基于BP神经网络的西安市宏观经济预测

时间:2022-03-20 08:13:02

基于BP神经网络的西安市宏观经济预测

摘要:宏观经济系统是一个复杂的非线性系统,对宏观经济进行预测应采用非线性的工具进行建模。采用BP神经网络对西安市宏观经济指标进行预测,此预测模型只需少量训练样本就可以确定网络的权值和阈值。实验表明模型预测精度高,能够对西安市宏观经济系统中的非线性关系进行描述,使建立的非线性模型与实际系统更加接近。

关键词:宏观经济;预测模型;BP神经网络;非线性

中图分类号:TP183;F015 文献标识码:A

文章编号:1006-4311(2009)11-0088-03

0引言

利用经济指标的准确预测是国家对宏观经济正确调控的必要前提。但经济系统,特别宏观经济系统是非常复杂的系统,广泛存在着非线性、时变性和不确定作用关系;而在计量经济学理论基础上建立的各种宏观经济模型,大都是线性模型,很难把握宏观经济系统中的非线性现象,必然导致经济预测的误差加大。学者们因此对各种线性模型做了不少改进,如建立分段线性模型、参数时变线性模型等,但结果并不理想。于是人们寻求一些非线性工具进行宏观经济建模。而神经网络具有并行计算、分布式信息存储容错能力强、自适应学习功能等优点,在处理复杂的人工智能和非线性问题上显示了优越性。

1基于BP神经网络的预测模型

BP(Back-Propagation)神经网络结构是前向的多层网络,含有输入层节点、输出层节点和一层或多层的隐层节点,同层的各神经元之间互不连接,相邻层的神经元则通过权值连接。当有信息输入BP神经网络时,信息首先由输入层节点传递到第一层的隐层节点,经过特征函数(人工神经元)作用之后,再传至下一隐层,这样一层一层传递下去,直到最终传至输出层进行输出。其间各层的激发函数要求是可微的,一般是选用S型函数。最基本的BP神经网络包括输入层,隐层,输出层这三层节点的前馈网络,其结构如图1所示。

BP神经网络使用一组样例对网络连接权值进行学习训练,每个样例都包括输入及期望的输出。在正向传播过程中,首先将训练样例的信息输入到网络中,输入信息从输入层经隐层节点逐层计算处理后,传至输出层。在计算处理过程中,每一层神经元的状态只影响下一层神经元的状态,如果在输出层得到的结果不是所期望的输出,那么就转为反向传播。反向传播把误差信号沿原连接路径返回,并按照一定原则对各层神经元连接权值进行适当修改,直至第一个隐层;这时再开始进行正向传播,利用刚才的输入信息进行正向网络计算。如果网络输出达到了误差要求,则学习过程结束;如果达不到误差要求,则再进行反向传播的连接权值调整。这一过程不断往复,直到网络正向计算输出结果达到误差要求为止,学习就告结束。网络训练结束后,在用于求解实际问题时就只须使用正向传播。

2具体应用

2.1 样本获取

神经网络建模关键之一是网络训练样本的选取。在模式识别征抽取是一个重要环节,抽取稳定且有效的特征是识别系统成功的关键。神经网络建模也就是对系统进行模式识别,神经网络中的特征抽取也就是样本的选取,包含原始数据收集、数据分析、变量选择及数据预处理;只有经过这些步骤后,才能对神经网络进行有效的学习训练。训练样本质量直接影响网络应用效果,应根据实际情况选取合适的能表达对象全面特征的样本,好的训练样本能提高网络学习速度和效果,并提高网络泛化能力。建立本预测模型时选取样本,首先是建模必须建立在一个基本固定的环境下; 其次是样本选取应涵盖系统特征的信息,要能够包含在控制中的输入输出特征,能给神经网络提供较为全面的边界信息。本模型旨在对西安市14个指标2008年的数值进行预测:GDP、全社会固定资产投资、居民消费价格指数、零售总额、工业增加值、财政收入、财政预算、可支配收入、农民人均纯收入、城镇新增就业人数、进出口总额、出口、外商直接投资、工业出厂价格指数。在排除各年可能发生异常情况下,用各指标前几年数据预测紧接着下一年的各指标数据。

2.2 神经网络模型结构

网络训练前,为了神经网络的逼近和收敛,均将样本归一化到0-1 之间。最大训练次数2000次,神经网络学习率按经验选取一般在0.001和0.1之间,隐含层结点的选取采用多次试凑法。

在实际应用中,对控制的输入输出应当按照归一化的方法对输入输出进行调节;否则,模型是无法正确工作的。本文采用了较为简便的归一化方法,即将最大值归一化成1,最小值为0,其余值按比例缩放。

上一篇:软件项目风险管理方法探讨 下一篇:盐池县沙化土地综合效益的模糊多目标优化模型...