对一道不等式的证明与思考

时间:2022-05-11 11:42:46

对一道不等式的证明与思考

题目:已知x,y∈R+,求证:xx+2y+yx+2y≤23≤xx+2y+y2x+y.

思路1 将原不等式理解为x2x+y+yx+2y≤23……①

及xx+2y+y2x+y≥23……②两个不等式,对①证明如下:

证法1:作差等价变形x2x+y+yx+2y-23≤0

3x(x+2y)+3y(2x+y)-2(2x+y)(x+2y)≤0

-x2+2xy-y2≤0(x-y)2≥0.得证.

证法2:构造函数求最值 令f(x)=x2x+y+yx+2y-23,

则f′(x)=2x+y-2x(2x+y)2+-y(x+y)2=y[(x+2y)2-(2x+y)2](2x+y)2(x+2y)2=-3y(x2-y2)(2x+y)2(x+2y)2.

令f′(x)=0,得x=y,又当0

当x>y时,f′(x)<0,知当x=y时,f(x)最大值为23.

仿上可证不等式②.

思路2 针对原不等式为连写不等式型:a≤b≤c,即证(a-b)(c-b)≤0.

证法3 由于x2x+y+yx+2y-23xx+2y+y2x+y-23=-(x-y)23(2x+y)(x+2y)•2(x-y)23(x+2y)(2x+y)≤0.

所以原不等式成立.

思考1 将原不等式简化为:已知x,y∈R+,求证:x2x+y+yx+2y≤xx+2y+y2x+y.

证法1 作差 =x2x+y+yx+2y-xx+2y-y2x+y=(x-y)12x+y-1x+2y

若x≤y,则12x+y≥1x+2y;若x≥y,则12x+y≤1x+2y,x2x+y+yx+2y≤xx+2y+y2x+y.

证法2 若x≤y,则12x+y≥1x+2y,由排序不等式反序和不大于顺序和.即有

x2x+y+yx+2y≤xx+2y+y2x+y;

若x>y,则12x+y<1x+2y同样有不等式成立.

思考2 变形1:是否存在唯一常数c,使x2x+y+yx+2y≤c≤xx+2y+y2x+y,对任意正数x,y恒成立.

由思路1中证法2,函数f(x)当x=y有唯一的极值点.

知这样常数c唯一,且c=23.

变形2:是否存在常数t(1≤t≤2),使

x2x+y+yx+2y≤xtx+(3-t)y+y(3-t)x+ty≤xx+2y+y2x+y

证明:作f(t)=xtx+(3-t)y+y(3-t)x+ty,(1≤t≤2)

f′(t)=-x(x-y)[tx+(3-t)y]2+-y(x-+y)[(3-t)x+ty]2

=(x-y)•-x[(3-t)x+ty]2+y[t+(3-t)y]2[tx+(3-t)y]2[(3-t)x+ty]2

=(x-y)•(3-t)2(y3-x3)+2t(3-t)(xy2-x2y)+t2(yx2-xy2)[tx+(3-t)y]2[(3-t)x+ty]2

=-(x-y)2•(x2-2xy+y2)t2-6(x2+y2)t+9(x2+xy+y2)[tx+(3-t)y]2[(3-t)x+ty]2

令分子g(t)=(x2-2xy+y2)t2-6(x2+y2)t+9(x2+xy+y2)(1≤t≤2)

而(1)当x=y时,g(t)=0.

(2) 当x≠y,有x2+y2>x2-2xy+y2,从而g(t)的对称轴t=3(x2+y2)x2-2xy+y2>3,及g(1)=4y2+7xy+4x2>0,g(2)=x2+xy+y2>0,从而当

1≤t≤2时,g(t)≥0,综合(1),(2)这样f′(t)≤0,

f(t)于[1,2]上为减函数,从而变形2正确,因此,变形2中存在无数个t值.

例如,取t=43,即有命题:已知x,y∈R+,求证

x2x+y+yx+2y≤3x4x+5y+3y5x+4y≤xx+2y+y2x+y.

思考3 对题目归纳思考,由于原不等式每个不等式两边均为两项,仅当x=y时取等号,从而有类比不等式如下:已知x,y∈R+,求证:

x3x+y+yx+3y≤12≤xx+3y+y3x+y;

x5x+y+yx+5y≤13≤xx+5y+y5x+y.

上一篇:待定系数法在基本不等式中的运用 下一篇:高考中的抽象函数题归类分析