桩基础检测范文

时间:2023-03-05 18:15:42

桩基础检测

桩基础检测范文第1篇

一、试桩静载试验分类

目前,试桩的静载检测主要方法有单桩竖向抗压静载试验、桩身应力测试、单桩水平静载试验、单桩竖向抗拔静载试验、高应变法动力测试、低应变法动力测试的测试方法。

二、试桩静载试验工作的目的

1)确定单桩竖向抗压极限承载力;

2)测定桩周各土层的极限侧阻力和极限端阻力;

3)确定单桩水平极限承载力;

4)确定单桩抗拔极限值;

5)通过试桩的低应变动力测试,检验其桩身完整性;

6)通过试桩的高应变动力测试,并与静载试验结果对照,为工程桩的测试提供动力测试参数;

7)通过试桩确定工程桩的施工工艺及测试方法。

三、试桩静载的试验方法

静力荷载测试

1.桩身应力测试

桩身埋设钢筋应力计,测试钢筋应力计需在钢筋笼制作时,将钢筋应力计焊接在主筋上,然后连接杆与主筋相匹配对齐,两边相应长的钢筋与其满焊。焊钢筋笼、混凝土灌注时,注意保护钢筋应力计的信号屏蔽导线。根据场地地层勘察结果,设置钢筋应力计的埋设位置,每个断面设两个钢筋应力计。

(1)桩身轴力

在地层界限处,同一截面埋设2个应力感应装置。一般应将有效观测数据代入事先标定的应力表达公式计算该应力计的应力值,然后对计算结果进行平均处理,计算实际的钢筋应力。

钢筋的自振频率与作用应力的关系:Ss=kv(fo-fi)(1.1)

式中:Ss—钢筋应力,kPa;

kv—传感器系数,其数值与承压膜和钢弦的尺寸及材料性质有关,通过标定确定;

f0—零压力(大气压力)下钢弦的自振频率;

fi—某时刻的钢筋压力作用下钢弦的自振频率。

将钢筋应力计的标定结果进行回归整理,确定各钢筋应力计的应力和振动频率或者和应变值之间的函数关系,然后将工程中测到的振动频率通过上述的函数关系转换成各钢筋应力计的应力,计算桩身的各截面的轴力。由于传感器的标定状态和其实际工作状态有一定区别,可能造成其零点的漂移,但并不影响其标定关系,因此在其工作状态下必须在受力前测读新的零点f0,据此计算Pi。

桩身内力的计算实质上是计算桩身各观测截面的钢筋应力q1与混凝土应力q2之和,则可根据K值法直接计算桩身内力,即q1+q2=SsK,根据计算结果可绘制桩身轴力分布图。

(2)桩侧摩阻力

桩侧阻力在某级荷载作用下只要计算出q3

q3=q-ssk

式中:q3—计算截面以上的总摩阻力;

q—桩顶总阻力。

将计算截面处的q3增量除以计算段的桩身侧面积,即可得到该级荷载作用下计算截面所代表的分层侧摩阻力。

各级荷载下,相邻两个量测断面桩身轴力的差值即等于土体作用在该段桩身侧壁上的总侧摩阻力Fi。因此,在n级荷载下,第i段土层的单位侧摩阻力Tin值即为:

式中:u—桩周长;

li—量测断面间距。

各分层的极限侧摩阻力可根据分级荷载作用下摩阻的变化特征进行判断,一般达到极限侧摩阻力时,摩阻力将不随分级荷载的增大而增大,反而会有所减小。根据摩阻计算结果可绘制桩身摩阻分布图。

(3)桩端阻力

桩顶荷载减掉桩身侧摩阻力后即为桩端阻力。通过分析应力测试成果绘制试桩桩身轴力及桩侧摩阻力曲线。

动力荷载测试

1. 高应变法试验

上世纪70年代形成的“锤击贯入法”已经有了高应变法的雏形[43],到了上世纪80年代的时候高应变动力测试分析方法就已经成形了[44~45]。

高应变动力测试确定桩的单桩极限承载力、桩端阻力和桩侧摩阻力;高应变现场工作时,将一对加速度/应变传感器组成一组传感器,两组传感器用螺丝固定在距桩顶下侧面处,且处于同一水平面呈对称分布。打桩锤击开始后,传感器将拾得的锤击信息传至PDA机内,加速度经积分变成速度—时间变化曲线,同时由应变传感器测得的应变,乘以桩的弹性模量E和截面积A,成为锤击力—时间变化曲线,现场可用Case法对量测信息作初步分析,同时将信息存在PDA机内,在室内作进一步分析计算。对测试成果进行Case法、CAPWAP-C法分别进行分析。高应变动力测试实施流程见图2.1。

2. 低应变法试验

桩基础检测范文第2篇

关键词:建筑工程;桩基础;质量缺陷;检测技术

一、引言

随着我国经济地高速发展,再加上国家“一带一路”战略提出,使得我国基础设施建设迎来了发展地又一波高潮。在基础设施建设中,桩基础是常见基础之一,建筑工程中桩基础形式有管桩、旋挖灌注桩等。对于高层建筑来说,对桩基础质量的要求越来越高,同时也在深基坑工程中也得到广泛运用。与此同时,桩自身结构的完整性、桩底沉降厚度等因素都将对建筑物本身的安全性产生根本性影响。桩基础自身作用在建筑工程中的底部,对建筑物结构的稳定性起到支撑的作用,而且桩基础作为地下最主要的隐蔽结构,出现质量缺陷很难被人们所发现。我国对桩基础质量检测提出了很高的要求,不仅要求对施工过程中桩基质量提出了明确地规定,而且对桩基础检测方法,过程进行了科学、严谨地说明。这为我国居民居住环境和质量提供了保证。桩基础结构的完整性是建筑工程中施工验收不可避免的步骤,所以对桩质量检测是必要的,否则将对后面的施工工期以及施工质量产生不可估量地影响。本文对建筑工程中桩基础存在的质量问题进行分类,然后对不同桩质量缺陷产生的原因进行剖析,并结合现在建筑工中常见的桩基础质量检测技术,运用在桩基质量检测中。为我国建筑工程,特别是高层建筑桩基础质量检测提供一些参考。

二、建筑工程中常见桩基础质量缺陷及产生原因

在建筑工程中,地质条件、施工技术、施工人员综合素质等因素都将影响建筑桩基础的质量。根据桩基础质量缺陷不同对桩基础质量检测产生不同的影响,在检测中将会造成不同的现象。根据《建筑桩基检测技术规范》对桩基础质量问题进行阐明。1.桩基础自身出现离析、夹泥或空洞现象。建筑工程中会出现桩基础自身离析、夹泥或空洞等现象。其主要原因是在施工过程中桩基浇筑所需要的水泥、砂、碎石等建筑材料配比没有达到设计的要求,导致在施工后会出现桩身的某些地方出现沙子或者碎石含量过高,使得浇筑的混凝土产生不均匀后果,使结构成蜂窝状。对于这类桩基础检测时,由于桩基础自身离析、夹泥或空洞等原因,会使桩自身材料波阻会抗变小,从而检测时产生不同的波信号。2.桩基础自身出现缩颈现象。桩基础另一种缺陷是出现缩颈现象,根据缩颈程度不同可分为轻微、严重缩颈等。其对桩基础质量影响情况也不一样。紧缩程度主要与地质条件、土体含水量等因素有关。土体表现较软、含水量越多时对桩基造成的缩颈缺陷就越大。桩基础自身缩颈现象还与施工过程有关,在施工过程中浇筑管上提的时间过快或者浇筑的混凝土在振捣过程中不均匀等操作都将出现桩基础缩紧现象。产生的主要机理是在施工过程中进行沉管操作时,桩基侧壁周围大量的泥土受到挤压和扰动,由于周围孔隙度较小的土体受到挤压和扰动,会产生高的孔隙水压力,但是当施工结束时,移除桩身套管时,会使较高的孔隙水压力施加到新浇筑的混凝土上,而新浇筑的混凝土还没有达到一定抵抗孔隙水压力的强度,将会使混凝土产生变形,桩身就会出现缩颈现象。3.桩基础出现断裂现象。在建筑工程中,桩基础出现断裂现象是最不愿意看到的,这意味着桩基出现很严重地缺陷,对桩基自身承载力产生直接影响。桩基断裂就是桩基础某一地方出现裂开的现象。在建筑工程中,造成桩基裂开的原因有如下几个方面:(1)桩身混凝土在初凝没有达到设计标准,在桩身受到桩侧壁土的挤压作用时,桩身强度无法达到抵抗侧压力,从而产生桩身裂开的现象。(2)在进行混凝土浇筑工艺时,浇筑的浇筑管上拔速度过快,当孔壁有较软的土体时,就会形成断桩现象。(3)还有些特别情况,比如施工方所提供的混凝土标号不能够满足设计要求,当桩身受到高强度的压力时也会形成断桩。在进行断桩基础检测时,相当于在断桩处存在一个极大的波阻抗,入射波全部反射,几乎无法透射下去,反射波传至桩顶后会形成震荡波,峰与峰间时距相等。由于桩身在断裂处存在空气的阻隔,此时应力波将无法继续往下传播,应力波会多次反射到桩顶,检波器接收到的反射时间间隔一致,由于能量的衰减作用,反射信号也会自由震荡慢慢地衰减下去,故很难找到桩底反射信号。对桩基检测带来一定困难。

三、桩基础检测技术及应用

1.声波透射法桩基检测技术。声波透射法也叫超声波法,根据发出的超声波进行桩基缺陷检测。声波透射法可以对桩身进行较全面地检测,判断桩身是否存在混凝土离析、夹泥、缩颈、密实度差和断桩等缺陷,确定缺陷的位置、缺陷程度以及缺陷范围等。同时现场操作简便,检测速度快。声波透射法要需要考虑是:声波透射法检测要预埋声测管,如果在之前没有做准备工作,后期的声波透射法就无法进行;声波透射法中声测管上端高度要高于桩顶,否则在桩身浅部位置的测试信号容易失真。以旋挖灌注桩检测为例,需要有如下要求:(1)在灌注桩的桩侧所预埋的声测管的内径应该大于超声波探头的外径,这样才能将信号完全传递,才能准确检测出缺陷位置。(2)预埋的声测管要有足够的刚度以及合适的材料参数,这样使其温度参数和混凝的比较接近。测出准确地结果。(3)预埋的声测管,其下端应该进行封闭处理,这样就可以保证灌入的水不会漏掉,在下管过程中,管的上端应该用一个可以拧开的盖子进行密封,避免泥土等进入,在下管过程中避免发生碰撞导致管壁变形,如果发生管径缩小时,超声波的探头将无法探到管底,影响检测。2.钻芯法桩基检测技术。在建筑工程中钻芯法桩基检测技术是一种比较直观地检测技术。钻芯法可以钻取桩身里面的缺陷,当存在夹泥或较严重的离析时,钻杆起钻时,钻杆内的芯样会直接显示其缺陷情况。在进行桩端持力检测时,一般是将桩体钻穿之后,一般要求钻进深度不能小于桩径的3倍,这主要是考虑桩端持力层可能存在软弱夹层,会对检测结果产生影响,对检测桩体自身承载力产生误差。但是钻芯法桩基检测技术也存在一定的缺点,主要是现在钻芯法成本比较高,机械设备运移比较麻烦等。3.开挖法桩基检测技术。开挖法桩基检测技术可以验证浅部缺陷的位置及其损害程度,现场可以利用挖机对存在浅部缺陷的桩进行开挖,开挖法是一种比较直观的验证方法,而且成本不高,还有一点是在于开挖之后,当浅部缺陷,比如缩颈、离析、断裂等时,可以比较方便的采取补救措施,例如将缺陷位置以上的桩体进行裁桩处理,然后再进行结桩措施,这样一来就能够比较好的解决此特殊桩基问题。

四、结语

在我国建筑行业中,桩基础作为建筑工程中重要的一环,桩基工程是隐蔽的地下工程,复杂的地质条件给桩基础检测带来较大困难。在桩基础检测时应综合各种情况,利用多种方法相结合判断桩基质量,从而不断积累检测经验。增强基础施工质量重要性的认识,从而更好地保证桩基础质量。

参考文献:

[1]朱喜源,黄文通.桩基检测方法与发展浅谈[J].山西建筑.2007,20.

[2]陈启魁,吉林涛.浅谈几种桩基检测技术在建筑工程中的应用[J].河南科技.2013.

[3]段玉凤.建筑工程桩基检测技术实践与探析[J].科技传播.2011,15.

桩基础检测范文第3篇

[关键词]桥梁桩基础;无破损;检测技术

中图分类号:V448.15+1a 文献标识码:A 文章编号:1009-914X(2015)11-0154-01

引言

社会经济的快速发展,对桥梁等交通设施建设的要求也在不断的提高,而桥梁桩基础是桥梁工程的重要部分,其质量的好坏往往决定着桥梁的性能,但常规的检测方法又具有一定的局限性,因而研究无破损检测技术具有积极的意义,以下做简要的论述。

1.桥梁桩基础常见的病害及成因

桥梁桩基础是地基加固的主要形式,也是整个桥梁结构的承压构建,但是在施工中存在用料不规范、操作不按流程、施工队伍素质不齐、设备不精确、地质环境影响等,都会造成桥梁桩基的缺陷,而桥梁桩基常见的缺陷有以下几类。

1.1 桩基桩径缩小

桩径是决定桥梁竖向承压能力的关键指标,但桩径缩小是比较常见的施工问题,会导致抗弯能力减弱、承载不达标等问题,桩基桩径缩小主要有三个方面的原因:其一,地质构造含有承压水的地层时,地下水的冲刷导致砂浆流失,桩径缩小;其二,地质条件不良,桩基周围土层遇水后向桩孔中突起致使桩径缩小;其三,钢筋绑扎过密导致流动性差,部分钢筋外漏导致桩径缩小。在此类缺陷桩基中,需要对波形进行分析,产生相反的反射波,缩径越大,振幅就越大。

1.2 混凝土桩基沉渣

此类问题主要发生在施工过程中,在钻孔灌注桩进行混凝土灌注之前没有进行彻底的清洗,导致桩基本身的强度降低。混凝土桩基沉渣也有可能是没有及时进行灌注导致的,与施工的组织规划有关。当桩基础底部为弱风化围岩时,产生同向反射波,波速急剧下降,周期变长,主频变低;当桩基础很短强度高时,产生较强的同向反射波。

1.3 混凝土桩基离析

在桥梁桩基施工中,由于搅拌不均匀,成形之后的混凝土必然出现性能上的波动,如胶结不好,或者是桩孔内存在大量的积水导致骨料受到冲刷,在桩基沉积,但砂浆浮在骨料之上,造成桩基离析的问题。此类桩基础会出现波形小范围的畸变,严重时波峰会消失,最后出现低频合成波。

2.桥梁桩基础无损检测技术研究

2.1 人工激震动测技术研究

通过人工激励的方式产生地震波,地震波传递之后产生反射,接收器接受之后可以进行分析。由于地震波传播的介质是非均匀性的,必然会产生反射,地震波在桥梁桩基中出现衰减,波能转化为热能。如果桥梁桩基存在缺陷,波速降低,传播时间增加,地震波信号发生散射而衰减。根据传播方向和波动介质点振动方向的差异,可以将波形分为横波与纵波,其他形式的波也能分解为横波与纵波。横波传播方向与质点振动垂直,质点位置发生剪切应变,但横波只能在固体介质中传播。纵波是指传播方向和质点振动相同的波,由于交变拉压应力的存在,出现伸缩变形,在气体、液体和固体中都能传播。

在采用人工激震动测法检测桥梁桩基时,地震波遇到桩基缺陷产生反射波,反射波相关于缺陷桩基的阻抗。缺陷桩基界面阻抗不同时,就会产生地震反射波,发射波与入射波振幅的比值即为反射系数。传感器接收到波形的参数之后,如频率、声速、振幅等,对桩基的缺陷进行分析,可以判别桩基的问题,离析桩、缩径桩、断桩等缺陷在人工激震动测技术下,其波形的表现会出现差异,通过这些差异来进行鉴别。传统的桥梁桩基检测,在桩顶安装传感器,并进行激振,获取数据之后判断桩基的质量,但是传统的检测方式会有诸多的干扰,需要检测人员有较高的分辨能力。而人工激震动测法能有效分离干扰波,利用两点之间的缺陷时进行波速计算,有效应对深度缺陷的检测。

2.2 声波透射法

声波透射法是当前应用较为广泛的一种无损检测技术,声波在不同的介质中波形具有差异,在缺陷桩基中传播时可以体现出来。缺陷桩基的混凝土材料不均匀,产生不同声阻抗声学界面,声波沿着不同的蓝截面传播,衰减快,能量散射也比较严重。桩基混凝土中产生诸多的散射波和折射波,散射波与折射波相互叠加会有声能散失,声波在缺陷桩基中会绕着缺陷进行传播,传播路线不是直线,声时变大,声速减小。声波在遇到缺陷截面时发生多次的折射和反射,声能出现衰减,频率和波幅减小,整个波形发生畸变。在声波透射检测法中,需要在灌注之前预留孔道,并在预留的孔道中埋设声波探测管,移动探测仪和接收仪,移动时注意方向和高度,逐步获取桩基横截面的数据,由物理参数来判别桩基的完整性,声波透射法对桩基的孔径和长度要求不大。声波透射法的检测中,如果实测声速值低于混凝土声速临界值,可以判定桩基存在缺陷;所检测测点声速值很小,并且趋于收敛,判定时采用声速低限值进行,如果声速值低于底限值,则判定为异常桩基。

2.3 低应变动测法

低应变动测法对于桩长远远大于桩径的情况比较实用,用振动仪对桩顶进行激振,周围土体和桩身会产生振动,通过桩基本身的应变计将桩基振动的速度和加速度传递给接受装置。低应变动测法检测方法简单、速度快、范围广而被广泛应用,如果桥梁桩基本身存在断桩、缩径、扩径等差异性界面,弹性波在传播时产生反射,传感器对声波进行处理,以便进行数据分析。通过研究桩土之间的动态响应,达到判断桩基的长度及质量问题。随着技术的发展,低应变动测法检测的精确性也越来越高,受到广泛的重视。

2.4 高应变动测法

高应变动测法的成本低,其组成的部分包括传感器、分析仪、激振设备和测量仪等,主要用于检测桩基的竖向承压能力和桩基的完整性,在桩顶施加竖向载荷,然后收集桩基相关动力系数,主要是速度与力的时程曲线,进行分析计算,从而判断桩基的竖向承压能力和质量问题,高应变动测法在高程摩擦型桩基和摩擦型桩基的检测中比较常用。

3.桥梁桩基础无破损检测的技术要求

在进行桥梁桩基础无破损检测时,需要注意几个方面的技术要求:其一,桩头处理,处理桩头,确保清理干净,平面整洁、干燥,便于后续的检测;其二,桩基础的强度要求,由于是无破损检测,在检测中不能削弱桩基础的性能,一般要求达到桩基础龄期达到10天以上,能够很好的保护桩基础;其三,传感器的选择与安装,桩基础的缺陷检测需要保证精度,因而检测设备的选择和安装至关重要,传感器是核心设备,要求精度高、灵敏性好,安装位置要根据桩径的大小合理选择,避免漏测的情况,此外,传感器必须固定好,以免差生较大的误差,影响桩基础缺陷的分析;其四,所有的检测仪器必须无故障运行,同时仪器必须连接好,处于最佳的工作状态;其五,检测后的设备保养维护,桥梁施工现场的环境比较复杂,对仪器设备会有一定的影响,因而检测后需要进行设备的维护保养,为下次的检测打下良好的基础,同时也能避免成本上升的问题。

4.结语

桥梁桩基础是桥梁建设中的重要部分,对于桥梁的性能有很明显的影响,而桥梁是当今交通基础设施的关键,影响着社会经济的运行,因而研究桥梁桩基础的质量问题具有积极的意义。随着技术的发展,追求缺陷无损检测,既能达到质量控制的目的,又能节省成本,减少破坏作用,因而研究无破损检测技术十分重要。

参考文献

[1] 张冠男.既有桥梁桩基无损检测技术研究[J].华南理工大学.2013-06-01.

桩基础检测范文第4篇

关键词:桩基础;完整性;钻芯法;稳定性

0引言

在现代建筑工程施工中,基础施工质量对建筑结构的稳定性起关键性的作用,由于桩基础可以将上部结构传递下来的荷载传递到地基持力层,以确保建筑上部结构的稳定性。特别是对承载力较差的地基,使用桩基础可以很好的加固地基,确保桩基础的施工质量。但是多数桩基础混凝土浇筑在地下进行,无法直接确保桩基础的施工完整性,因此需要采取有效地完整性检测技术,确保桩基础施工质量满足设计要求,以保障上部结构的稳定性。

1 桩基础施工中常见的质量问题及成因

众所周知,桩基础处于地下环境中,这就导致在桩基础施工阶段很难直接检测其施工质量,同时桩基础施工质量受多方因素的影响,易导致桩孔偏斜、缩径、断桩等病害,影响桩基承载力性能。下面针对桩基础的施工病害做简要的阐述。

1.1桩基顶部施工质量不达标

在桩基础混凝土浇筑施工中,其顶部混凝土浇筑施工最容易出现质量问题,若导管隔水球密封效果不好、孔底钻渣较多,则会造成桩基础顶部混凝土中夹杂较多的钻渣,不仅影响桩基顶部的混凝土抗压性能,且影响桩基标高。如果桩基顶部混凝土中夹杂钻渣超过一定范围时,则会造成桩顶混凝土分层现象。同时,若桩基础顶部预埋钢护筒,没有严格按照设计规范的基本要求,同样会造成桩基顶部施工质量存在较大的缺陷。

1.2桩基位置偏差较大

在桩基础钻孔施工过程中,常出现孔位出现偏差,导致桩基承载特性出现下降。究其原因,主要是因为在钻孔桩机位置出现偏差。同时,若桩基孔位测量放线出现偏差,且在后续桩基施工中未进行桩基复测,则会导致在钻孔时出现偏差。此外,若桩基的沉桩施工工艺较为落后,无法满足现代桩基施工精度的要求同样会造成桩基出现倾斜问题。

1.3桩基断桩

在桩基础施工完成后,在桩基成桩完整性检测中,常检测出桩基断桩问题,根据笔者多年施工经验可知,导致桩基础基出现断桩的因素较多。例如,孔径倾斜超过一定的范围造成桩基断桩现象。同时,若桩基浇筑混凝土时密实度较低,或夹杂较多的钻渣,则会造成桩基断桩问题。

1.4孔口高程的误差

根据笔者多年施工经验可知,引起孔口高程误差的主要原因有两方面:第一是由于施工场地在施工过程中废渣堆积在孔口附近,造成地面高程逐渐升高,孔口高程出现变化造成的偏差;第二,由于在地质勘查结束后在场地回填时,计算孔口高程时疏忽而导致孔口出现误差。

1.5钻孔垂直度不满足设计要求

在钻孔施工中,易出现钻孔垂直度不满足设计要求。究其原因,主要原因如下几点:第一,钻杆出现明显弯曲,钻杆接头间隙增大,从而造成钻孔出现偏斜;第二,场地平整度较差,或场地土质稳定性较差,在钻机振动中地面出现沉降,造成钻孔出现偏斜问题;第三,在钻机钻进中遇到软硬土层交界面,钻机压力过大造成钻头受力不均匀,而出现钻孔偏斜。

2桩基础的钻芯法检测技术

2.1钻芯法检测技术

钻芯检测法主要应用在钻孔灌注桩施工的质量检测中,其是应用钻芯机钻取桩基础检测芯样,并通过对芯样进行相关检测,以此来判别桩基础的混凝土强度、完整性、桩底浮渣等桩基础参数是否满足设计方案。

2.2钻芯检测的试验设计

(1)检测因素的确定。在对桩基础的钻芯取样检测中,主要检测桩身混凝土的抗压强度是否达标,而取样涉及到取样的外观质量、取样位置、钻芯直径等多种因素有关。然而不同因素对桩身混凝土强度的影响程度不同,为了钻芯检测准确的检测出桩基础的完整性,需要分别对这些因素一一试验分析,从而减少对检测结果的影响程度。

(2)钻芯取样方案的确定。在钻芯取样检测时,需要根据桩基础的完整性、芯样的外观质量等进行多种试验方案,并对钻芯的结果进行统计分析,从而确定一个具有代表性的取样检测方案。

2.3钻芯检测桩基础工程案例

(1)工程背景

某工程的桩基础采用钻芯法检测技术,本次试验共抽检6根桩基,桩号分别为4、57、69、91、131、156,其检测桩的设计施工资料如表1所示,每根桩钻取一个孔,本次钻芯试验总进尺为279.79m,取混凝土芯样21组进行

(2)检测仪器设备及芯样

本次钻芯法检测设备采用北京探矿厂生产的XY-1A-4型高速液压钻机,101mm单动双管金刚石钻具。

(3)检测结果

4号桩:0.0~21.90m混凝土芯样连续、完整呈柱状,节长0.15~1.57m,表面较光滑,混凝土胶结较好,粗细骨料分布基本均匀,端口吻合。在21.90m处遇到钢筋笼主筋,无法钻进,故终孔。抽检混凝土芯样强度代表值为61.6MPa。

57号桩:0.0~30.77m混凝土芯样连续、完整呈柱状,节长0.30~1.56m,表面较光滑,混凝土胶结较好,粗细骨料分布基本均匀,端口吻合。抽检混凝土芯样强度代表值为59.5MPa,桩底无沉渣。30.77~34.10m中风化粉砂质泥岩,红褐色,岩芯呈短柱状、块状,岩质较软。

69号桩:0.00~10.76m混凝土芯样连续、完整呈柱状,节长0.45~1.56m,表面较光滑,混土胶结较好,粗细骨料分布基本均匀,断口吻合。10.76~13.88m钻遇钢筋笼主筋,于13.88m处无法钻进,故终孔。抽检混凝土芯样强度代表值为59.0MPa,

91号桩:0.00~7.77m混凝土芯样连续、完整呈柱状,节长0.12~1.57m,表面较光滑,混土胶结较好,粗细骨料分布基本均匀,断口吻合。于7.77m钻遇钢筋笼主筋,无法钻进,故终孔。抽检混凝土芯样强度代表值为61.8MPa。

131号桩:0.00~29.10 m混凝土芯样连续、完整呈柱状,节长0.03~1.57m,表面较光滑,混土胶结较好,粗细骨料分布基本均匀,断口吻合。抽检混凝土芯样强度代表值为59.2MPa.

3结束语

综上所述,为了确保桩基施工质量,需要对桩基的完整性进行质量检测。而钻芯法检测技术,操作方便,检测精度高,具有代表性,可以准确的检测出桩基的混凝土抗压强度、桩底沉渣、粗细骨料分布状态等,保障上部结构的稳定性。

参考文献:

[1] .浅论钻芯法在桩基础检测中的应用[J].建筑工程技术与设计.2014(05).

[2] 吕伟.钻孔取芯法检测桩基础质量[J].技术与市场.2012(05).

桩基础检测范文第5篇

关键词:桩基础 分类 声波检测

1 桩基检测分类

桩的测试方法分为静载荷试验和动力测桩两大类,还有抽芯法和静力、动力触探以及埋设传感器法等辅助类方法。目前桩的静载荷试验主要采用堆载平台法、锚桩法、地锚法、锚桩和堆载联合法以及孔底预埋顶压法等。现我国已有几家拥有1×104kN级以上的桩基静载设备,最大加载能力达2×104kN。桩的动测技术起步较晚,目前已拥有CE系列、RS、RSM系列、PDA、EFI系列动力设备,用高应变法检测桩的承载力和桩的完整性,用低应变法检测桩的完整性。高应变法试桩一般用CASE法、CAPWAP法。低应变检测常用应力波反射法(锤击波动法)、声波透射法。

2 桩基检测方法与讨论

2.1 由散体材料桩或低粘结强度桩和土组成的复合地基(碎石桩、石灰桩等),采用静载荷试验也可采用静力触探分别对桩和土进行检测,确定复合地基承载力。

2.2 大直径桩宜采用声波透射法或钻芯法检测。各类桩、墩及桩墙结构完整性检测,一般采用低应变或高应变动力试桩法检测。

2.3 采用静载荷试验检测由高粘结强度桩和土组成的复合地基(水泥土桩、CFG桩、低标号混凝土桩等)的竖向承载力。单桩承载力的检测同其它刚性桩。

2.4 一般采用质点速度监测系统或加速度监测系统对施工中由于震动对环境的影响进行测试,也可用地震仪检测。

2.5 一般采用钢弦或压力盒通过静载荷试验复合地基中,桩、土荷载分担比进行测定,也可采用特制的应力传感器测试。

2.6 施工中用变形传感器(测斜仪)对由于挤土效应对环境的影响进行监测,也可用沉降变形标配合水平仪,经纬仪检测。

2.7 使用阶段桩体应力-应变的测试,使用混凝土应力计,钢筋应力计或特制的传感器。

2.8 可以采用分贝计对施工中噪音的测试加以判定。

2.9 当桩长大于30m,用其它检测手段难以准确判定桩完整性时,可采用抽芯的方法,抽芯还可以较准确地判断桩体混凝土的强度。也可采用声波透射法进行检测。

3 结合工程实例谈桩基础的检测

3.1 工程概况。本工程主桥、引桥及梯道共有桩基础46根,其中主桥8根,桩径2.2m;引桥共34根,其中2.0m桩径18根,1.2m桩径16根;梯道共4根,桩径为1.5m。1#-8#墩为嵌岩桩,持力层为弱风化花岗岩,要求嵌岩深度不小于1.5D,桩底沉渣不大于5cm。其余均为摩擦桩,桩底沉渣不大于15cm。桩身除主墩及梯道为C30水下砼外,其余均为C25水下砼。工程桩分批检测,检测时确保桩身混凝土强度不低于设计强度的70%,且留置混凝土试块单轴极限抗压强度不低于15Mpa;钻芯法检测时基桩桩身混凝土龄期不小于28天。

3.2 桩基检测数量。本工程总桩数为46根,均为钻孔灌注桩,工程基桩成桩质量进行100%检测。≥2.0m桩径超声波检测测26根,其他桩基础按不少于30%进行超声波透射法的检测共6根;其他桩基础进行基桩反射波法检测,共20根。钻芯检测法检测按桩数为总桩数的10%,共5根。

3.3 桩基检测方法和目的 ①基桩反射波法检测执行《建筑地基基础检测规范》。试验目的:普查桩身结构完整性,判定桩身结构完整性质量等级。为静载试验、高应变动力试验、钻孔抽芯试验等确定桩位提供依据。检测方法:检测前凿去桩顶浮浆、松散或破损部分,漏出坚硬的混凝土表面,在桩顶均布四个检测点,用手砂轮将桩顶混凝土打磨平整,平面与基桩轴线基本垂直,检测时保证打磨区域干净无积水。检测人员用动测仪和小锤进行检测。②钻芯检测法执行《建筑地基基础检测规范》,其检测按下列规定进行。a设备安装、操作参照国家地质矿产部行业标准《钻孔灌注桩施工规程》DZ/T0155附录D(抽芯取样);应采用高转速的油压钻机、单动双管钻具、直径101mm以上的钻头进行抽芯。b芯样试件制作、试验、混凝土强度换算值的计算参照中国工程建设标准化协会标准《钻芯法检测混凝土强度技术规程》CECS:03-2007。如果试件内骨料的最大粒径大于试件半径,则该试体的强度值无效。c每孔按上、中、下三个部位各取1组有代表性的芯样试件,每组芯样3个试件,每组芯样的强度代表值的确定参照《混凝土强度评定标准》GBJ107-87。当缺陷位置能取样试验时,必须取样进行混凝土抗压试验。持力层取材应靠近桩底部。d桩端持力层岩土分类参照《岩土工程勘察规范》(GB 50021-2001)或《公路桥涵地基与基础设计规范》(JTG D63-2007)或广东省标准《建筑地基基础设计规范》(DBJ 15-31-2003)。e沉渣厚度的判别标准按设计施工图要求并参照《地基与基础工程施工及验收规范》(GB 50202-2002)和《城市桥梁工程施工与质量验收规范》(CJJ2 -2008)。f对桩底持力层的钻探,每桩应不少于1孔且钻探深度不小于设计要求值;当无设计要求值时;应执行《公路桥涵地基与基础设计规范及《建筑地基基础检测规范》的有关规定,一般应不小于3倍桩径且不小于5m。g各种桩径的桩其每桩钻孔数分别规定为:1.2~1.6m的钻2孔,大于1.6m的钻3孔。对于无法保证钻至桩底的超长桩,在保证总钻孔数的前提下,可减少每桩的钻孔数,而相应增加检测桩数。单孔开孔位置宜偏离桩中心10~15cm。检测试验目的:检验桩底沉渣是否符合设计及施工验收规范要求;灌注桩桩身混凝土质量、桩身混凝土强度是否达到设计要求;极端持力层的强度和厚度是否符合设计要求;施工记录桩长是否属实等。③超声波透射法检测参照执行《建筑地基基础检测规范》。各种桩径的桩其每桩的声测管埋设数量分别规定为:桩径小于0.8m的对称埋设两根管,0.8

3.4 桩基检测明细表。为了保证桩基声测数量和检测准确性,主桥以外的其他基桩声测管的预埋数量按总桩数的100%预埋。本方案提供的钻芯法检测的桩位为暂定桩位,具体抽芯检测桩位将根据反射波和超声波投射法检测的结果进行调整。下列表中:标有“√”符号为需预埋声测管,标有“”符号的为桩基声测,标有“”符号的为桩基动测,标有“”符号为桩基钻芯法检测。

4 结束语

随着社会的发展,工程部门对基桩的桩长和桩径都提出了更高的要求,目前我国用于桥梁中的最大基桩的桩径已经达到5m以上,最大桩长也已超过100m。确定桩基础承载力的理论和方法也不断涌现,当前桩基检测使用的方法有静载法、动测法、静动结合法、声波检测法以及自平衡测试法等。桩基工程是隐蔽工程,必须在质量上防患于未然,桩基必须做好试验及检测工作,针对不同类型的桩,采取相应的检测方法,保证桩基础的施工质量。

参考文献:

[1]丁小文.浅谈桩基检测技术的分类[J].山西建筑,2011(30).

[2]方军.浅谈桩基检测技术在建筑工程中的使用[J].中国高新技术企业,2010(28).

桩基础检测范文第6篇

关键词:人工挖孔桩;桩端阻力特征值;地基承载力特征值;深层平板载荷试验

引言

本文对某小区的人工挖孔桩单桩竖向承载力的检测,按照施工要求是经过单桩竖向静载荷的试验确定。由于静载试验的标准方法中要求达到利用混凝土施工必须达到龄期28天。这无形中拖延了施工进度,为了节约工期,在实际操作中,有些工程对深层平板荷载试验检验方法,采取桩端阻力、超声波法或低应变法来检测桩身完整性、混凝土强度及桩身完整性的复合试验,来代替静载试验。

1 桩基础概况

某住宅小区,总建筑面积约16万㎡,有80栋多层住宅建筑,其建筑的框架剪力墙结构,抗震设防烈度的设计要求为6 度。主要基础为预应力预制管桩和天然浅基础,但施工两栋时,发现本住宅小区地质情况出现变化,基础埋深较深时,出现大量孤石,不利于管桩的施工,经研究讨论改为人工挖孔桩基础。管桩基深度6-12米,桩底每边扩底250±50mm,桩径900mm-1600mm 不等,单桩竖向承载力特征值Ra=600kN 至1100kN。工程场地勘察深度范围内土层分为5个工程地质单元:①素填土;②种植土;③淤泥质土;④粉质粘土;⑤砾质粘土。设计持力层为第⑥层砾质粘土层,承载力特征值为200kPa,桩端阻力特征值600kPa。

2 住宅小区桩基础检测事故确认

工程施工过程中,施工单位设计的方是,对桩的检测采取以深层平板载荷试验确定基底承载力、以低应变法和抽芯法检测桩身完整性、桩底沉渣及桩身混凝土强度的综合试验方法,实验所用载荷板的直径为850±10mm。但在施工初期对试验报告验收发现,虽抽芯检测结果及低应变检测均无异常,但深层平板载荷试验却出现问题。

对深层平板载荷试验的结果,比较含混的表述为:桩端土的承载力特征值。试验过程中,试验人员将其简单理解为土的承载力特征值,即210kPa。试验中,检测实物以0.500±0.10㎡ 钢板(厚度12mm)直接置于桩底,加载至445kPa 后,即停止加压。此时,沉降未出现急骤增大,最大沉降量为25.16mm,小于0.04d(d 为承压板直径)、最后一次加载的沉降量4.5mm大于前一次加载沉降量3.5mm、沉降变形在20min之内基本稳定,均符合判定445kN 为承载力特征值的所有条件。故试验检测单位将445kPa 判定为桩底土的承载力特征值,并写入检测报告。同时提供荷载———沉降曲线。但设计单位及勘察单位认为,深层平板载荷试验应提供的结论数据为桩端阻力特征值600kPa,即,试验单位要判定基底持力层合格,需加载至不小于1150kPa,从其报告中提出的P-S 曲线来看,加载至445kPa时,虽然其符合判定基底承载力达到220kPa 的条件,但加载至445kN 时,其P-S曲线呈下降趋势明显,很难保证达到设计要求的600kPa—试验中需加载至1150kPa。由于试验并未进行到设计要求加载的承载能力,因此,此试验判定为:未完成试验。由于所有桩均完成了承台施工,有部分完成了主体二层,该工程的桩基础工程被判定为未进行合格验收的分部工程。

3 住宅小区桩基础事故的分析

由于设计单位的设计说明表述不清,又没对该项作解释和要求,再加上检测试验单位的业务能力,对深层平板载荷试验要点、目的及试验结果理解不透,致使试验中出现多处失误:

(1)采用载荷板虽然为0.8mm满足规范要求,但对于深层载荷板试验,远小于桩底直径—经扩底后的桩底直径最小为1150mm,同时不满足《地基基础设计规范》GB50007-2002附录D—深层平板载荷试验要点第二条:“深层平板载荷试验的承压板采用直径为0.80m的刚性板,紧靠承压板周围外侧的土层高度应不少于80.0±5cm”的要求。

(2)载未达到设计要求的承载标准值的2倍,事实上,由于(1)错误发生,也不可能加载到设计要求的承载力特征值的2倍。

4 对小区桩基检测事故的处理意见

4.1 桩基检测的事故处理

检测小区试验事故之后,由建设单位组织施工、监理、设计、地勘先进单位,成立了专门的事故处理小组。通过调阅施工过程中的资料,确认的事实为:

(1)从抽芯检测及低应变检测结果来看,该批人工挖孔桩桩身混凝土完整无缺陷、桩底沉渣厚度在50mm 以内,整个试验过程无异常状况发生,但鉴于此检测单位在深层平板载荷试验中出现的失误,此试验结果应重新复核。

确认小区的桩基施工确认已经开挖至设计要求的持力层:第⑥层砾质粘土层,已经经过监理、地勘等部门的验收认可。

(2)按照《建筑地基础设计规范》(GB50007-2002)第3.0.1 条所述,该工程地基基础设计等级应为丙级,而现行设计、施工及验收规范,对丙级地基础的检测并无进行静载荷试验或相关替代试验的明确要求。

由于检测报告的滞后,至该报告提供时止,已有两栋建筑物完成主体二层。调阅此两个栋号的沉降观测记录,其最大沉降为1mm,最小为0mm,各观测点均匀沉降,符合《建筑地基础设计规范》第5.3.4 条的相关要求。

4.2 检测桩基的重新检验

事故处理基于以上实际情况,由建筑单位、施工单位、监理单位、设计单位及勘探单位五方质量责任主体共同决定,对此次桩基检测事故,应重新检测。施工单位应重新对各栋号进行抽芯检测,试验单位应重新选择,抽芯检测要达到以下目的:①重新检测桩身砼质量;②重新检测桩底沉渣厚度。

在建设单位、监理单位的监督下,四个栋号共抽取三根施工情况最不理想的桩,剥除承台,进行静载荷试验。施工情况不理想,指施工过程中地下水浸泡时间长、或桩底土质弱于其它部位、或桩底沉渣清理不理想的桩。

4.3 重新检测桩基的结果

施工单位依据《建筑变形测量规范》-JGJ8-2007 和《建筑地基基础设计规范》-GB50007-2002 的相关要求,经重新检测结果合格,对HA 市GAO 小区的桩基础工程同意验收。

5 结 语

桩基础检测范文第7篇

关键词:桥梁;桩基础;质量检测

中图分类号: K928 文献标识码: A

桥梁的桩基处理的方法很多,难度也较大,无论采用什么先进的方法都会或多或少的出现各种质量病害,且费时费工又劳命伤财。所以,必须认真严格地抓好每一道施工工序,无论从施工器械还是施工人员的配备上,都要足够严格精准,施工队伍要做好事故的预防工作,准备好应急方案,对事故作出及时有效且准确的评估,结合现实状况与前人的经验总结,尽量不发生质量问题,提高施工质量,促进我国桥梁施工建设实现新的飞跃。

1 桩基检测技术

1.1 成孔检测

在我国,成桩检测技术要优于成孔检测技术。从防患于未然的层面来看,桩的成孔检测应比成桩后检测更为重要。大力提倡成孔检测技术的开发,特别是对桩承载力有很大影响的灌注桩桩底沉渣厚度测试手段的研究,今后仍是我国桩基工程中的迫切任务。

1.2 静载荷试验法

目前桩的静载试验仍被国内外公认为评价桩承载力最直观、可靠的方法,但由于测试仪表的精度、试验方法的限制、分析方法的差异和工程判断的能力等因素,其测试误差也能达到10%。因此。如何改进静载试验测试、分析方法,提高静载试验的可靠度,长期以来是工程界所关心的课题。近年来,试验吨位有了很大提高,也有许多研究人员对相关的负摩阻现象进行了研究和探讨,对于大吨位的桩,在桩底埋设千斤顶和传感器进行载荷试验。

1.3 声波透射法

这虽是一项传统技术,以前应用却并不广泛。随着近几年来交通系统投资的增加,以桥桩为代表的各种大直径钻孔灌注桩的大量涌现,声波透射法在国内已得到越来越广泛的应用,在这种方法的应用过程中-数字化声波仪已取代了传统的模拟声波仪,不仅在使用的方便程度上有了质的飞跃,而目.在分析手段上也有了很大提高。

1.4 应力波反射法完整性检测

尽管近年来国内外对于这种方法的研究未见本质性的进展,但在实用和普及方面国内却有较大提高,这些不仅表现在国产桩基动测仪和配套用传感已达到或接近国外先进仪器方面,也表现在许多单位认真研究各个测试细小环节和分析环节方面,更主要的是表现在许多管理部门已开始认真总结应力波反射法完整性检测的得与失,开始使这种方法的应用回归到一种正常的位置。

1.5 动静法

由于高应变动力试桩法力的作用时间过短,桩只能被视为弹性体进行分析,国外有人提出了一种动静法,采用技术将力的作用时间延长,使沿桩身传播的应力波波长大于实际桩长,进而将桩视为刚体,回避了应力波的传播问题。应该说这种方法既克服了传统静载试验的笨重与费时,也克服了高应力方法的过分间接性,是一种较好的方法,但由于该方法对锤的配重要求人高,具体操作仍有较大难度。

2 动测与钻芯两种检测方法的比较

桩基动测法中低应变反射波检测方法是建立在一系列假设前提条件下的,它首先假设桩是一个等截面、均质的一维直竿且横截面的直径远小于竿的长度,竿侧及竿端物质的密度明显小于竿的密度。只有这样才可应用弹性直竿中波传播的理论和波动方程解释工程桩的完全性问题。因此不仅检测人员,建设单位主管及相关监理人员也应当清楚作为低应变主要检测方法的反射波的应用是有前提的,其检测结果对正常桩是有效的。特殊情况下,现场监理在灌注过程中发现的问题比任何检测方法都及时和准确。钻芯检测法因其优点突出即直观,而引起人们的广泛重视。但该方法成本高昂,钻芯需较长时间,使得人们无法在大范围内广泛应用。另外钻芯法的代表性也受到质疑,特别在确定缩径等缺陷时更是无能为力,一般地说钻芯法在确定桩身质量有较强的说服力,对确定断桩、夹泥、离析也有一定的优势。芯样取率要达到100% 。它要求技术人员有丰富的实践经验,对钻进过程所遇到的各种情况要有完整,准确的记录。有时断桩部位在钻芯过程中只反应为几或十几厘米的突然掉钻,如不能准确记录下来,从提取的芯样上很难判断出严重的缺陷。因此,钻芯检测法主要是对动检测法的一个补充,重点是对混凝土质量有怀疑的合格桩及动测评为不合格缺陷桩进行验证。

3 基桩检测

3.1 检测原则

3.1.1 根据《公路工程质量检验评定标准》及《公路桥涵施工技术规范》的要求,对基桩应采用无破损法检测桩的质量,并选取一定比例的基桩进行钻孔抽芯法检查。

3.1.2 试验检测方法的选定与分析应综合考虑勘察、设计、施工等因素,做到技术先进、安全选用、经济合理、评价正确。

3.1.3 为保证检测结论的可靠性,可根据不同被检对象和检测要求,选用多种检测方法进行综合分析判断。为确保基桩质量,对初期施工的基桩宜选取一定数量的基桩采用多种检测方法进行比对分析,指导下一步的基桩检测工作。

3.1.4 采用低应变反射波法检测嵌岩桩时,当桩端反射信号为单一反射波且与锤击脉冲信号同相时,应结合岩土工程勘察、设计、施工等有关资料以及桩端同相反射波幅的相对高低来推断嵌岩质量,必要时应采取其他合适方法进行检验。

3.1.5 采用低应变反射波法检测,当对桩身完整性的分析出现下列情况之一时,应结合其他检测方法进行检测。

3.1.6 无损检测不能作评定的基桩,需采取钻芯法(或其他检测方法)作进一步确认时,其最终质量等级由钻芯(或其他检测方法)检测单位根据规范、规程直接评定。

3.1.7 基桩抽芯检测工作实行见证制度,检测单位应及时通知参建各方到现场见证,并办理现场见证手续。

3.2 检测频率

3.2.1 重要工程或重要部位的基桩,或建设单位、设计单位有特殊要求的基桩或特殊地质和对质量有怀疑的基桩,可适当调整、增加其检测方法、检测频率。

3.2.2 由于无损检测不合格或不作评定而改为抽芯法检测的基桩,其数量不包括在上表所列的钻孔抽芯法的频率。

3.2.3 根据有关规定,质量监督部门可对总桩数的5~10%的频率进行强制性抽检;对质量问题较多或对质量有怀疑的基桩可加大强制性抽检频率或采取各种有效的检测方法进行检测、鉴定。质量监督部门强制性抽检数量不包括在上表所列的频率数量范围内。

3.2.4 强制性钻芯检测的桩基仍需进行无损检测。

4 检测数据的分析与判定

4.1 混凝土芯样试件抗压强度代表值应按1组3个试件强度值平均值确定。同一受检桩同一深度部位有2组及以上混凝土芯样试件抗压强度代表值时,取其平均值为该桩该深度处混凝土芯样试件抗压强度代表值。受检桩中不同深度位置的混凝土芯样试件抗压强度代表值中的最小值为该桩混凝土芯样试件抗压强度代表值。

4.2 桩端持力层性状应根据芯样特征、岩石芯样单轴抗压强度试验、动力触探或标准贯入试验结果综合判定。

4.3 桩身完整性类别应结合钻芯孔数、现场混凝土芯样特征、芯样单轴抗压强度试验结果及规范要求进行综合判定。

4.4 钻芯孔偏出桩外时,仅对钻取芯样部分进行评价。

5 结束语

桩基础是桥梁施工中的一个重要的组成部分,因此必须要引起高度的重视。随着桩基检测技术得到了长足的发展,一定要规范基桩试验检测工作行为,统一基桩检测方法及频率,保证基桩检测结果的有效性和准确性,确保基桩施工质量。

参考文献:

[1] 王玉波.桥梁钻孔灌注桩施工中常规问题及处理措施[J].交通科技,2010,(08).

[2] 姜顺龙.公路桥梁桩基施工常见事故及其处理方法[J].江西建材,2012,(10).

桩基础检测范文第8篇

【关键词】软弱地基;桩基础;检测

桩基础由于具有承载力高、沉降量少、抗震性强、施工时噪音低等优点,现已成为岩石工程的重要分支之一,在建筑工程中被广泛应用。其作为建筑工程的基础,承载着整个建筑的质量安全,另外,由于桩基础的施工环境复杂,施工难度较大,有时桩基础的施工质量和安全难以得到保障,所以基桩检测技术应运而生,并作为建筑工程检测技术的重要内容得到了快速的发展。近年来,随着建筑工程新技术的发展,基桩检测技术也得到了创新改造。

1桩基检测方法与讨论

以低粘结强度桩或散体材料桩与土组合成的复合地基,对桩与土进行检测时,采用静力触探或静载荷试验分别来检测,复合地基的承载力继而确定。大直径桩亦可采用声波透射法或者钻芯法来检测。各类的桩、墩以及桩墙结构完整性检测,一般用低应变或者高应变动力试桩法来检测。运用静载荷试验检测的方法来检测高粘结强度桩与土组成的复合地基的竖向承载力。单桩承载力检测和其它的刚性桩。在施工中,由于震动对环境造成的影响,所以进行测试时,一般都采用质点速度监测系统或者加速度监测系统,也可以采用地震仪进行检测。运用钢弦或者压力盒通过静载荷试验复合地基中,桩、土荷载分担比进行测定,也可以运用特制的应力传感器进行测试。在施工中,因为挤土效应会对环境造成影响,所以运用变形传感器(测斜仪)的方法对其进行监测,同时也可以运用沉降变形标配合水平仪、经纬仪进行检测。在进行桩体应力-应变的测试时,运用混凝土应力计,钢筋应力计或者特制传感器。也可运用分贝计对施工中的噪音进行检测。在桩长大于30m,如果用其它检测方法不能准确的判定桩的完整性的时候,就可以运用抽芯的方法,抽芯的方法可以比较准确的判断出桩体混凝土的强度。同时也可以运用声波透射法进行检测。

2桩基质量检测方法分析

2.1低压变动检测法。低压变动检测法的应用通常情况下都是拿小锤来敲击桩顶,与此同时通过桩顶的传感器来接收来自桩基中的应力波信号。同时应用应力波理论来分析实时检测到的速度信号、频率信号,进而能够获取桩基中更加完整的信息。这种检测的方法比较简便,且检测的速度十分快。但是需要在检测的过程中对其波形进行一定的分析与研究,进而才能够更好的提升桥梁桩基的稳固性。应用低压变动检测法进行波形分析之前,需要对所检测桩基的地质情况以及相应的持力层情况有一定的了解。通过对桩基桩顶上是否存在护筒及护筒的深度进行了解与分析后,能够得到相应的桩底反射信号、桥梁的桩基层长度等等。但在实际检测过程中,还存在着几种情况对桩身的完整性难以进行判断。其一就是桩身穿透溶洞时有着比较明显的扩孔信号,进而影响桩身及桩底信号的判断。同时,若桩基埋入基层的深度过多时,在进入基岩处,其桩身砼与基岩粘合好,以此形成一个整体,进而在这个位置处出现嵌岩信号,进而对桩底信号进行判断的时候造成一定的影响。2.2声波透射法。进行桥梁桩基检测的时候,应用声波透射法能够对桩基的完整性进行无损检测。其是在灌注砼之前,通过在桩内预埋多根声测管来作为连接超声脉冲发射与接收探头的通道。进而利用超声探测仪沿着桩基的纵轴方向对超声脉冲穿过横截面时的声参数,并对这些参数进行一定的处理、分析与判断。由此就能够提出桩内砼缺陷类型、大小和位置,给出砼均匀性指标和强度等级等。2.3桩基高应变检测。高应变检测方法主要采用的是美国学者提出的Case法。该方法以行波理论为基础,推导出了一套简洁的分析计算公式,并通过改善了相应的测量仪器,使之能在试验现场可以立即得到关于桩的承载力和其他相关信息。高应变检测方法的原理是用重锤冲击桩顶,桩身和桩侧土之间会产生一定的相对位移,以此充分的激发桩周土的阻力与桩端的支承力,通过安装在桩顶以下或者桩身两侧的加速传感器与安装在重锤上的加速传感器接收桩与锤的应力波信号,运用应力波理论分析力和速度曲线,以此来判定桩的承载力和评价桩身质量的完整性。同静载试验对比,高应变法拥有检测效率高、经济、快捷等特点。需要注意的是,只有当选取的桩—土参数与实际值非常接近时,高应变实测曲线拟合法所得出的拟合结果比较符合实际,反之,拟合结果的误差就会比较大。在当前,工程上对桩—土参数的选取基本都是根据经验数据来定,所以高应变的检测方法不是很完善。

3结语

因此,在软弱地基桩基础设计时,应从桩的长径比、覆盖土层性质、嵌岩段岩性、成桩工艺等方面综合考虑桩侧和桩端安全值的取值比例。在基岩嵌入软质岩较深的情况下,宜考虑采用摩擦桩计算,桩端支承力则作为安全储备。

作者:王亮 谷志超 单位:河北建设勘察研究院有限公司

参考文献

[1]蒋毅涛.浅析桥梁桩基础施工质量检测及处理措施[J].中国新技术新产品,2011,02:96-97.

[2]李彪.灌注桩基础质量检测方法和施工常见问题及处理[J].华中电力,2006,01:64-66.

[3]李醒,张岩.反射波法在低应变桩基础质量检测中的应用[J].黑龙江水专学报,2006,03:56-59.

桩基础检测范文第9篇

关键词:桩基础;综合检测技术;发展应用

作为工程结构最主要的基础形式之一,桩基础被广泛的应用到市政工程道路桥梁、交通工程以及建筑等多个领域。桩基础成孔质量和桩身质量的优劣以及桩基的承载能力高低,将直接决定着道路桥梁、建筑、交通等工程的质量安全。尤其是大直径混凝土钻孔灌注桩,对桩基础的质量要求非常的高。因此,质量检测室控制桩基础建设工程质量的重要环节,为桩基础工程质量的验收提供依据,受到政府部门、科研机构以及施工和质检部门的高度重视。目前,我们采用的桩基础检测技术主要有超声波、小应变动测、静力载荷试验、大应变动测、钻孔取芯法等。这些方法都各有所长,本文选取几个重点介绍其应用。

一、桩基检测方法分类

目前,国内外常用的桩基检测方法可分为静力测桩和动力测桩两大种类,其中,静力试桩法有静荷载试验法和钻桩取芯试验法。这种方法可靠性大,能够直观显示桩基础检测的结果。但是静力试桩法往往比较耗费时间,操作也很复杂,浪费时间和费用,场地要求也比较高,这些因素都限制静力试桩法的作用。

另外一种方法则是动力试桩法,是一种以振动理论、应力波理论为基础的,采用先进的微电子仪器和信号处理技术的检测方法,其具有轻便、快捷和廉价的特点。一般分为低应变动力试桩法和高应变动力试桩法。高应变动力试桩法又细分为波形拟合法和CASE法;低应变动力则分为反射波法和振动法,主要包括稳态激振的稳态机械阻抗法和共振法、超声脉冲法和动力参数法。通过桩基础的动刚度和动静比系数,低应变动力法可以求得桩的承载力。[1]

二、桩基础结构综合检测技术的应用

(一)超声波法

利用超声波法对桩基础结构进行综合检测,其基本原理是在桩的一侧安装发射探头,通过发射探头将电能转换成为机械能,发出超声波可以穿透混凝土桩,到达桩的另一侧。然后通过接收探头将接收到的超声波接收后再还原成电信号,随后将这个信号放大,就可以在示波器上显示出来。声波传送的时间则是通过数码显示器得到,并可以打印出具体的数值。因为超声波所穿透的混凝土厚度(距离)是已知的,就可以根据超声脉冲发出和到达的时间,算出声波在桩基础中的传播速度,从声速上就可以对桩基础的质量进行判断。一般混凝土越密实,声速的数值也就越大,相反,混凝土越松散,或声波脉冲路径中有孔洞、裂缝或离析等,则声速就会被减小;这种检测方法可以很好的检查桩基础的质量和完整性。因此,超声波检测混凝土桩桩身质量和完整性的理论基础是弹性波波速与媒质特性之间的关系。从声波传送的速度可以推测出所穿透的桩基特性的变化。

(二)高应变动力检测法

根据作用在桩顶的动荷载的能量是否可以使桩—土之间发生一定的弹位移或者时塑性位移,可以将动力测桩法分为高应变动力和低应变动力两种方法,也就是高应反射波法和低应反射波法。高应反射波法是指利用几十甚至几百斤重的重锤来敲打桩基顶部,同时在桩两侧距桩顶一段距离处对称安装力和速度传感器,测定重锤冲击下的作用力和速度信号。这种方法作用在桩顶上的能量较大,应力和应变水平与工程桩的应力应变水平相接近,动荷载使桩克服土阻力产生贯入度,从而使桩土之间产生塑性位移,桩侧和桩尖阻力都得到一定程度的发挥。在桩顶量测的桩土响应信号包含承载力因素,所以高应变动力测桩可以对单桩的承载力进行判断,也可以评价桩身结构的完整性。高应变反射波法所需激振的能量大,费用高常用于桩基承载力的检测,而很少用于结构完整性的检测。[2]

(三)低应变动力检测法

低应变动力检测法事采用低能量的瞬态或稳态激振,使桩基在合理的弹性范围内作低幅振动,根据波动理论和振动来判断桩身缺陷。目前我国低应变动测桩法主要有应力波反射法和振动波法,其中反射波的应用最广泛。然而低应变动测法能否测定承载力在国内还存在一定争议。因为低应变反射波法把桩看做一维弹性均质杆件,当桩头受到冲击时,应力波将会沿着桩身向下传播,当遇到阻碍时发生反射,由桩头的传感器进行接收,然后经过基桩动测仪的采集处理后,记录反射信号,根据实测时域的信号波形的浮动值和相位特征来判断桩底及桩身是否存在问题。

总之,利用科学的检测方法,如超声波检测、高应变动力和低应变动力检测等,进行综合利用可以有效的检测桩基础质量,确保工程的质量安全。

参考文献

1、 黄雄.桩基检测技术在工程中的应用探讨[J].建筑安全,2010(5).

桩基础检测范文第10篇

关键词: 桩基础 工程质量 检测 措施

中图分类号:F253.3 文献标识码:A 文章编号:

1、引言

近几年,随着在各类基坑中开挖围护桩和承载基桩的广泛应用,桩基工程的施工质量越来越受到工程技术人员的重视。土木建筑工程中桩基础工程应用于建筑工程中,桩基础具有稳定性好、承载力高、变形量小、沉降收敛快等特性。随着建筑施工技术水平的提高,对桩的承载力、地基变形,桩基施工质量提出了更高的要求。

2、桩基础质量问题及其主要原因

桩基工程的施工是一项技术性十分强的施工技术,又是属于隐蔽工程,在施工过程中,如处理不当,就会发生工程质量故事。但由于目前尚无可靠快速的检测方法及时掌握并了解成桩过程中的质量,桩基础施工发生的质量问题,往往是多方面原因造成的。建筑工程的预制桩基础的工程质量问题不外乎桩位及桩身倾斜率超过规范要求;桩头碎裂;桩身(包括桩尖和接头)破损断裂;桩端达不到设计持力层;单桩承载力达不到设计要求。以上工程质量问题的主要成因分析如下。

2.1 桩顶偏位过大的主要原因

(1)测量放线有误,或样桩在施工过程中发生了位移;(2)插桩对中误差较大;(3)先沉人的桩被挤动偏位,在饱和软土地区的大片密集桩群施工时最易出现;(4)施工顺序不当,引起桩顶位移;(5)沉桩过程中桩尖遇到坚硬的障碍物。

2.2 桩身倾斜的主要原因

(1)施工场地不平;或地表松软,使打桩机倾斜;或打桩机导(挺)杆未校直;(2)插桩不正,底桩倾斜过大;或初人土时就发生倾斜;(3)桩身弯曲度过大;(4)桩顶与桩身中轴线不垂直;(5)桩尖偏心不对中;(6)桩垫或锤垫不平。

2.3 沉桩达不到设计控制要求的主要原因

(1)地质勘察资料与实际桩端持力层不符,持力层顶面标高变化大,预制桩长度不够;(2)沉桩时遇地下障碍物或厚度较大的硬夹层;(3)打桩锤能量太小,压桩机压力不够;(4)桩头被击碎或桩身被打断,无法继续沉桩;(5)在较厚的粘性土层中,沉桩中间休歇时间太久;(6)布桩密集或打桩顺序不当,使后打(压)的桩无法达到原先的设计深度。

2.4 桩身断裂的主要原因

(1)桩身制作质量不符合要求;(2)桩在堆放、吊运过程中已产生断裂或裂缝;(3)桩尖沿硬岩面滑移而将桩身整断;(4)桩身弯曲过大,偏心锤击;(5)桩尖进入硬土层后倾斜过大,误用移动桩架等强行扳回的方法纠偏易将桩身折断;(6)桩身自由段长细比过大,且桩尖已进入硬土层时,易将桩身打裂。

3、桩基础施工的质量检测

预制桩是在施工前已预制成型,再用各种机械设备把它沉入地基至设计标高的桩。预制桩的材料可以用钢筋混凝土、钢材和木材,其中钢筋混凝土预制桩可分为工厂预制和现场就地预制两种。由于预制桩需靠外力强制入土,在桩的施工过程中,桩周和桩端土受到挤密作用,在饱和软粘土中施工时,土结构受到破坏,并出现较高的超孔隙水压力,桩的承载力存在着显著的时间效应,同时在桩距较小,桩数较多时,会出现土体大量隆起和侧移,使已施工的桩上抬,桩端脱离持力层,大大降低单桩承载力。打入式预制桩在打桩过程中受锤击作用,桩身内产生锤击应力。从桩底反射的拉应力波将使桩身产生拉应力,这种拉应力有时会大大超过桩身砼的抗裂强度,使桩身拉裂或拉断。同时,锤击时冲击疲劳也是一个不容忽视的问题,每锤击一次,桩身就受到压应力与拉应力的交替作用,这将使混凝土内砂浆与粗骨料粘结面上原已存在的微裂缝逐渐扩展,强度随之降低,地下水的侵入还会使钢筋产生锈蚀作用。此外,预制桩在裁桩过程中,常用大锤横向击打桩顶,致使桩身断裂的现象屡见不鲜,而且横向击打桩顶的结果,还使桩身上部与周围土层脱空,大大减小了桩的横向承载能力,这是预制桩常见的质量通病之一。

对于以上的质量问题,应特别重视对桩身质量的检测,除了桩身混凝土质量进行检验外;施工完后尚应抽检桩的垂直度桩顶标高、桩位偏差和接桩质量等。同时,应按规范规定的数量进行桩身完整性检测,并根据工程的重要性、地质条件、设计要求、工程桩施工情况、对工程桩的承载力和变形性能进行静载试验或可靠的高应变动力检测。工程中桩基检测办法有:小应变应力波反射检测法,小应变应力波机械阻抗检测法,超声波检测法,大应变动力检测法,静载检测法,地震波检测法,抽芯检测法等。在一般的工地中,经常应用的是小应变应力波反射法检测,超声波检测法,抽芯检验法,这三种方法各有优点和缺点。小应变快速简便,对整桩桩径的变化,各部位混凝土密度的变化,支承桩端承情况能迅速作出判断。但对缺陷的定性量化不够明确,检测结果受影响的因素较多,检测时要求桩头基本规则、完整,浅部桩身基本顺直完整,没有附浆或严重变形的现象; 超声波相对准确,容易对缺陷程度作出判断。但用时较长,而且只能对测管之间的凝土进行了解,对缩径露筋、端承力判断则无能为力。检测时要求声测管与钢筋笼加工同时进行,应保持管洞顺直通畅,声测管间的平行与稳定,管内清水清洁,不得污浊或含其它杂质。抽芯检验用时太长,对桩有一定的损伤。检测时要求不能损伤到钢筋,每个孔的芯样基本能够排列完整,芯样断面基本吻合。由于工程中地基在不同地段,不同土层土质都不同,为了能客观有效地评价桩基施工质量;质量检测宜采用多种方式综合测定,桩基施工质量地基承载力有较大影响。 因此,在施工时应根据其工艺流程制定各工序质量控制关键点,层层把关,加强施工自检,监理旁站检查,以及业主及相关质量监督管理部门的监督检查,以确保工程的建设质量。

4、常见重大工程质量事故分析及处理

4.1 基坑开挖不当引起大面积群桩倾斜

软土地区施打大面积密集的预制桩以后,又要在这沉桩区内进行深基坑开挖,开挖深度浅则4~5m。我国沿海城市,在此开挖深度范围往往存在着淤泥等软弱土层,这就给基坑开挖带来许多困难,并引起桩身大幅度位移、 倾倒或折断,挖土引起基桩的倾斜,直接起因是挖土方法不当,挖土一般采用挖掘机,有时操作人员贪快图便,老在一处挖,将基坑挖得太深,而且将挖出来的土堆放在基坑边坡附近不运走,因而产生侧向压力,加上淤泥本身的流动性以及土体中未消散的超孔隙水压力乘机向开挖方向释放,加剧了淤泥向开挖方向流动,而基桩对水平力的抵抗能力小,于是随着土体的位移而向开挖方向倾斜,造成桩顶大量位移。桩顶位移过大,反映了有的桩下部已被折断。发生这样的工程质量事故时,先要弄清哪些桩报废,哪些桩还可使用,哪些桩应折减其承载力,然后根据实际情况进行补桩。 防止桩身倾斜的方法主要是:严禁边打桩边开挖基坑;开挖宜在打桩全部完成并至少相隔15天后进行;挖土宜分层均匀进行且桩周土体高差不宜大于1m;应制订合理的开挖施工方案和程序,注意保持基坑围护结构或边坡土体的稳定;基坑顶部周边不得堆土或其他重物等。

4.2 桩身上浮

如果多节桩的接头质量不好,桩身上浮的结果可能会把接头拉断,上节桩与下节桩脱离。这些脱节的桩经复打(压)后竖向承载能力可能还是较大的,但水平抗力很低,一般不适宜再使用。接头完好桩尖脱空的桩基工程,一般通过复打或复压,可按正常桩基使用。上海等地区施打大片密集的预制桩时采用设置袋装砂井、 打插塑料排水板等技术措施来降低超孔隙水压力,减少土体的隆起,收到了较好的技术经济效益。采用静力压桩机复压是处理桩上浮的另一种有效的补救措施。

5、结语

尽管目前此桩基施工工艺正日益完善。但往往由于各种质量因素的影响,往往使得成桩质量不理想。为了保证施工质量,采取正确的控制措施,采取先进的桩体质量检测手段以确保桩基施工质量就显得极为重要。

参考文献

[1] 吉林省桩基础工程质量管理规定.岩土工程界,2007年第8期.

[2] 赵志伟.桩基础工程质量控制之己见建材与装饰:上旬.市场营销,2010(3)

[3] 廖远淦.灌注桩基础工程质量事故的处理[J].广西地质,2000年第4期.

上一篇:桩基检测技术研究范文 下一篇:混凝土强度范文