诊断技术范文

时间:2023-03-03 20:19:36

诊断技术

诊断技术范文第1篇

关键词 水稻;诊断技术;营养元素;分蘖

中图分类号 S511;S435.111.3 文献标识码 B 文章编号 1007-5739(2013)10-0057-01

为了使栽培措施合理、及时、高效,就必须掌握一些诊断技术,以便预测生长中的变化,判断之前管理的合适性,确定下一步管理方案,做到有的放矢,应变管理。现对水稻诊断技术进行归纳,以便于基层农技人员和稻农使用。

1 根的诊断

根是水稻的“根本”。良好的根系具有以下特点:粗壮,头尾粗度基本相等,有弹性,分枝多,根毛多。简易诊断有根色法和关联法。

(1)根色法。根的颜色有白色、黄色、黑色、灰色等,不同的颜色代表不同的根系活力。俗称“白根有劲,黄根保命,黑根生病,灰根没命”。具体诊断方法如下:①白根。白根一般都是新根或老根的尖端部位,这些根分泌氧的能力强,根际土壤呈氧化状态,有利于铁离子沉淀,但没有聚集根表,保持根的白色,白根生命活动和吸收能力都很强。说明水稻生长环境好,生长正常。②黄根。这是老根及根基部的色泽特征,因为泌氧能力下降,三价铁沉积根表,形成黄色铁膜,这层膜对根有保护作用,可以阻止有毒物质侵入。③黑根。由淹水过久、土壤氧气不足、产生硫化氢等有毒物质而造成的损害。这种根生理机能衰弱,易造成植株枯萎,生长停顿或死亡。此时要排水晒田,排毒护根。④灰根。根系灰白,有臭鸡蛋味,这种根已完全丧失机能。

(2)关联法。①长根法。剪净秧苗根系,在室温25 ℃条件下置于水中,若能24 h发新根者,说明根系活力强。②长叶法。拔出秧苗,剪去叶片,1.5~2.0 h能发0.3 cm新叶的,就是壮根的反映。③晨观法。若夜间晴天、凉爽、无风,叶尖在早晨吐水正常,说明根系活力较好,若无吐水或吐水较少,说明根系活力较弱,甚至有死苗的危险。

2 叶的诊断

叶片是营养生长器官,是水稻长相和水肥管理的直接形态指标。叶的诊断项目最多,现介绍5种常用方法[1-2]。

(1)叶与生育期。水稻每个品种全生育期的叶片数一般不会有大的变化,可用出叶期来推测水稻各生育时期,具体如表1所示。一般第4、5叶时开始分蘖,抽长叶时开始拔节,出倒3(或倒4)叶时开始幼穗分化,剑叶全抽出时进入孕穗,再过7~12 d开始抽穗。豫南地区一季中稻叶片数共有16~17片。幼苗期3片叶,平均每3 d出1片叶;分蘖期11片叶左右,5 d左右出1片新叶;拔节长穗期出最后3片叶,7~9 d出1片叶。

(2)叶色。水稻分蘖盛期和孕穗期吸收大量氮素,氮代谢活跃,叶色较深,称为“黑”。分蘖末期和拔节期积累大量碳水化合物,颜色较淡,称为“黄”。豫南稻区多数品种显现出“两黄两黑”。“一黑”不足表明营养不良,出叶慢,分蘖势弱,难以有足够穗数,“黑”的过头表明氮代谢过剩,造成旺长,对茎、穗发育不利,这种情况要果断排水晒田。“黄”的过头或时间较长,说明水肥条件不高,需要促进。

(3)叶面积指数。叶片是主要的光合器官,在一定范围内,绿叶越多产量越高。只要不严重遮荫,叶面积指数越大越好。高产田一般拔节期叶面积指数以3~4为宜,孕穗期6~7。要求上部叶片适当短、直、窄,遮光程度小。如果叶面积指数过大,造成严重遮光,就要设法控制。

(4)封行指标。封行早晚是群体叶面积发展动态是否合理的又一项指标,合理封行期应在幼穗分化后期。人站在田埂上看不见1.5 m外2行之间的田面就称封行。要求封行不封顶。封行过早或封顶则表明群体过大,个体发育不良。迟迟不封行表明群体小,苗数和叶面积不足[3]。

(5)抢头叶和采头叶。叶片的高矮也是氮素代谢和生长力的一项反映指标。凡相临出生叶片高矮相差5~7 cm以上,而且一叶更比一叶高时,称为抢头叶,这是生长旺盛的反映。反之,叶尖高低相差不多,而且一叶比一叶高得少时,称为“平头叶”,是生长缓慢的反映。

3 分蘖的诊断

(1)分蘖能否发生。凡绿叶小于3片的母茎不能发生分蘖,出第7叶时移栽则第5节位以下各分蘖不再发生,N叶全出期施肥则N-1节位分蘖就能发生。按同伸理论5~6 d某节位不分蘖者,将不再分蘖。可出蘖日期内出现节间伸长,叶鞘徒长则暂不发蘖。分蘖期内出叶速度加快,分蘖量增多。叶序超过全生育期叶数1/2以上的,分蘖能力下降。

(2)分蘖是否有效。在水稻拔节期前能长出3片叶子,拥有自己独立根系的分蘖为有效分蘖,反之不能成穗称无效分蘖。一般讲,从移栽到拔节,有30 d左右的分蘖期,其中前15 d一般都有效,后15 d的分蘖应尽量控制。

4 营养元素异常诊断

水稻生长发育中,若缺少某种营养元素,作物体内的新陈代谢就会受到阻碍和破坏,使根、茎、叶、花和籽实等出现特有的症状。具体如下:①缺氮:植株矮小,分蘖少,叶片小而直立,叶色黄绿,茎秆短细,穗小粒少,不实率高[4]。②缺磷:常在生育前期形成“僵苗”,表现为生长缓慢,不分蘖或延迟分蘖,秧苗细弱不发棵。叶色暗绿或灰绿带紫色,叶形狭长,叶片小,叶身稍呈环节卷曲。老根变黄,新根少而纤细,严重时变黑腐烂。成熟期不一致,穗小粒多,千粒重低,空壳率高。③缺钾:常在叶片上出现褐斑。一般在分蘖以后,老叶尖端先出现烟状褐色小点,并沿叶缘呈镶嵌状焦枯。分蘖盛期,褐点发展成褐斑,形成不规则,而边缘分界清晰,常以条状或块状分布于叶脉间。褐斑不断由老叶向邻近新叶发展,严重缺钾时褐斑连片,整张叶片发红枯死,犹如灼烧状。④缺锌:秧苗生长停滞,不分蘖,老叶背面中部出现褐色斑块,叶脉变白,严重时叶鞘也变白。⑤氮素过多:稻株徒长,叶色浓绿,叶片肥大,茎秆柔软,易倒伏和感染病虫害,贪青晚熟,秕谷多。⑥磷素过多:常诱发水稻缺锌。因此,磷素过多的症状与缺锌症状类似。分蘖少,“僵苗”不发,叶片缺绿,沿叶中鞘逐渐向边缘变黄白色,老叶出现褐斑,生长后期整个叶片呈褐色,根系生长缓慢,严重时整株枯死。

5 参考文献

[1] 张义.水稻叶龄诊断技术应用[J].农业科技通讯,2010(2):120-121.

[2] 啜学文.浅议水稻叶龄诊断技术[J].农民致富之友,2012(17):39.

[3] 方利,黄义德,张健美,等.机械直播水稻田间简易诊断及调控技术研究[J].安徽农业科学,2004(4):614-615,619.

诊断技术范文第2篇

对禽流感及时而正确的诊断十分重要,以能采取果断的控制措施。本病必须进行综合分析,尤以实验室诊断最为重要。

一、现场诊断

根据流行病学,临诊症状及剖检变化只能作出可疑诊断。由于禽流感的现场表现(发病特点、症状及剖检变化)差异较大且无典型性,所以要确诊必须依靠病原分离鉴定及血清学试验。

二、病原分离、鉴定

A型流感病毒常在呼吸道或/和消化道中复制增殖,所以,活禽采集病料多从喉头、气管或泄殖腔中采集。死禽采集气管、肝、肺、脾、肾等组织样品。

以棉花或其他材料制成的拭子、器具采集病料样品,放入加抗生素的无菌肉汤或20%~50%甘油生理盐水中。最好低温4℃或-70℃下保存,以液态氮或干冰较好。病料样品在保存或运送前可先行处理,制成10%的悬液,并进行低速离心澄清。

经离心的病料上清液接种SPF鸡胚,取0.1ml,经尿囊腔途径接种(或同时羊膜腔接种)9~11日龄的鸡胚,置37℃孵育3~7,天弃取24h内死去的胚,收集48h至96h的胚液和绒毛尿囊膜作无菌检查,检查鸡胚尿囊液对红细胞的凝集活性。血凝阴性者,用尿囊液盲传2~5代,如仍未出现血凝时,判为阴性,弃去。如出现血凝活性则进一步检查。

一般来说,如样品中有病毒存在,初次传代后就足以产生红细胞凝集作用。出现血凝活性的病毒一般为10-5-10-6 EID 50/ml。

用于病毒鉴定的标准方法是以鸡红细胞来检测胚液的血凝活性,常量法和微量法都可使用。

确定尿囊液或其他胚液的血凝活性后,还要鉴别是否由副粘病毒鸡新城疫病毒(NDV)所致。因此,首先要用ND抗血清作HI试验,以排除NDV的可能性。如果NDV HI阴性,才可以进行下一步工作,即确定A型流感病毒NP抗原的存在。可用血清学方法,如双向双扩散、免疫电泳或单辐射溶血试验等方法来检测型特异性的核心抗原NP或MP。A型流感病毒都具有相同的型特异性抗原。

鉴定程序下一步工作是确定血凝素(HA)和神经氨酸酶(NA)这两种表面抗原的亚型。用一系列制备好的抗不同血凝素的抗血清以HI试验来测定其HA的型别。

NA亚型通常用制备的抗9种或10种已知神经氨酸酶的抗血清鉴定。微量神经氨酸酶抑制试验(NI)操作更简便。已知目前的HA亚型达16种。NA也达到了10种亚型。

目前国内只有极少数实验室具备鉴定的条件,可将待检材料送往有条件的专业实验室去进行病毒分型鉴定。

三、血清学试验

1.血凝试验与血凝抑制试验

用血凝试验与血凝抑制试验(HI)可证实流感病毒的血凝活性及排除NDV。简单的方法是:取1滴1:10稀释的正常鸡血清(最好是SPF鸡)和一滴ND抗血清,分别滴于瓷板上,再各加1滴有血凝活性的鸡胚尿囊液,混合均匀后各加1滴5%的鸡红细胞悬液,若两份血清均出现血凝现象,则表明尿囊液中不含有新城疫病毒(NDV);如果ND抗血清出现HI现象,表明尿囊液中含有NDV。

一般情况下,新分离毒株要鉴定出型特异性NP或MP抗原型(有琼脂扩散法),确定为流感病毒时,再做HA亚型的鉴定。

新分离的AIV毒株可用HI试验与以前分离的毒株或标准株进行比较。多用4个血凝单位的病毒与以前的阳性血清和0.5%鸡红细胞进行HI试验,或与新近发生的AIV的血清进行HI试验,可鉴定新分离毒株与已知株是否具有相同的HA亚型。准确的鉴定还是要用特异性的H1-H16亚型的抗血清进行交叉HI试验。

血凝试验和血凝抑制试验除常量法和微量法外,还有加敏法。即抗原与抗体4℃或室温下结合1~2h后,再加入1%鸡红细胞,该法则抗体的效价比常规法高2~4倍。如果抗原用乙醚裂解,敏感性比常规法高4~16倍。但观察时间不宜太久,以30min内为好,否则易出现假阳性。

许多禽类血清(包括其他多种动物血清)都含有非特异性的血凝抑制因子(抑制素)。这是一种与红细胞表面受体相似的粘蛋白物质,能与红细胞表面受体竞争性地与病毒表面的血凝素所吸附。禽类血清中的抑制素属α型(已知有α、β、γ三种)。

因此,血凝抑制试验时,首先要除去这些非特异性的血凝抑制因子。常用的处理方法有受体破坏酶(RDE)法(即霍乱滤液)和高碘酸钠法。

血凝和血凝抑制试验操作相对繁杂些,加上需制备抗血清,所以也较费时间。但特异性较好,是亚型鉴定中必须进行的项目。用于型的鉴定就不如琼脂扩散试验那样简便快捷。

2.琼脂凝胶扩散试验

在琼脂凝胶中进行的抗原抗体反应比较简便、快捷,即可以定性(如免疫双扩散及免疫电泳中以沉淀线判定),又可以定量(如单辐射扩散)。

由于所有的AIV亚型都具有特异性RNP共同抗原(即AIV的“核心抗原”—NP或MP其保守性很强,基本上不发生变异),所以,可用一种AIV的抗原或抗血清对所有A型禽流感病毒的抗体或抗原进行鉴定。

抗原可用标准株或已知毒株自行制备。一般都采集有血凝活性的鸡胚绒毛尿囊膜(CAM),用PH7.2的磷酸盐缓冲溶液(PBS)冲洗CAM后,吸干,磨碎,反复冻融3次或超声波处理,再3000rpm离心30min,去上清夜加入甲醛(至终浓度为0.1%),37℃灭活36h,即可应用。国内也有报道用0.2%甲醛38.5℃灭活48h,据说这种方法制备的抗原效果最好。

琼脂扩散(AGP)试验最常用的是双向双扩散(或称免疫双扩散)。即用已知的阳性和阴性血清与待检抗原及已知抗原,在琼脂凝胶中进行免疫双扩散。室温下作用24h,已知抗原和阳性血清之间应出现明显的沉淀线,48h内部应很清晰。当待检抗原与阳性血清间出现沉淀线,并且沉淀线与邻近的阳性抗原和抗血清的沉淀线相连,即可判定为阳性反应,待检抗原即为A型禽流感病毒。这是国内目前普遍采用的方法。毕英佐1994年报道,对广东10个养鸡场29群324只鸡检查,11个阳性群,鸡只阳性最低10%,最高80%。张泽纪等1994年报道,1992~1994年血检1个肉鸡场阳性率20%,2个种鸡场阳性率61%。

除了双向扩散试验(IDD)外,在凝胶中进行的免疫沉淀试验还有:免疫单辐射扩散试验(SRD),即制胶时先加入抗原或抗体的一种,而让另一种在凝胶中进行扩散。这种方法还可以定量测定抗原或抗体的量。这种方法还可以称作被动溶血试验,即单辐射溶血试验(SRH),此时凝胶重要加入红细胞,在补体存在下抗原抗体复合物使沉淀环出现溶血现象,也可以对抗原或抗体进行定量。

免疫电泳试验也可以用于AIV及其抗体的检测,使用较多的是对流免疫电泳(CIE)。几种方法相比较,免疫双扩散(IDD)要比SRD更简便一些,但其敏感性不如SRD好。但SRD需对抗原进行裂解处理,操作较为复杂。SRH的敏感性类似SRD,比IDD要高,但操作更为复杂,其优点在于可定量分析。

对流免疫电泳(CIE)是这几种方法中最为敏感的一种,而且操作简单时间最快,1h即可出结果。

但是,作为免疫沉淀试验,不管是IDD、SRD,还是CIE,都需在凝胶中进行,其检出的敏感性毕竟是有限度,对低滴度的样品(无论是抗原或是抗体)都会受到沉淀试验本身敏感性的局限。所以,用更敏感的试验方法进行检验和诊断是必要的。而且沉淀试验所需的试剂及抗原或抗体的量都较大。

另外,由于禽种类的差异,其免疫反应是不一致的,血清学检验时要注意这一点。例如火鸡和雉的NP抗体很容易检出,但在已知的感染鸭中很难检出。同时,用完整的病毒进行常规HI试验,检测不出感染鸭产生的抗体免疫扩散试验不能分辨病毒的亚型。

3.中和试验

以中和试验(NT)来鉴定或滴定流感病毒时,常用鸡胚或组织培养细胞,操作方法与其他病毒(如NDV)的中和试验相同。

中和试验作为经典的方法在病毒鉴定中是很重要的,很多新的检测方法都要以之为标准来进行比较。但其操作相当烦琐,所费时间也长,试验材料耗费也多,故不常进行。

4.免疫荧光技术

免疫荧光技术即荧光抗体(Fluoresent Antibody)技术,可鉴定病毒感染细胞异性的抗原,主要是流感病毒的NP或MP抗原。用NP抗原的荧光抗体染色,主要出现核内荧光;用MP抗原的荧光抗体主要出现胞质荧光,核内也有部分荧光。

禽流感病毒的诊断,常用于直接荧光抗体法,即在组织触印片上直接染色,以荧光显微镜检查荧光。一种AIV的荧光抗体可以用来检测同亚型的其他病毒,荧光抗体的技术用于诊断,具有快速、简便、敏感等特点,而且费用较低。需要注意的是如何避免或降低标本中出现的假阳性问题(非特异性荧光)。

荧光抗体(FA)的敏感度同病毒分离相当,有时高于用鸡胚进行的病毒分离。

对一株杂交瘤细胞分泌的流感病毒的单克隆抗体进行检测时,发现间接免疫荧光技术的敏感性比血凝抑制试验高40~150倍。间接免疫荧光技术也可以用来检测白(NP)及基质蛋白(MP)抗原与抗体的反应,其敏感性很高。但对抗原制备要求较高,需用非离子型去污剂对纯化的病毒粒子进行裂解。

5.酶免测定技术

酶免测定技术(Enzyme Immuno Assays),也称酶联免疫吸附法(Enzyme-Linked Immunosorbent Assay,ELISA),是用酶来标记抗原或抗体,通过显色反应来检测相应抗体活抗原的一种方法。

ELISA有较高的敏感性,即可以检测抗体,又可以检测抗原。尤其适合于大批样品的血清学调查,可以标准化而且结果易于分析。在流感的控制、扑灭、检疫中很有用途。

试验表明,直接ELISA可于感染后6d检出AIV的抗体,敏感性也高于AGP及HI试验。简单程序(直接ELISA)为:从感染尿囊液中超速离心制备抗原,以抗原包被酶标反应板,加入待检血清后,再加入抗体(酶标),最后以酶标仪检测结果。

四、聚合酶链反应(PCR)

农业部动物检疫所吴时友等建立了从病科中检测AIV的PCR方法。哈尔滨兽医研究所于康震等也建立了PCR和反转录-聚合酶链反应(RT-PCR)诊断方法。PCR方法敏感性较高,为AIV从病料中快速检出提供方法。

五、鉴别诊断

由于禽流感感染引起的流行特点、症状及病理变化与某些禽病相似,必须作出区别诊断,如鸡新城疫、传染性支气管炎、传染性喉气管炎、传染性鼻炎、支原体、衣原体病、产蛋下降综合症等,特别是某些疾病的混合感染或继发感染,使病情更为复杂,给诊断带来困难或容易发生误诊,因此,类症鉴别诊断十分重要。

首先是与新城疫的区别诊断,由于禽流感与鸡新城疫的症状、病变很相似。一般来说,禽流感的潜伏期和病程比国内目前发生的新城疫为短。新城疫的病鸡呼吸困难,嗉囊和口中的积液、呼吸困难时的咕咕叫声、典型神经症状等各种表现常规的典型病变都较禽流感明显和具有特征性,加之,现场新城疫的紧急免疫效果等,都与流感不同。但两病的准确区别诊断,只能依靠实验室的诊断,最简便、实用的方法是病毒分离和血凝抑制试验(HI),ND抗血清抑制不了AIV的血凝作用,反之亦然。

禽流感与其他几种疫病的鉴别,根据流行特点、症状、病例剖检和实验室检查(病原学、血清学)等综合分析,是可以区别开的。同样继发或并发细菌病时通过病原分离工作便可以确定。

诊断技术范文第3篇

关键词 汽车故障;诊断技术;发展趋势

中图分类号U46 文献标识码A 文章编号1674―6708(2011)36―0181―02

随着科学技术的发展和先进科技在现代汽车上的广泛应用。现代汽车制造技术发生了翻天覆地的变化。今天的汽车无论从设计、制造工艺、加工设备、车辆材料上看,还是从整车能及美学造型等方面看,现代汽车都发生了质的飞跃。由于现代汽车的结构越来越复杂,功能越来越完善,自动化程度也越来越高,因此故障诊断的难度也有了相应的增加,人们迫切需要提高系统的可靠性、可维修性和安全性,因而有必要建立一个监控系统来监控整个系统的运行状态,不断检测系统的变化和故障信息,进而采取必要的措施,防止事故的发生。汽车故障诊断技术是一门综合性的技术,它已成为科技研究的热点之一。下面探讨一下汽车故障诊断技术的目前状况及发展趋势

1 传统汽车故障诊断技术

1.1 人工经验诊断法

这种方法是诊断人员凭丰富的经验和一定的理论知识,在汽车不解体或局部解体情况下,借助简单工具,用眼看、耳听、手摸和鼻子闻等手段,边检查、边试验、边分析,进而对汽车技术状况做出判断的一种方法。这种诊断方法具有不需要专用仪器设备,可随时随地应用和投资少、见效快等优点。但是,也有诊断速度慢、准确性差、不能进行定量分析和需要诊断人员有较高技术水平等缺点。人工经验诊断法多适用于中、小维修企业和汽车队的故障诊断。该法虽然有一定缺点,但在相当长的历史时期内仍有十分重要的使用价值。即使普遍使用了现代仪器设备诊断法,也不能完全脱离人工经验诊断法。近年来刚刚起步研制的专家诊断系统,也是把人脑的分析、判断通过计算机语言变成了电脑的分析、判断。所以,不能鄙薄人工经验诊断法。

1.2 简单仪表检测诊断法

将一些简单的仪表,如机油压力表、真空表、万用表、示波器等应用于汽车诊断工作中,从而使汽车诊断从眼看、耳听、手摸和鼻子闻等的定性阶段,逐步转变为仪表测量的定量诊断阶段。而且随着汽车诊断技术的不断进步和发展,一些技术性能先进的检测仪器和设备将得到广泛的应用。但这些测试仪器和设备常常是单项、分散地在汽车诊断中使用。

1.3 专业综合诊断法

专业综合诊断法以将单项、分散的检测设备联线建站为特征。使诊断工作成为汽车维修工作中一项新的专门任务。诊断工作是依靠仪表和设备,在不解体或不拆卸零件的情况下,得到一系列准确数据,并与规定的标准技术参数相比较。以确定汽车零部件是否需要维修或更换。由于许多相关法令或条例的制订,促进了有关方面对汽车专业综合诊断的深入研究和广泛推广。

2 现代汽车故障诊断技术

这种方法是在人工经验诊断法的基础上发展起来的一种诊断法。随着汽车电子技术的应用和发展,汽车电控系统日趋复杂。传统的诊断方法和诊断设备无论是精确度和使用方便性,还是对汽车技术发展的适应性均不能满足用户的需要,为了提高故障诊断技术,不断完善诊断理论和方法。必须广泛应用各学科的最新科研成果发展适用于故障诊断的边缘技术。该法可在汽车不解体情况下,用专用仪器设备检测整车、总成和机构的参数、曲线或波形,为分析、判断汽车技术状况提供定量依据。采用微机控制的仪器设备能自动分析、判断、存储并打印汽车的技术状况。现代汽车故障诊断法的优点是检测速度快,准确性高,能定量分析,可实现快速诊断等;缺点是投资大,占用厂房,操作人员需要培训等。该诊断法适用于汽车检测站和中、大型维修企业。

3 汽车故障诊断技术的发展趋势

近几年来,高科技的发展,信息化的网络,使得汽车故障诊断技术必将向着智能化、集成化方向发展。如基于人工智能的神经网络法;基于信号处理的小波分析法和基于网络的集成汽车故障诊断专家系统等。它们的应用前景是令人鼓舞的,值得我们去进一步研究与推广。可以预见,其用于汽车的故障诊断研究必将有很大的发展。这里仅简要介绍以下几种:

1)人工神经网络在汽车诊断中的应用

人工神经网络是由大量神经元广泛互联而成的复杂网络系统。它具有较强的自学习功能、较好的容错性、很高的自适应能力,且有大规模并行处理能力等。把人工神经网络技术应用于诊断专家系统无论是在知识表达体系,还是在知识获取、并行推理等方面都有明显的优越性,解决了传统专家系统在知识获取上的“瓶颈”问题,很大的提高了诊断系统的智能水平,提高了诊断速度和诊断精度。所以,人工神经网络技术在汽车行业的应用前景是广阔而深远的。

2)小波分析在汽车诊断中的应用

小波分析是近年来发展起来的新的数学理论和方法,在噪声消除方面有着广泛的应用。小波分析能同时在时频域内对信号进行分析,所以它能有效区分信号中的突变部分和噪声,从而实现对非平稳信号的消噪。它将替代传统的FFT分析而广泛地应用于汽车故障诊断中。如在汽车故障特征信号分析中,采用了小波分析技术替代傅立叶分析技术。它在时域和频域上同时具有良好的局部化特征,弥补了傅氏变换仅能进行稳态信号分析的不足之处。

3)基于网络的集成汽车故障诊断专家系统

诊断技术范文第4篇

关键词:汽轮机故障诊断监测

0.引言

二十世纪以来,随着工业生产和科学技术的发展,机械设备的可靠性、可用性、可维修性与安全性的问题日益突出,从而促进了人们对机械设备故障机理及诊断技术的研究。

汽轮发电机组是电力生产的重要设备,由于其设备结构的复杂性和运行环境的特殊性,汽轮发电机组的故障率不低,而且故障危害性也很大。因此,汽轮发电机组的故障诊断一直是故障诊断技术应用的一个重要方面。本文回顾国内外汽轮机故障诊断的发展概况,并在总结目前研究状况的基础上,指出了在汽轮机故障诊断研究中存在的问题,提出了今后在这一领域的研究方向。

1.国内外发展概况

早期的故障诊断主要是依靠人工,利用触、摸、听、看等手段对设备进行诊断。通过经验的积累,人们可以对一些设备故障做出判断,但这种手段由于其局限性和不完备性,现在已不能适应生产对设备可靠性的要求。而信息技术和计算机技术的迅速发展以及各种先进数学算法的出现,为汽轮机故障诊断技术的发展提供了有利的条件。人工智能、计算机网络技术和传感技术等已经成为汽轮机故障诊断系统不可缺少的部分。

1.1.国外发展情况

美国是最早从事汽轮机故障诊断研究的国家之一,在汽轮机故障诊断研究的许多方面都处于世界领先水平。目前美国从事汽轮机故障诊断技术开发与研究的机构主要有epri及部分电力公司,西屋、bently、ird、csi等公司[1][2]。

美国bechtel电力公司于1987年开发的火电站设备诊断用专家系统(scope)在进行分析时不只是根据控制参数的当前值,而且还考虑到它们随时间的变化,当它们偏离标准值时还能对信号进行调节,给出消除故障的建议说明,提出可能临近损坏时间的推测[3][4]。

美国radial公司于1987年开发的汽轮发电机组振动诊断用专家系统(turbomac),在建立逻辑规则的基础上,设有表征振动过程各种成分与其可能故障源之间关系的概率数据,其搜集知识的子系统具有人-机对话形式。该系统含有9000条知识规则,有很大的库容[5]。

西屋公司(whec)是首先将网络技术应用于汽轮机故障诊断的,他们在已经开发出的汽轮发电机组故障诊断系统(aid)的基础上,在奥兰多建立了一个诊断中心(doc),对分布于各地电站的多台机组进行远程诊断[5][6]。

bently公司在转子动力学和旋转机械故障诊断机理方面研究比较透彻[7]。该公司开发的旋转机械故障诊断系统(adr3)在中国应用情况良好,很受用户欢迎。

日本也很重视汽轮机故障诊断技术的研究,由于日本规定1000mw以下的机组都须参与调峰运行,因此,他们更注重于汽轮机寿命检测和寿命诊断技术的研究。日本从事这方面研究的机构主要有东芝电气、日立电气、富士和三菱重工等[8~10]。

东芝电气公司与东京电力公司于1987年合作开发的大功率汽轮机轴系振动诊断系统,采用计算机在线快速处理振动信号的解析技术与评价判断技术,设定一个偏离轴系正常值的极限值作为诊断的起始点进行诊断[11]。九十年代,东芝公司相继开发出了寿命诊断专家系统,针对叶片、转子、红套叶轮及高温螺栓的诊断探伤实时专家系统、机组性能评价系统等[12~17]。

日立公司在1982年开发了汽轮机寿命诊断装置hidic-08e[18][19],以后逐步发展,形成了一套完整的寿命诊断方法[20][21]。

三菱公司则在八十年代初期开发了mhm振动诊断系统,该系统能自动地或通过人机对话进行异候检测并能诊断其原因,其特点是可根据动矢量来确定故障[22]。

欧洲也有不少公司和部门从事汽轮机故障诊断技术的研究与开发。法国电力部门(edf)从1978年起就在透平发电机上安装离线振动监测系统,到九十年代初又提出了监测和诊断支援工作站(monitoringanddiagnosisaidstation)的设想[23][24]。九十年代中期,其专家系统psad及其diva子系统在透平发电机组和反应堆冷却泵的自动诊断上得到了应用[25~28]。另外瑞士的abb公司、德国的西门子公司、丹麦的b&k公司等都开发出了各自的诊断系统[29~31]。

1.2.我国的发展情况

我国在故障诊断技术方面的研究起步较晚,但是发展很快。一般说来,经历了两个阶段:第一阶段是从70年代末到80年代初,在这个阶段内主要是吸收国外先进技术,并对一些故障机理和诊断方法展开研究;第二阶段是从80年代初期到现在,在这一阶段,全方位开展了机械设备的故障诊断研究,引入人工智能等先进技术,大大推动了诊断系统的研制和实施,取得了丰硕的研究成果。1983年春,中国机械工程学会设备维修分会在南京召开了首次"设备故障诊断和状态监测研讨会",标志着我国诊断技术的研究进入了一个新的发展阶段,随后又成立了一些行业协会和学术团体,其中和汽轮机故障诊断有关的主要有,中国设备管理协会设备诊断技术委员会、中国机械工程学会设备维修分会、中国振动工程学会故障诊断学会及其旋转机械专业学组等。这期间,国际国内学术交流频繁,对于基础理论和故障机理的研究十分活跃,并研制出了我国自己的在线监测与故障诊断装置,"八五"期间又进行了大容量火电机组监测诊断系统的研究,各种先进技术得到应用,研究步伐加快,缩小了与世界先进水平的差距[32][33],同时也形成了具有我国特点的故障诊断理论,并出版了一系列这方面的专著,主要有屈梁生、何正嘉主编的《机械故障学》[34]、杨叔子等主编的《机械故障诊断丛书》[35]、虞和济等主编的《机械故障诊断丛书》[36]、徐敏等主编的《设备故障诊断手册》等[37~50]。

目前我国从事汽轮机故障诊断技术研究与开发的单位有几十家,主要有哈尔滨工业大学、西安交通大学、清华大学、华中理工大学、东南大学、上海交通大学、华北电力大学等高等院校和上海发电设备成套设计研究所、哈尔滨电工仪表所、西安热工研究所、山东电力科学试验研究所、哈尔滨船舶锅炉涡轮机研究所及一些汽轮机制造厂和大型电厂等。

国家在"七五"、"八五"计划期间安排的汽轮机故障诊断攻关项目促进了一大批研究单位参与汽轮机故障诊断系统的研究与开发,许多重要成果都是在这一阶段取得的。

2.汽轮机故障诊断技术的发展

2.1.信号采集与信号分析

2·1·1传感器技术

由于汽轮机工作环境恶劣,所以在汽轮机故障诊断系统中,对传感器性能要求就更高。目前对传感器的研究,主要是提高传感器性能和可靠性、开发新型传感器,另外也有相当一部分力量在研究如何诊断传感器故障以减少误诊率和漏诊率,并且利用信息融合进行诊断。

现行的对传感器自身故障检测技术主要有硬件冗余、解析冗余和混合冗余,由于硬件冗余有其明显的缺点,因而在实际中应用较少。意大利diferrara大学的simani.s等人针对传感器故障,采用了解析冗余的动态观测器来解决透平传感器的故障检测问题[51]。加拿大windsor大学的chen,y.d等人对传感器融合技术进行研究,并在实际中得到了应用[52]。brunel大学的harris,t把神经网络技术应用于多重传感器的融合作为其研制的汽轮机性能诊断系统的技术关键[53],pennsylvaniastateuniv.的kuo,r.j则应用人工神经网络,采用多传感器融合诊断叶片故障[54]。prock,j以及西安交通大学的谷立臣、上海交通大学的林日升等对传感器故障检测[55][56]和伪参数识别技术开展了研究工作[57]。华中理工大学的王雪、申韬、西安交通大学的常炳国等在传感器信号的可靠性[58]和采用融合技术提高传感器可靠性[59][60]方面也进行了研究。

2·1·2信号分析与处理

最有代表性的是振动信号的分析处理。目前,汽轮机故障诊断系统中的振动信号处理大多采用快速傅立叶变换(fft),fft的思想在于将一般时域信号表示为具有不同频率的谐波函数的线性叠加,它认为信号是平稳的,所以分析出的频率具有统计不变性。fft对很多平稳信号的情况具有适用性,因而得到了广泛的应用[61]。但是,实际中的很多信号是非线性、非平稳的,所以为了提高分辨精度,新的信号分析与处理方法成为许多机构的研究课题。美国俄亥俄州立大学的kim,yong.w等对传统的无参量谱分析、时-频分析、离散小波变换等作了较为深入的研究[62]。英国南安普敦大学的lee,s.k认为,任意随意性的音响和振动信号都是由不规则冲击引起的,为此他提出了用三阶和四阶winger谱来对这些信号进行分析[63],同时还对信号中的噪声过滤提出了处理方法[64]。小波分析法的应用一直是国内外热门的研究课题[65][66],东南大学王善永把小波分析法用于汽轮机动静碰摩故障诊断[67],华中理工大学张桂才、东南大学王宁等把小波分析用于轴心轨迹的识别[68][69]。西安交通大学引入kolmogorov复杂性测度定量评估大机组运行状态[70],还对fft进行改进并吸收全息谱的优点,进行轴心轨迹的瞬态提纯[71],哈尔滨工业大学刘占生在轴心轨迹特征提取中采用一种新的平面图形加权编码法,提高了图形辨识的准确率[72],华中理工大学李向东用降维法将轴心轨迹转化为一条角度波形,使之应用于轴心轨迹的聚类识别[73]。

2.2.故障机理与诊断策略

2·2·1故障机理

故障机理是故障的内在本质和产生原因。故障机理的研究,是故障诊断中的一个非常基础而又必不可少的工作。目前对汽轮机故障机理的研究主要从故障规律、故障征兆和故障模型等方面进行。

由于大部分轴系故障都在振动信号上反映出来,因此,对轴系故障的研究总是以振动信号的分析为主。日立公司的n.kurihara给出了振动故障诊断用的特征矩阵[74],清华大学褚福磊对常见故障在瀑布图上的振动特征和故障识别作了研究[75]。华中理工大学伍行健也提出了用于振动故障诊断的物理模型和数学模型[76]。西安交通大学陈岳东对振动频谱进行了模糊分类[77],上海交通大学左人和从动力学的角度研究了典型故障的响应特征[78]。清华大学张正松用hopf分叉分析法研究了油膜失稳涡动极限环特性[79],哈尔滨工业大学毕士华对于如何识别油膜轴承的动态参数进行了研究[80],江苏省电力试验研究所的彭达则对实际发生的油膜振荡问题进行了剖析[81]。哈尔滨工业大学武新华分析了转轴弯曲的故障特征[82]。清华大学何衍宗、东南大学杨建刚研究了转子不平衡对其他征兆的影响[83][84]。对于动静碰摩问题,epri的scheibel,john.r、西安交通大学何正嘉、西安热工研究所施维新等分别从故障特性和诊断技术方面进行了研究[85~90],西安交通大学刘雄应用二维全息谱技术确定故障征兆[91],东北电力学院石志标则从动力学角度分析了摩擦问题[92],哈尔滨工业大学提出了变刚度分段线性和非线性模型[93],并通过实验对摩擦的噪声特性进行了研究[94]。在综合振动与噪声特性的基础上,东北电力学院还开发了可对旋转机械和摩擦进行在线监测的仪器,该仪器用四个通道进行声信号检测,另外四个通道用于振动监测,可以大致确定摩擦的部位[95]。另外,李录平、张新江等对振动故障特征的提取进行了有益的研究[96~99]。

调节系统的可靠与否,对汽轮机组的安全运行具有非常重要的意义。哈尔滨工业大学的于达仁、徐基豫等在调节系统故障诊断方面作了很多研究工作,他们给出了调节系统卡涩和非卡涩原因造成故障的数学模型,并对诊断方法和诊断仪器的实现进行了探讨[100~104]。华中理工大学何映霞、向春梅等研究了对deh系统故障的诊断[105][106],东南大学的岳振军则把频域分析的bloomfield模型引入时域,应用于调节系统在线监测[107]。

2·2·2诊断策略和诊断方法

在汽轮机故障诊断中用到的诊断策略主要有对比诊断、逻辑诊断、统计诊断、模式识别、模糊诊断、人工神经网络和专家系统等。而目前研究比较多的是后面几种,其中人工神经网络和专家系统的应用研究是这一领域的研究热点。

基于小波分析方法和神经网络建立的智能分析技术,是下一代故障检测与判定(fdi)的重要内核[108]。国内外在这方面进行了很多的研究[109~121],目前应用最多的是前向神经网络[122]、bp神经网络[123~131]以及把神经网络与模糊诊断相结合的模糊神经网络[132~134]等。美国easthardford的depold,hans.r将统计分析及人工神经网络技术应用于过滤器来改进数据质量[135],田纳西大学(tennesseeuniv.)将神经网络用于振动分析,识别潜在故障,并利用神经网络使被歪曲和杂入噪音的数据得到提纯[136]。美国stresstechnology.inc.的roemer,m.j把神经网络和模糊逻辑技术应用于旋转动力有限元模型,所形成的实时系统可以预测关键部件的寿命[137]。华中理工大学的何耀华用一种自组织神经网络模型与多个单一故障诊断的bp网络一起完成故障诊断的协同推理[138],申韬则把一系列bp子网络进行集成,以解决故障分类问题[139]。臧朝平、何永勇也分别提出了多网络、多故障的诊断策略[140~142],西安交通大学的张小栋则研究了主从混合的神经网络模型[143]。东南大学把神经网络应用于轴心轨迹识别进行故障诊断[144]。同时,神经网络还被应用于动静碰磨诊断[145]、通流部分热参数诊断[146]、机组性能诊断[147]、凝汽器的诊断[148]和热力系统的建模[149]等。

专家系统按其侧重点不同,大致可分为基于推理的专家系统(如基于神经网络的推理[150]、基于事例和模型的推理[151]等)和基于知识的专家系统[152~158]等。在专家系统中,专家知识的学习、获取,以及知识库的建立是关系到诊断准确性的重要环节。于文虎、倪维斗、张雪江、钟秉林、韩西京、刘占生、何涛等人分别就知识范围的界定[159]、知识的处理[160~163]、知识的获取[164~167]、机器对知识的自学习[168][169]以及知识库的维护[170]等进行了研究。

诊断策略的研究还有:模糊诊断用于振动故障诊断[171~172]、用于层次模型[173][174]、用于模式识别[175]、用于转子碰磨诊断[176]、用于通流部分热参数诊断[177]的研究;模糊关联度用于多参数诊断[178];灰色理论用于故障诊断[179];概率分布干涉模型用于诊断[180];相关维数用于低频噪声诊断[181]等的研究。

诊断方法上的研究一直是故障诊断的一个重点。振动法是应用最普遍也比较成熟的一种方法[182~186],ingleby,m把自动分类法和模式分析用于振动诊断[187],何正嘉应用winger时频分布和主分量自回归谱分析轴瓦的振动信号[188],施维新针对一般诊断都是从征兆判断原因的逆向推理提出了振动诊断的正向诊断法[189]。在汽轮机故障诊断中,应用热力学分析诊断汽轮机性能故障也是一个重要手段[190~193],另外还有油分析、声发射法、无损检测技术等。声发射法主要用于动静碰磨故障检测[194]、泄漏检测等。日立公司在350mw汽轮机高中压转子上设置试片,在两端轴承的轴瓦处进行声发射和记录,诊断转子的碰摩[195][196]。在汽轮机寿命诊断中,无损检测技术应用相当重要,目前用到的非破坏性评价法主要包括硬度测定法、电气抵抗法、超声波法、组织对比法、结晶粒变形法、显微镜观察测定法、x射线分析法等[21][197]。

2.3.国内在故障诊断系统设计和系统实现方面的研究

完整的汽轮机故障诊断系统,应包括数据采集、信号处理与分析、诊断和决策几个部分,它是故障诊断技术的集中体现,我国早在80年代就开始了这方面的研究,到目前已经研制开发出了几十种系统。

华北电力学院以模拟转子试验台作为信号源对汽轮发电机组振动监测与故障诊断系统进行了研究[198]。上海汽轮机厂研究所经过多年的实验和研究,推出了四套旋转机械状态监测和故障诊断系统,他们在系统硬件配置上做了较多的工作[199]。上海交通大学研制了一种热力参数监测和故障诊断系统tpd,该系统可以提高运行可靠性、优化运行方案、提高运行效率、延长运行寿命[200]。东南大学对集成智能故障诊断系统[201~204]和远程分布式故障诊断网络系统[205]进行了研究。华中理工大学研究了诊断系统的功能及其实现[206]、数据的采集[207]以及远程诊断[208][209]等问题,并开发出了多套汽轮机故障诊断系统,其中汽轮发电机组在线振动监测与故障诊断专家系统(hz-1)采用了主从机结构,可以对多台发电机组实时监测及集中诊断;200mw单元机组状态监测、能损分析及汽轮发电机组故障诊断专家系统采用solartron分散采集系统监测机组,集das系统、状态监测、能损分析和故障诊断于一体[210~212]等。由清华大学、华中理工大学、哈尔滨工业大学、哈尔滨电工仪表所等院所联合研制200mw、300mw汽轮发电机组工况监测与故障诊断专家系统(国家"八五"攻关项目)可全面监测诊断机械振动故障、汽隙振动故障、热因素引起的故障、机电耦合轴系扭振故障、以及调节控制系统故障[213]。哈尔滨工业大学对诊断系统从数据采集到原型机理论作了很多研究[214~219],并推出了代表性的诊断系统mmmd[220]。清华大学对诊断系统的软件构成[221]、硬件结构与协调方法[222]、原型机系统[223~225]等,进行了一系列的研究[226],并与山东电力科学试验研究所合作开发出了大型电站性能与振动远程监测分析与诊断系统,该系统由各电厂中的振动分析站、数据通讯网络系统、远程诊断中心(济南市山东电力科学研究院)和远程诊断分中心(清华大学)等四个子系统构成[227][228]。国内主要汽轮机故障诊断系统及研制单位见表1[229]。

表1国内部分研制应用的故障诊断系统及研制单位

3.汽轮机故障诊断中存在的问题

3·1检测手段

汽轮机故障诊断技术中的许多数学方法,甚至专家系统中的一些推理算法都达到了很高的水平,而征兆的获取成为了一个瓶颈,其中最大的问题是检测手段不能满足诊断的需要,如运行中转子表面温度检测、叶片动应力检测、调节系统卡涩检测、内缸螺栓断裂检测等,都缺乏有效的手段。

3·2材料性能

在寿命诊断中,对材料性能的了解非常重要,因为大多数寿命评价都是以材料的性能数据为基础的。但目前对于材料的性能,特别是对于汽轮机材料在复杂工作条件下的性能变化还缺乏了解。

3·3复杂故障的机理

对故障机理的了解是准确诊断故障的前提。目前,对汽轮机的复杂故障,有些很难从理论上给出解释,对其机理的了解并不清楚,比如在非稳定热态下轴系的弯扭复合振动问题等,这将是阻碍汽轮机故障诊断技术发展的主要障碍之一。

3·4人工智能应用

专家系统作为人工智能在汽轮机故障诊断中的主要应用已经获得了成功,但仍有一些关键的人工智能应用问题需要解决,主要有知识的表达与获取、自学习、智能辨识、信息融合等。

3·5诊断技术应用推广面临的问题

我国汽轮机诊断技术在现有基础上,进一步推广应用面临的主要问题是研究开发机制和观念问题、诊断技术与生产管理的结合问题。机制和观念问题主要表现在:研究机构分散,不能形成规模化效应;重复性研究过多,造成人力、物力的浪费;技术研究转化为应用产品的少;系统研究连贯性差,因而系统升级困难;应用系统的维护与服务得不到保证等。诊断技术与生产管理结合不好,表现在各种技术的相互集成性不好,与生产管理相孤立,不能创造预期的效益,使电厂失去信心。

4.汽轮机故障诊断的发展前景与趋势

很多学者和研究人员都认识到上述问题对汽轮机故障诊断技术发展的影响,正在进行相应的研究工作。本文认为汽轮机故障诊断技术的研究将会在以下几个方面得到重视,并取得进展。

4·1全方位的检测技术

针对汽轮机及其系统各类故障的各种新检测技术将是一个主要的研究方向,会出现许多重要成果。

4·2故障机理的深入研究

任何时候,故障机理的深入研究都将推动故障诊断技术的发展。故障机理的研究将集中在对渐发故障定量表征的研究上,研究判断整个系统故障状态的指标体系及其判断阈值将是另一个重要方向。

4·3知识表达、获取和系统自学习

知识的表达、获取和学习一直是诊断系统研究的热点,但并未取得重大突破,它仍将是继续研究的热点。

4.4综合诊断

汽轮机故障诊断,将从以振动诊断为主向考虑热影响诊断、性能诊断、逻辑顺序诊断、油液诊断、温度诊断等的综合诊断发展,更符合汽轮机的特点和实际。

4·5诊断与仿真技术的结合

诊断与仿真技术的结合将主要表现在,通过故障仿真辨识汽轮机故障、通过系统仿真为诊断专家系统提供知识规则和学习样本、通过逻辑仿真对系统中部件故障进行诊断。

4·6信息融合

汽轮机信息融合诊断将重点在征兆级和决策级展开研究,目的是要通过不同的信息源准确描述汽轮机的真实状态和整体状态。

4·7从诊断向汽轮机设备现代化管理发展

诊断技术范文第5篇

我国结核病疫情:我国属于全球结核病高负担国家之一,结核病的患病人数在世界各国中居于第2位。疫情严峻的原因与临床诊断技术和新药研制滞后、防治不力、结核杆菌与人类免疫缺陷病毒(HIV)双重感染以及耐药结核病人数的急剧增加等有关。目前诊断肺结核的主要方法是痰涂片染色镜检,结合X线胸片检查,继以结核分枝杆菌培养确认。但是,涂片检查敏感性差,分离培养结核杆菌时间过长,X线检查又往往缺乏特异性,用于基因诊断技术的PCR尚处于发展阶段。因此,建立敏感、特异、快速、低成本的快速检测方法十分重要。现对结核病的快速诊断技术概况加以综述。

结明实验:结明实验(MycoDot)是国内外使用较早、较普遍的结核抗体快速检测试验,即将脂阿拉伯甘露聚糖(LAM)作为抗原固定于在电泳梳上,再将此附有抗原的电泳梳置于稀释的血清或全血中浸泡,标本中如有LAM抗体,则与梳上LAM抗原相结合,浸入显色液后,抗体金颗粒便会特异性地聚集在抗原抗体复合物上,在梳上附着抗原处形成红色圆形斑点,即为阳性。结核菌细胞壁成分中含有阿拉伯甘露糖,因此只有当患者患活动性结核病时,才会有阳性反应。健康人、既往感染者(结素试验阳性)以及卡介苗接种者都显示为阴性。在入组3个国家1602例患者的临床试验中,结明试验的总敏感性为70.2%,特异性为95.1%。在这一方法中,标本采集方便,方法简单、快速、可靠,可用肉眼判断实验结果,无需特殊实验仪器,便于基层医院推广。

结核病诊断试剂盒:结核病诊断试剂盒(FD)采用结核分枝杆菌的特异性抗原――脂阿拉伯甘露糖(LAM)为固相抗原,并以金溶胶为标记。其原理是将结核杆菌的特异性抗原LAM固定在特制载体上,当被检血清或全血中含有结核杆菌的特异性抗体(LAM-IgG)时,便与载体上的抗原结合为抗原复合物,这种复合物可与标记有“双抗”的金溶胶试剂发生作用,形成紫红色斑点。因此,试验结果呈紫红色斑点者为阳性,无紫红色斑点者为阴性。既往研究表明,FD检测阳性率为80%,特异性为94%,检测结果不受卡介苗接种的影响。FD检测简便、快速,且不需要专门技术和特殊设备,是用于结核病的诊断和鉴别诊断的一项辅助诊断方法,适用于在基层医疗单位推广使用。

斑点金标免疫渗滤法:斑点金标免疫渗滤法(DIGFA)是将固相人型结核分支杆菌蛋白衍生物(PPD)纯化抗原包被在斑点反应板上,其与体液中的抗结核分支杆菌抗体(PPD-IgG)形成复合物,胶体金标记抗人IgG或海藻硫酸多糖(SPA)与复合物结合,形成肉眼可见的红色斑点。既往研究表明,斑点金标免疫渗滤法检测各类血清678份,敏感性为76.8%,特异性为91.5%。但受结核菌或其他分枝杆菌感染及卡介苗接种等影响,也可出现交叉反应。这种方法具有简便、快速,结果易于判读,无需特殊仪器,能进行单个标本的测定,受检患者可及时得到结果等特点,适用于基层医院诊断结核菌感染和进行流行病学调查。

结核杆菌抗体胶体金法诊断试剂盒:结核杆菌抗体胶体金法诊断(TB-DOT)试剂盒是用现代生物技术提纯结核分枝杆菌特异性外膜抗原,应用斑点金免疫渗滤试验(DIGFA)原理,并用定量标准色谱卡技术制作的TB-DOT试剂盒,用于活动性肺内外结核病IgG、IgM、IgA的检测。研究显示的灵敏性和特异性分别为85.5%和93.6%,与国内学者报道灵敏性73.8%、特异性94.1%基本一致,因此,TB-DOT试剂盒是一种灵敏性和特异性较高的试剂盒。

诊断技术范文第6篇

关键词:液压支架;故障诊断;泄漏诊断;智能诊断技术;故障树

前言:由于液压支架出现故障最大的缺点就是故障的某些征兆具有很高的隐蔽性和复杂性,不易快速查找原因,故障与征兆之间缺乏明显的关联性,很难凭借简单的感官经验进行诊断。这种特点一方面来自故障与征兆之间关系的不确定性;另一方面又来自故障与征兆在概念描述上的不精确性。为了准确判断故障,本文介绍了几种故障的诊断方法。

1.液压支架的工作原理

液压支架是以高压乳化液作为动力源来驱动多个液压缸的伸缩,完成支架的升起、降落、行走和推移输送机等各种动作使支架随按工作面的要求进行反复支撑、前移和调整。

1.1液压支架工作原理图如下,图 1

图1 液压支架工作原理图

1一顶梁;2一掩护梁;3一立柱液压缸;4一推移千斤顶;5, 6一液控单向阀;7一刮板输送机;8一安全溢流阀;9, 10一三位四通手动换向

2.液压支架的分类

按不同的分类标准,液压支架的种类也有所不同。按支架和围岩的相互作用,液压支架可以分为支撑式、掩护式和支撑掩护式四种。根据使用地点的不同,液压支架又可分为工作面支架和端头支架两种。

3.液压支架液压系统的故障定义、特点及类别

3.1.液压系统故障的定义及特点

3.1.1液压故障的定义

液压系统故障是指:液压元件或系统丧失了应达到的功能及出现某些问题的情形。功能故障包括以下几种情况:人们操作上的不当或失误引起的误动作故障;由于泵容积下降和液压缸速度减慢一起的功能性故障;有电磁铁烧坏和哦那个轴扭断和泵轴扭断引起的功能完全丧失。功能性故障。

3.1.2液压系统故障的特点

①液压系统故障具有隐蔽性:液压系统中的动力传递系统是在密闭的工作介质中进行的,因此液压装置的损坏与失效往往发生在深层内部。又因为装拆不便,现场的检测设备仪器等也很有限,难以直接地对进行故障点观测,并且受故障随机性的影响,虽然故障症状个数有限,但是故障分析也很困难。

②液压系统故障具有随机性:引起系统故障的因素有许多,比如外界污染物进入系统引起故障,环境温度的变化、机器任务变化、环境温度变化等都有可能仪器机械故障。所有这些,导致了,故障发生的不确定因素,从而给故障分析带来了一定难度。

③液压系统故障具有差异性:设计和生产材料及应用环境等不同,对液压元件造成的的磨损劣化速度也有不同的影响。所以不能简单地根据一般的液压元件寿命标准来评价原件的磨损程度,只能对具体的液压元件、液压设备评估个体化的的磨损评价标准。

④液压系统的故障一个症状可能有多种原因引起,同时一个故障源也可能引起多种不同的症状,多个故障源叠加起来又可以形成单个症状或者多个症状。

3.2液压支架液压系统的故障类型

3.2.1按故障发生的时间可分为早发性故障、突发性故障和件发行故障;按照故障的特性分类可分为个性故障、共性故障和理性故障;根据发生故障的零件类型或者部位可分为液压件故障和结构件故障;根据引发故障的原因可分为人为故障、消耗故障、固有故障和环境故障;根据故障的从属关系可分为基本故障和从属故障;根据故障的危害、性质和维修难易程度可分为致命故障、严重故障、轻微故障和一般故障。

4.液压支架诊断技术研究

4.1故障树分析法定义和基本原理

故障树分析法(简称FTA),是目前复杂系统故障分析的中最为高效和广泛使用的一种方法。所谓故障树分析法就是,把所研究系统的故障状态作为的已知项,根据这一故障找寻导致这一故障发生的全部因素,由此再推演可能造成下一级事件发生的故障的全部情况,一直追查到那些故障机理和概率分布都是人们已经掌握的因素为止。 一般我们将把最不愿意发生的事件作为顶事件,影响最小的事作为底事件,介于两者之间的事件都称为中间事件,并用特定的符号表示这些事件,然后用一定的从属关系将他们进行排列并赋予一定的逻辑关系,这样形成的一个树形图我们称之为故障树,以故障树为作为分析系统发生故障途径的工具,进行故障分析和安全靠性评价的方法称为故障树分析法。故障树分析法对于一些传统人工评定方法很难完成的有关问题比如具有相关失效的系统、非指数维修分布的系统、以及有转换判定的冗余系统的故障可靠性研究都有很大帮助。

4.2故障树的建立过程

故障树建造的是否完善直接影响者故障树定性分析和定量分析结果的准确性高低。也就是说故障树分析法的关键在于建造正确的故障树。因此,故障树的建造过程中必须十分谨慎。为了建立正确的故障树,一定要遵循一定的步骤。故障树的建立步骤如下。

4.2.1在了解系统的性能的基础上,收集和分析与系统设计和运行的技术规范等有关的技术资料,然后对所研究的对象作系统分析,准确判别系统中的正常状态和正常事件,故障状态和故障事件,评估各种故障可能对系统造成的影响,找出导致各种故障的原因或者途径。

4.2.2在上一部正确的的基础上,确定最不希望发生的故障事件,以此作为顶事件。

4.2.3以在对系统故障提出假设条件为根据,确定边界条件(确定故障树的建树范围)系统的边界条件应包括以下四个方面的内容:①分析的对象也就是顶事件,顶事件也是边界条件中最根本、最重要的条件;②由于指系统中有的部件可能有多种工作状您,因此需要确定顶事件发生条件下这些部件所处状态,即初始状态;③不容许事件即在建立故障树过程中被认为不容许发生的事件;④必然事件也就系统在指定条件下必然不发生的事件和必然发生事件。

结语:本文通过对液压支架诊断技术中最常见的方法――故障树液压支架诊断技术的基本原理和工作流程的描述,旨在提高施工人员对该技术有一个整体上的认知,其中许多具体的造作方法还应该参考相关工具书或者国家规范进行相应的诊断与检测,由于篇幅的限制就不在这里意义赘述,忘谅解。

参考文献

[1]罗恩波.国内外液压支架现状及我国的发展趋势[J]煤矿机电2000(3):27一 28.

[2]赵宏珠.液压支架及其发展[M].徐州:中国矿业大学出版社,1989. 20.

诊断技术范文第7篇

一、叶龄诊断的目的和意义

1、叶龄诊断

水稻在生长发育过程中,主茎的叶片生长与其它叶片、蘖、茎、穗等器官的生长发育之间,存在较严密的相互关系——器官同伸规律。根据这一规律,通过叶龄进程的调查,可推测出其它器官的生育进程。这就是生育进程的叶龄诊断。

2、叶龄诊断的目的和意义

根据某时的叶龄进程,推测以后一段时间的叶龄进程,从而推测出幼穗分化、拔节、减数分裂、抽穗等关键时期,预知抽穗早晚。为了确保水稻安全成熟,必须进行合理的水肥管理和病、虫、草、低温冷害等自然灾害的防治,按主茎叶龄进行管理,是确保各项生产技术措施及时性、准确性和减少盲目性的最好方法。这是在过去按节气、日期指导和安排生产的基础上,在水稻生产中又增加了一个新方法。对水稻生产的优质、高产、高效有着重要的现实意义。

3、叶龄诊断的方法

叶龄跟踪苗的选择和标记方法:选择有代表性的地块,从池埂边向里数三行,选择穴距均匀,穴株数相近的10穴为调查对象,每穴选择苗质好、叶片健全、有代表性的秧苗一株,共选10株,并在两边插上标志物。在每株的主茎叶片上进行叶龄标记。起始叶要从第3叶开始,并且跟踪到齐穗期。标记点要点在单数叶片上,每个叶片要用不同标记符号点在叶片中间部位上,如:第一个标记叶片点一个点,第二个标记叶片点两个点,或用其它方法标记。原则是叶龄跟踪叶片标记要有区别,确保叶龄跟踪的准确性。

4、叶龄计算方法:要计算某叶从露尖到叶枕露出过程,首先估算这片叶的长度。以这片叶下一叶的实际长度加5厘米为这片叶的估算长度,然后测量这片叶抽出的实际长度,再除以估算长度,做为这片叶长度的比例。如计算第5叶抽出过程的叶龄,首先估算5叶的长度。如果4叶定型长度为11厘米,加上5厘米为16厘米,这就是5叶的估算长度。如果5叶已抽出2厘米,2除以16,等于0.12,约等于0.1,即5叶已抽出0.1个叶龄。此时调查的叶龄为4.1个叶龄值,并做好记录。按此法跟踪至倒3叶(11叶品种为9叶,12叶品种为10叶)。倒2叶和剑叶,按前一叶的定长减去5厘米,为估算值,实际伸出长度除以估算值,求出当时的叶龄值。

调查时间:调查的品种均以5月15、20、25日三个插秧期为调查始期,以后每5天调查一次,一直调查到剑叶抽出。

二、栽培要点:

(一)对12叶品种(垦稻10)进行叶龄跟踪调查。

(二)插秧密度为每平方米28穴,每穴3—5株。

(三)秧苗叶龄在3.1~3.5间。

(四)移栽时间为5月25日。

三、调查

(一)调查点的确定

在池埂边向里数第三行上,选择穴距均匀,穴株数相近的10穴为调查对象,并在两边插上标志物,每穴选择有代表性的一株苗质好、叶片健全的秧苗,在主茎叶上进行叶龄标记,起始叶丛第三叶开始,跟踪到齐穗期。

(二)叶龄计算法:N叶从露尖刀叶枕露出过程的叶龄计算,首先估算N叶的长度方法是:以N叶下一叶长度加5厘米为N叶的长度,然后量出N叶抽出的实际长度,再除以估算的N的叶长度,作为N叶长度的比例,如此计算到第三叶均按此法,第二叶及剑叶,按前一叶的定长减5厘米为估算值,实际伸出长度除以估算值,求出当时的叶龄值。

(三)调查时间:一插秧期为调查始期,没5天调查一次,直到齐穗期。

(四)根据插秧日期向前推算32天播种,以播种日为基础向前推算8天为浸种日期。

四、不同生育期的诊断

(一)播种后8天第一完全叶露尖;从第一完全叶露尖经6天叶枕抽出;从2叶露尖到3叶展开,经历14天,2叶生长略快,3叶生长略慢。

(二)返青分蘖期

8,5叶龄,开始幼穗分化,生育转换期为7.1——10.0叶龄;6月4日达4叶龄,6月14日6叶展开,19日7叶展开,24日8叶展开进入有效分蘖临界叶龄期,水稻返青后平均4m5天增加一个叶龄,需活动积温85~C左右,6叶龄为分蘖盛期,是争取有效分蘖的关键时期,此期叶片长度呈递增规律,增幅为5厘米左右,叶耳间距逐渐拉大。

(三)生育转换期。

生育转换期为8、9、10叶期,7月9日10叶定型。

(四)长穗期。9叶后半叶进入幼穗分化,开始生殖生长,7月14日11叶伸出,7月22日叶龄达12叶。8月1日达抽穗期,始穗至齐穗期需7天左右10叶是最长的,平均长度为34.5cm,宽度1.2cm。

(五)结实期。9月22日成熟。

五、结论

通过叶龄跟踪调查,及时准确的掌握了水稻的生长动态,指导生产,确保及时性和准确性,从而为水稻优质高产提供了有效依据。

诊断技术范文第8篇

关键词:猪;剖检;要领

中图分类号:S858.28 文献标识码:B 文章编号:1007-273X(2016)04-0031-01

在不能借助实验室化验来确诊猪病的基层兽医活动中,较为准确的猪病诊断方法就是对病猪的进行解剖,结合临床经验,现向广大基层兽医技术人员介绍解剖诊断要领,以便提高确诊率,提高治愈率。

1 解剖前的外部检查

检查四肢、眼结膜的颜色、皮肤等有无异常,下颌淋巴结是否有肿胀现象等。如亚急性猪丹毒,可见皮肤大小一致的方形、菱形或圆形疹块;急性猪瘟,皮肤多有密集的或散在的出血点(或淤血点);口蹄疫,四肢、口腔有水疱;猪疥螨病,皮肤粗糙有皮屑、背毛脱落、皮肤潮红甚至出血有痂皮;猪链球菌病,皮肤有突起的脓包,切开脓包流出淡黄色液体;附红细胞体病时眼结膜黄染,附近有粪便污染等。

2 保定尸体

尸体取背卧位,一般先切断肩胛骨内侧和髋关节周围的肌肉,将四肢向外侧摊开,以保持尸体仰卧位置。

3 剖检过程

从剑状软骨后方沿腹壁正中线由前向后至耻骨联合切开腹壁,再从剑状软骨沿左右两侧肋骨后缘切开至腰椎横突。这样,腹壁被切成大小相等的两楔形,将其向两侧分开,腹腔脏器即可全部露出。剖开腹腔时,应结合进行皮下检查。看皮下有无出血点、黄染等。在切开皮肤时需要检查腹股沟浅淋巴结,看有无肿大、出血等异常现象。

3.1 腹腔器官检查

腹腔切开后,须先检查腹腔脏器的位置和有无异物等。腹腔器官的取出方法:胃肠全部取出,先将小肠移向左侧,以暴露直肠, 在骨盆腔中单结扎。切断直肠,左手握住直肠断端,右手持刀,从前腰背部分离肠系膜等,至膈时,在胃前端结扎剪断食管,取出全部胃肠道。

取出空肠和回肠。在回盲韧带, 游离缘双结扎,剪断回肠,在十二指肠道,双结扎剪断十二指肠。左手握住回肠断端,右手持刀,逐渐切割肠系膜至十二指结扎点,取出空肠和回肠。

取出十二指肠,胃和胰。先仔细分离十二指肠、胰与结肠的交叉联系,再从前向后分离肠系膜,最后分离并单结扎、剪断直肠,取出盲肠、结肠和直肠。

(1)脾。注意脾的大小,重量,颜色,质地 ,表面和切面的状况。如败血性炭疸时,脾可能高度肿大,色黑红,柔软。急性猪瘟时脾发出血性梗死。

(2)肠。检查肠壁的簿厚,黏膜有无脱落、出血。肠淋巴结有无肿胀等。患猪副伤寒的猪肠黏膜表面覆盖糠麸样物质。

(3)胃。检查胃内容物的性状、颜色,剖去内容物看胃黏膜有无出血、脱落穿孔等现象。

(4)肝。检查肝的颜色、质地等。

(5)胆。看胆囊的外观是否肿大,滑破胆囊看胆汁的颜色是否正常。

(6)肾。两个肾先做比较,看大小是否一样有无肿胀。剖去肾包膜看肾脏表面有无出血点。然后将肾平放横切后观察肾盂、肾盏有无肿大、出血等。

(7)膀胱。看膀胱的弹性、膀胱内膜有无出血点等。

3.2 胸腔器官检查

用刀(或剪)切断两侧肋软骨与肋骨结合部,再把刀伸入胸腔划断脊柱左右两侧肋骨与胸椎连接部肌肉,按压两侧胸壁肋骨,折断肋骨与胸椎的连接,即可敞开胸腔。打开胸腔后先看肾包膜有无粘连、是否有纤维状物渗出,传染性胸膜肺炎时有此症状。

(1)肺。看左右肺的大小、质地、颜色等。气喘病肺变为肉样、放在水中下沉,正常的肺放在水中是不下沉的。猪肺疫时肺脏表面因出血水肿呈大理石样外观。

(2)心脏。看心包膜有无出血点,切开心脏看二尖瓣、三尖瓣有无异常现象。猪丹毒溃疡性心内膜炎,增生,二尖瓣上有灰白色菜花赘生物检查时应特别注意。

3.3 口腔和喉部器官检查

剥去颈部和下颌部皮肤后,用刀切断两下颌支内侧和舌连接的肌肉,左手指伸入下颌间隙,将舌牵出,剪断舌骨,将舌、咽喉、气管一并采出。看气管有无黏液、出血点等;扁桃体有无肿大、出血点等。

4 注意事项

(1)在猪发病死亡后,尸体剖检进行越快、准确诊断的机会越多。尸体剖检必须在死后变性不太严重时尽快进行。夏季须在死后4~8 h之内完成,冬季不得超过18~24 h。

(2)剖检中要做记录,将每项检查的各种异常现象详细记录下来,以便根据异常现象做出初步诊断。

(3)剖检过程中要注意个人的防护,剖检人员必须带手套,防止手划伤感染。

诊断技术范文第9篇

钻井泵是油田重要的钻井循环设备,由于钻井过程中工况恶劣,钻井泵经常会出现液力端或动力端故障,影响整个钻井作业。钻井泵上零部件很多,出现故障的类型也呈多样化和复杂化[1],当前对钻井泵故障的诊断主要靠工程师的观测与经验判断,很难及时准确地预测钻井泵存在的风险,发生故障时,往往也难以准确判断故障的类型与位置,这导致泵的工作效率低下,严重影响了钻井作业。随着随钻测量技术、粗糙集理论等的发展,对钻井泵的故障监测与诊断,亟需从简单的人工监测参数曲线和超阈值检测等方式转移到信号处理等更为先进的方式[2-4]。振动诊断技术通过监测机械设备运行过程中的振动信号来判断设备故障,是一种先进的诊断方法,本文探讨了其在钻井泵中的应用。

1钻井泵故障分析

了解钻井泵的结构,对常见故障与产生原因进行分析和总结,这对确定传感器的合理安装位置、做好故障监测与诊断都有重要意义。钻井泵的结构主要分液力端、动力端,本节分析了不同部位产生故障的情况。

1.1液力端常见故障分析

液力端中易损件有:吸入、排出阀,密封高压泥浆的钢圈、橡胶垫和O形圈、虹套及活塞总成。在钻井泵运转时,由于冲击和阀隙液体的高速反向流会对阀体或阀座造成冲蚀磨损;密封圈受到高压泥浆的磨损可能会出现密封不严的情况;活塞在虹套内做往复运动,受摩擦力和冲击力的作用较大,且不容易散热,易造成磨损。

1.2动力端常见故障分析

钻井泵的动力端主要包括主螺栓、轴承、齿轮、十字头总成等。主螺栓和轴承承受了交变应力的作用,会因应力集中出现材料疲劳的破坏;大小齿轮是钻井泵动力输出的核心部件,在重载、高温、失效等情况下,齿轮齿面出现胶合现象,引起齿面磨损,接触点的应力呈脉动循环变化,进而产生细小的疲劳裂纹,形成点蚀或变形;十字头与导板直接接触,受到的摩擦力较大,若有杂质混入,极易造成十字头与导板面磨损。

1.3故障分级

根据故障的严重程度,将故障分为两个等级,再制定出相应的检修方案。Ⅰ类故障是指故障非常严重,必须停产维修的,主要包括:主螺栓断裂;吸入、排出阀弹簧断裂;阀座与阀箱间刺漏;杂物卡住吸入或排除阀;大齿轮或传动齿轮轮齿断裂;轴承、轴承圈和滚柱断裂;十字头与导板间隙大于设计允许值等。II类故障是指轻微故障,可以使用一段时间后再维修的,主要有:齿轮明显磨损变形;轴承磨损间隙增大;阀体和阀座明显磨损;活塞严重偏磨虹套;十字头与导板磨损间隙明显增大等。

2振动诊断技术的应用步骤

2.1振动诊断技术

机械设备在运行时一定会产生振动信号,正常工作时振动的频域和时域都在一定范围内,特征值具有一定的规律,如果设备存在隐患或者已经出现故障,其振动信号就出现异常,通过监测设备的振动信号,根据波形分析法或者频谱分析法来判断其故障隐患和类型,从而制定出合理的检修方案,这就是振动诊断技术。该技术可以实现对设备的在线监测和实时诊断,是具有综合性、智能性的先进故障诊断技术[5-6]。

2.2诊断步骤

振动诊断技术在钻井泵故障诊断时,如图1所示,一般采取的步骤为:1)确定诊断范围,对钻井泵的各个零部件,特别是液力端和动力端容易出现故障的主要零部件的基本结构、工作原理、连接关系、运行特性、工艺参数等充分掌握;2)选择诊断方案,根据不同的诊断需要,可以制定出不同层次的诊断方案,如简易诊断,主要是采用振动计、振动测量仪等仪器,采用有量纲幅域参数、无量纲幅域参数或者振动趋势等方法,而精密振动诊断,则是采用振动信号分析仪和离线监测与巡检系统,采用时域分析或频域分析的方法;3)安装测量仪器,在确定诊断方案后选用相应测量仪器安装在钻井泵需要监测的零部件上,应确保测量位置的合理性,并检查其是否能正常运行;4)对测量数据进行判断,通常采用标准识别法或者图像识别法对设备的振动状态进行判断,标准识别法主要是将幅域参数、g/SE值、冲击脉冲值等,与绝对标准、相对标准、类比标准等进行对比,图像识别法则是将测量的频谱(或波形)与同一工况下标准模式进行对比;5)作出判断决策,通过对运行参数的识别,对钻井泵的运行状态做出判断,并给出相应的处理意见,如果钻井泵存在的故障属于II类故障,可以进一步监测,使用一段时间后再进行维修;若属于Ⅰ类故障,则需要立即停机修理;6)事后检查验证,振动诊断后还要向具体的故障修理人员了解故障的详细情况,以验证诊断结果是否准确,从而能够不断改进诊断方法,使其更加准确。

3故障诊断实例

因钻井泵工作环境恶劣,齿轮是最重要的、也是最容易出现故障的零部件之一。本节以钻井泵中某齿轮为例,分析了振动诊断技术在其故障诊断中的应用。钻井泵动力端上某齿轮的参数为:电动机额定转速为500r/min,小齿轮齿数为40,大齿轮齿数为150。在其上面安装振动传感器,当电动机转速为180r/min时,测得大齿轮上的频谱如图2(a)所示,对频谱进一步细化得到图2(b)。根据齿轮的运行参数已知,齿轮的啮合频率为(180/60)×40=120Hz,大齿轮低速轴的频率为0.8Hz,但在测试点的频谱图1(a)上却没出现啮合频率的峰值,而是在183Hz处出现最大峰值;观察细化频谱图1(b)发现183Hz两侧有0.8Hz的边频带,而0.8Hz为低速轴的频率。为了查找出现183Hz的原因,将运行转速调至500r/min,发现频谱中仍有183Hz的峰值,这说明183Hz为大齿轮的固有频率,大齿轮因存在严重故障而出现的固有频率。停机检查发现,大齿轮有3个齿顶严重凸起,其他的齿面严重磨损,出现凸凹不平的现象,认为频谱中183Hz峰值是由其引起的。更换大齿轮后,再检测时频谱中异常峰值消失。这则实例说明,故障的实际情况与振动诊断结论具有一致性,振动诊断技术准确性较好。

4结语

作为油田钻井开发过程不可或缺的一部分,钻井泵起着举足轻重的作用,而钻井泵故障严重影响着生产效率和经济效益。随着测量技术、粗糙集理论及信息技术等的进步,振动诊断获得了快速的发展。将振动诊断技术应用在钻井泵故障的诊断中,能够对钻井泵的运行状态进行监测,可以实时判断设备运行是否存在异常,对其故障隐患进行早期预报,从而减少或避免事故的发生;当故障出现时,采用振动诊断技术也能判断故障的类型和位置,从而使维修人员能够有针对性地修理故障,使钻井泵能尽快恢复生产。振动诊断技术能够提高钻井泵故障诊断的自动化和智能化程度,具有高效、及时、准确等优点,具有一定的实际工程价值。

诊断技术范文第10篇

【关键词】细胞学筛查;阴道镜检查;宫颈组织病理学

【中图分类号】R4 【文献标识码】B 【文章编号】1671-8801(2015)03-0051-02

宫颈病变是妇女最常见的疾病之一,因为宫颈癌前病变发展成宫颈癌是一个较长时间的过程,大约是10年,所以干预和治疗成为可能,关键是通过普及规范的子宫颈癌筛查和随诊,早期发现宫颈癌前病变,并及时治疗可以降低宫颈癌的发生率。随着宫颈细胞学现代新技术的不断发展,液基薄层细胞学(TCT)、阴道镜检查及镜下定位活组织病理诊断,即三阶梯式诊断方法(细胞学、阴道镜与组织学活检)是筛查宫颈病变的程序[1]。可使患者得到早期诊断与治疗,有效降低了宫颈癌的发生率。我院妇科运用该技术对252例患者宫颈病变进行诊断,现总结报告如下。

l资料与方法

1.1研究对象

选取2013年11月~2015年4月我院妇科门诊就诊的252例患者,患者均已婚或有性生活史,年龄(20~65)岁,平均年龄(35.9±5.26)岁;所有患者自愿接受宫颈细胞学检查,患者均为非妊娠期,无宫颈手术史。

1.2方法

1.2.1TCT检查 取材时间为非月经期,取材前24h内禁止性生活、阴道检查、阴道灌洗及用药,取标本的用具必须无菌、干燥,用干棉球轻轻试去宫颈表面的黏液及血液,将特制的细胞刷,细胞刷中央较长的刷丝置于宫颈管内,其周边刷丝在宫颈外口及宫颈表面,包括鳞柱交界部及部分颈管顺时针方向轻柔旋转5周,立即将细胞刷采集到的脱落细胞转移至标本保存液中,标本在自动制片系统上进行密度梯度离心两次后自然沉降,并采用电荷捕获技术最大限度收集病变细胞,巴氏染色等程序化处理后制成薄层细胞涂片。

1.2.2阴道镜检查 检查部位出血或急性炎症不宜进行检查,检查前24h内避免性生活、阴道冲洗或上药、宫颈刮片和双合诊,先用棉球拭去宫颈表面黏液和分泌物做初步观察,然后用3%的醋酸棉球浸湿宫颈表面,数秒后可以清楚观察病变,必要时用绿色镜观察血管形态,更精确的血管检查可加用红色滤光片,复合碘溶液涂宫颈检查宫颈是否着色,于碘不着色区取组织活检。若镜下未发现可疑部位则常规在移行带3、6、9、12点做活检。分瓶用10%的福尔马林固定后做病检。

1.2.3病理学诊断 慢性宫颈炎、宫颈轻度上皮内瘤样病变(CINⅠ)、宫颈中度上皮内瘤样病变(CINⅡ)、宫颈重度上皮内瘤样病变(CINⅢ)及鳞状细胞癌(SCC)。

2结果

宫颈细胞学筛查结果中252例细胞学异常的患者:非典型鳞状上皮细胞(ASC)84例,其中非典型鳞状上皮细胞不能明确意义(ASC-US)78例伴有反馈性高危型HPV阳性或接触性出血,非典型鳞状上皮细胞不排除高度病变(ASC-H)8例,鳞状上皮细胞内低度病变(LSIL)94例,鳞状上皮细胞内高度病变(HSIL)58例,非典型腺上皮细胞(AGC)8例,鳞状细胞癌(鳞癌)6例。

3讨论

CIN经过较长时间才发展为宫颈癌,平均大约10年[2],早期发现癌前病变并及时治疗,可以降低宫颈癌发病率。现在全世界范围内已经广泛开展三阶梯式诊断技术,专门用于筛查宫颈癌及其癌前病变,经宫颈细胞学筛查和阴道镜的检查,以宫颈锥切标本或宫颈多点活检做出的组织病理学诊断可作为“金标准”。

表1 阴道镜下宫颈活检组织病理[n(%)]

TCT n 慢性宫颈炎 HPV或CIN1 CIN2~CIN3 浸润癌

ASC-US 78 14(17.95) 60(76.92) 3(3.85) 1(1.28)

ASC-H 8 1(12.50) 2(25.00) 4(50.00) 1(12.50)

LSIL 94 10(10.64) 54(57.45) 26(27.66) 4(4.26)

HSIL 58 4(6.89) 4(6.89) 42(72.41) 8(13.79)

鳞癌 6 0 0 0 6(100.00)

AGC 8 1(12.50) 1(12.50) 4(50.00) 2(25.00)

宫颈细胞学筛查使宫颈癌及宫颈癌前病变得以早期发现和治疗,但它存在一定的假阳性及假阴性。阴道镜作为一种临床诊断技术,为了保证组织病理学诊断的准确性,对病变部位进行准确定位并获取活检标本,其局限性是评估者的主观性以及不能评估宫颈管内的病变,据有关统计,阴道镜检查在评估宫颈病变的敏感度、特意度与阳性预测值分别为95.9%、77.7%和84.5%。宫颈活检是确诊宫颈癌及癌前病变最可靠不可缺少的方法。阴道镜与细胞学联合应用时,宫颈癌早期诊断的正确率高达97.5%~99.4%。2001年ASCCP对于宫颈细胞学诊断结果异常和经组织学确诊为CIN的妇女,提供了一套具有循证医学基础的统一管理规范,借鉴ASCCP循证医学指南中的资料,ASC-US有5%的机会经活检检确诊为CIN3,ASC-H有24%~94%的机会经活确诊为CIN2~3,细胞学结果为LSIL经活检大部分为CIN1及(或)HPV,有15%~30%被确诊为CIN2~3及少数的癌,细胞学结果HSIL其组织学诊断中有70%~75%为CIN2~3,1%~2%为宫颈浸润癌,细胞学结果AGC经宫颈活检确诊:宫颈鳞状上皮的病变多于腺上皮病变,9%~54%为CIN(高级别多见),0~8%为宫颈管内原位腺癌,低于1%~9%为浸润癌。本院252例细胞学异常与组织病理学结果显示与2001年ASCCP循证医学信息基本一致的。对于宫颈细胞学筛查阳性病例,特别是对于伴有高危HPV阳性病例,临床医生不能仅凭细胞学检查结果给患者提供治疗方案,须经阴道镜检查验证宫颈病变是否存在,并在其指引下取宫颈活检确诊,为了更好地对宫颈病变诊治,应将三阶梯技术在临床广泛运用。

可见,三阶梯技术联合应用可以扬长避短减少漏诊,提高宫颈病变的检出率,使患者得到早期诊断和治疗,从而减少宫颈癌的发生,达到有效预防宫颈癌的目的。

参考文献:

[1]江雪芳,毛玲芝.细胞学、组织学和阴道镜在诊断宫颈上皮内瘤样变的应用.实用医学杂志,2005,21(15):1668-l669.

上一篇:交通工程范文 下一篇:中学语文范文