的绝缘层损坏是多种因素共同作用的结果。电气线路的绝缘故障有以下两种特点:(1)线路集中,线路间挤压、摩擦等造成线路绝缘层损坏;(2)大面积的化学腐蚀、高温、高压等条件下引起线路老化,提前对线路进行测量可有效减少该类故障所引起的事故。

造成电气附件线路绝缘层腐蚀老化的原因主要有以下四种:(1)机械老化;(2)化学腐蚀;(3)热老化;(4)电老化。

2 航空发动机电气附件线路绝缘故障种类

波音公司的标准线路施工手册和空客公司的电器标准线路施工手册都对所有相关的电气附件的绝缘电阻最小值和电压值做了相应的数值要求。通过查询PW4000系列某一型号航空发动机相应的标准线路施工手册,30多种电气附件涉及127处测量点,统计了这些绝缘测量点的测量方式,结果如表1。

表1 电气附件数量及绝缘测量方法

通过分析该表,得到了两种发动机电气附件绝缘测量点的测量方式:第一种是同一个电气附件的不同测量点之间的测量方式,即Pin/Pin方式;第二种是同一个电气附件的测量点与地面之间的测量方式,即Pin/Gnd方式。

(1)Pin/Pin(层间)绝缘故障。航空发动机电气附件数量极多,电气附件线路分布紧密,两束距离很近的导线如果出现线路绝缘层老化,并且没有及时发现并排除故障,则线路之间容易产生电弧,容易引发火灾,若该线路出现在油箱附近,则会引起爆炸事故,危害极大。

(2)Pin/Gnd(Φ兀┚缘故障。电气附件线路的绝缘层老化时,导线对地的绝缘电阻就会减小,有可能引起电压击穿,回流过大,使得线路绝缘层被烧焦,对飞行安全造成极大危害。

3 航空发动机电气附件线路绝缘故障仿真

为了更有效地保证飞机的飞行安全,我们要对发动机电气附件线路绝缘故障进行预防,在此对上述电气附件中的线圈两种绝缘故障进行仿真,分析电气附件的绝缘性能的好坏对系统的影响。

3.1 电气附件对地绝缘故障仿真

在电气附件的绝缘介质发生老化的过程中,产生绝缘故障的地方对地电容是随着绝缘老化程度的不断加深而逐渐增大,对地的绝缘电阻是随着绝缘老化程度的不断加深而逐渐减小的。

定义在航空发动机电气附件绝缘介质中某一处出现绝缘老化现象,当此处的等效绝缘电阻Ro、等效绝缘电容Co的值不断变化时,测出等效绝缘电阻Ro与接地线之间的电压,可以得到等效绝缘电阻Ro与绝缘处电压Uo之间的关系。通过固定等效绝缘电容Co的值,不断改变线圈对地的等效绝缘电阻模拟传感器线圈绝缘性故障,可以得到绝缘处电压与等效绝缘阻值变化的关系,测试电路的原理图如图1所示[1]。

当绝缘故障处的等效电容Co取一系列固定值时,通过不断的改变线圈对地的阻值模拟绝缘性能变化过程,可以得到绝缘故障处电压Uo随绝缘介质对地绝缘阻值Ro变化的关系如图2所示。

从图2中可以看出,当绝缘故障处的电容Co分别取不同值时,随着绝缘电阻Ro的不断减小,绝缘故障处的电压Uo存在着明显的过度变化,在图中的拐点之前,绝缘故障处的电压Uo随着等效绝缘电阻Ro的减小几乎没有任何变化,而在等效绝缘电阻Ro的值继续变小出现在拐点之后,绝缘故障处的电压Uo随着等效绝缘电阻Ro的减小直线上升。从图中可以看出,拐点对应的等效绝缘电阻最小值R'可以看作判断绝缘电阻性能好坏的标志,当等效绝缘电阻值大于R'时,航空发动机电气附件的绝缘性能良好,当等效绝缘电阻值小于R'时,航空发动机电气附件的绝缘性能出现故障。在等效绝缘电阻小于R'并持续减小时,可以看到对地电压值直线上升,发生了电压击穿现象。在飞机附件维修手册中对每一个电气附件的等效绝缘最小值R'都给出了详细的值。

3.2 电气附件层间绝缘故障仿真

航空发动机电气附件长时间运行在高温、潮湿、震动等十分恶劣的环境中,在电磁、电场、机械、化学等外因的作用下,电气附件中线圈的绝缘层十分容易发生损坏,绝缘层损坏导致两个线圈之间会出现金属导体裸漏,造成两者之间的气体间隙被击穿,发生电弧现象。

航空发动机内部一般使用的是幅值为115V、频率为400Hz的交流电,在线圈发生绝缘磨损后,将两线圈之间的绝缘值等效为Z,由此电弧故障的简化等效电路图如图3所示[2]。

当发动机电气附件中线圈的绝缘层磨损十分严重时,层间绝缘故障基本上相当于短路,取极端情况下等效绝缘电阻R的阻值,即等效绝缘电阻R趋向于零,得到电流的变化如图4所示。

在发动机电气附件中的线圈绝缘正常没有层间绝缘故障时,等效绝缘电阻R在兆欧的级别,取极端情况下等效绝缘电阻R的阻值,即等效绝缘电阻R趋向于无穷大,电流的变化如图5所示。

通过不断减小等效绝缘电阻R的阻值,即R从无穷大不断减小到0,仿真两个线圈之间绝缘老化现象发生时,两个线圈之间的电流与等效绝缘电阻R之间的关系如图6所示。

4 结束语

本文对航空发动机电气附件线路的绝缘性性进行了介绍,分析了各类故障产生的原理,为日后故障检测方法的研究与技术层面上的改善打下了基础。通过研究关于民用航空发动机电气线路绝缘性问题的大量资料,并将其按原理进行了分类,建立了故障模型,通过对模型的仿真,研究了有关电气附件线路绝缘故障问题,希望对提高发动机的维修效率和保障民航客机的安全有所帮助。

参考文献

[1]彭文辉,郑钧.高精度多路绝缘检测装置设计[J].电子测量术,2002,33(4):19-21.

[2]周伟.航空电气系统中故障电弧的分析[J].科技与创新,2014,32(7):63-65.

作者简介:任中杰(1996-),男,汉族,湖北,中国民航大学电子信息与自动化学院,本科,电气工程及其自动化。

上一篇:煤矿机电设备变频技术运用研究 下一篇:试析如何加强农村公路养护的措施