医学图像论文范文

时间:2023-03-19 19:58:49

医学图像论文

医学图像论文范文第1篇

论文摘要:随着医学成像和计算机辅助技术的发展,从二维医学图像到三维可视化技术成为研究的热点,本文介绍了医学图像处理技术的发展动态,对图像分割、纹理分析、图像配准和图像融合技术的现状及其发展进行了综述。在比较各种技术在相关领域中应用的基础上,提出了医学图像处理技术发展所面临的相关问题及其发展方向。

1.引言

近20多年来,医学影像已成为医学技术中发展最快的领域之一,其结果使临床医生对人体内部病变部位的观察更直接、更清晰,确诊率也更高。20世纪70年代初,X-CT的发明曾引发了医学影像领域的一场革命,与此同时,核磁共振成像象(MRI:MagneticResonanceImaging)、超声成像、数字射线照相术、发射型计算机成像和核素成像等也逐步发展。计算机和医学图像处理技术作为这些成像技术的发展基础,带动着现代医学诊断正产生着深刻的变革。各种新的医学成像方法的临床应用,使医学诊断和治疗技术取得了很大的进展,同时将各种成像技术得到的信息进行互补,也为临床诊断及生物医学研究提供了有力的科学依据。

在目前的影像医疗诊断中,主要是通过观察一组二维切片图象去发现病变体,往往需要借助医生的经验来判定。至于准确的确定病变体的空间位置、大小、几何形状及与周围生物组织的空间关系,仅通过观察二维切片图象是很难实现的。因此,利用计算机图象处理技术对二维切片图象进行分析和处理,实现对人体器官、软组织和病变体的分割提取、三维重建和三维显示,可以辅助医生对病变体及其它感兴趣的区域进行定性甚至定量的分析,可以大大提高医疗诊断的准确性和可靠性。此外,它在医疗教学、手术规划、手术仿真及各种医学研究中也能起重要的辅助作用。

本文对医学图像处理技术中的图像分割、纹理分析、图像配准和图像融合技术的现状及其发展进行了综述。

2.医学图像三维可视化技术

2.1三维可视化概述

医学图像的三维可视化的方法很多,但基本步骤大体相同,如图.。从#$/&’(或超声等成像系统获得二维断层图像,然后需要将图像格式(如0(#1&)转化成计算机方便处理的格式。通过二维滤波,减少图像的噪声影响,提高信噪比和消除图像的尾迹。采取图像插值方法,对医学关键部位进行各向同性处理,获得体数据。经过三维滤波后,不同组织器官需要进行分割和归类,对同一部位的不同图像进行配准和融合,以利于进一步对某感兴趣部位的操作。根据不同的三维可视化要求和系统平台的能力,选择不同的方法进行三维体绘制,实现三维重构。

2.2关键技术:

图像分割是三维重构的基础,分割效果直接影像三维重构的精确度。图像分割是将图像分割成有意义的子区域,由于医学图像的各区域没有清楚的边界,为了解决在医学图像分割中遇到不确定性的问题,引入模糊理论的模糊阀值、模糊边界和模糊聚类等概念。快速准确的分离出解剖结构和定位区域位置和形状,自动或半自动的图像分割方法是非常重要的。在实际应用中有聚类法、统计学模型、弹性模型、区域生长、神经网络等适用于医学图像分割的具体方法。

由于可以对同一部位用不同的成像仪器多次成像,或用同一台仪器多次成像,这样产生了多模态图像。多模态图像提供的信息经常相互覆盖和具有互补性,为了综合使用多种成像模式以提供更全面的信息,需要对各个模态的原始图像进行配准和数据融合,其整个过程称为数据整合。整合的第一步是将多个医学图像的信息转换到一个公共的坐标框架内的研究,使多幅图像在空间域中达到几何位置的完全对应,称为三维医学图像的配准问题。建立配准关系后,将多个图像的数据合成表示的过程,称为融合。在医学应用中,不同模态的图像还提供了不互相覆盖的结构互补信息,比如,当CT提供的是骨信息,MRI提供的关于软组织的信息,所以可以用逻辑运算的方法来实现它们图像的合成。

当分割归类或数据整合结束后,对体数据进行体绘制。体绘制一般分为直接体绘制和间接体绘制,由于三维医学图像数据量很大,采用直接体绘制方法,计算量过重,特别在远程应用和交互操作中,所以一般多采用间接体绘制。在图形工作站上可以进行直接体绘制,近来随着计算机硬件快速发展,新的算法,如三维纹理映射技术,考虑了计算机图形硬件的特定功能及体绘制过程中的各种优化方法,从而大大地提高了直接体绘制的速度。体绘制根据所用的投影算法不同加以分类,分为以对象空间为序的算法(又称为体素投影法)和以图像空间为序的算法!又称为光线投射法",一般来说,体素投影法绘制的速度比光线投射法快。由于三维医学图像的绘制目的在于看见内部组织的细节,真实感并不是最重要的,所以在医学应用中的绘制要突出特定诊断所需要的信息,而忽略无关信息。另外,高度的可交互性是三维医学图像绘制的另一个要求,即要求一些常见操作,如旋转,放大,移动,具有很好的实时性,或至少是在一个可以忍受的响应时间内完成。这意味着在医学图像绘制中,绘制时间短的可视化方法更为实用。

未来的三维可视化技术将与虚拟现实技术相结合,不仅仅是获得体数据的工具,更主要的是能创造一个虚拟环境。

3.医学图像分割

医学图像分割就是一个根据区域间的相似或不同把图像分割成若干区域的过程。目前,主要以各种细胞、组织与器官的图像作为处理的对象,图像分割技术主要基于以下几种理论方法。

3.1基于统计学的方法

统计方法是近年来比较流行的医学图像分割方法。从统计学出发的图像分割方法把图像中各个像素点的灰度值看作是具有一定概率分布的随机变量,观察到的图像是对实际物体做了某种变换并加入噪声的结果,因而要正确分割图像,从统计学的角度来看,就是要找出以最大的概率得到该图像的物体组合。用吉布斯(Gibbs)分布表示的Markov随机场(MRF)模型,能够简单地通过势能形式表示图像像素之间的相互关系,因此周刚慧等结合人脑MR图像的空间关系定义Markov随机场的能量形式,然后通过最大后验概率(MAP)方法估计Markov随机场的参数,并通过迭代方法求解。层次MRF采用基于直方图的DAEM算法估计标准有限正交混合(SFNM)参数的全局最优值,并基于MRF先验参数的实际意义,采用一种近似的方法来简化这些参数的估计。林亚忠等采用的混合金字塔Gibbs随机场模型,有效地解决了传统最大后验估计计算量庞大和Gibbs随机场模型参数无监督及估计难等问题,使分割结果更为可靠。

3.2基于模糊集理论的方法

医学图像一般较为复杂,有许多不确定性和不精确性,也即模糊性。所以有人将模糊理论引入到图像处理与分析中,其中包括用模糊理论来解决分割问题。基于模糊理论的图形分割方法包括模糊阈值分割方法、模糊聚类分割方法等。模糊阈值分割技术利用不同的S型隶属函数来定义模糊目标,通过优化过程最后选择一个具有最小不确定性的S函数,用该函数表示目标像素之间的关系。这种方法的难点在于隶属函数的选择。模糊C均值聚类分割方法通过优化表示图像像素点与C各类中心之间的相似性的目标函数来获得局部极大值,从而得到最优聚类。Venkateswarlu等[改进计算过程,提出了一种快速的聚类算法。

3.2.1基于模糊理论的方法

模糊分割技术是在模糊集合理论基础上发展起来的,它可以很好地处理MR图像内在的模糊性和不确定性,而且对噪声不敏感。模糊分割技术主要有模糊阈值、模糊聚类、模糊边缘检测等。在各种模糊分割技术中,近年来模糊聚类技术,特别是模糊C-均值(FCM)聚类技术的应用最为广泛。FCM是一种非监督模糊聚类后的标定过程,非常适合存在不确定性和模糊性特点的MR图像。然而,FCM算法本质上是一种局部搜索寻优技术,它的迭代过程采用爬山技术来寻找最优解,因此容易陷入局部极小值,而得不到全局最优解。近年来相继出现了许多改进的FCM分割算法,其中快速模糊分割(FFCM)是最近模糊分割的研究热点。FFCM算法对传统FCM算法的初始化进行了改进,用K-均值聚类的结果作为模糊聚类中心的初值,通过减少FCM的迭代次数来提高模糊聚类的速度。它实际上是两次寻优的迭代过程,首先由K-均值聚类得到聚类中心的次最优解,再由FCM进行模糊聚类,最终得到图像的最优模糊分割。

3.2.2基于神经网络的方法

按拓扑机构来分,神经网络技术可分为前向神经网络、反馈神经网络和自组织映射神经网络。目前已有各种类型的神经网络应用于医学图像分割,如江宝钏等利用MRI多回波性,采用有指导的BP神经网络作为分类器,对脑部MR图像进行自动分割。而Ahmed和Farag则是用自组织Kohenen网络对CT/MRI脑切片图像进行分割和标注,并将具有几何不变性的图像特征以模式的形式输入到Kohenen网络,进行无指导的体素聚类,以得到感兴趣区域。模糊神经网络(FNN)分割技术越来越多地得到学者们的青睐,黄永锋等提出了一种基于FNN的颅脑MRI半自动分割技术,仅对神经网络处理前和处理后的数据进行模糊化和去模糊化,其分割结果表明FNN分割技术的抗噪和抗模糊能力更强。

3.2.3基于小波分析的分割方法

小波变换是近年来得到广泛应用的一种数学工具,由于它具有良好的时一频局部化特征、尺度变化特征和方向特征,因此在图像处理上得到了广泛的应用。

小波变换和分析作为一种多尺度多通道分析工具,比较适合对图像进行多尺度的边缘检测,典型的有如Mallat小波模极大值边缘检测算法[6

3.3基于知识的方法

基于知识的分割方法主要包括两方面的内容:(1)知识的获取,即归纳提取相关知识,建立知识库;(2)知识的应用,即有效地利用知识实现图像的自动分割。其知识来源主要有:(1)临床知识,即某种疾病的症状及它们所处的位置;(2)解剖学知识,即某器官的解剖学和形态学信息,及其几何学与拓扑学的关系,这种知识通常用图谱表示;(3)成像知识,这类知识与成像方法和具体设备有关;(4)统计知识,如MI的质子密度(PD)、T1和T2统计数据。Costin等提出了一种基于知识的模糊分割技术,首先对图像进行模糊化处理,然后利用相应的知识对各组织进行模糊边缘检测。而谢逢等则提出了一种基于知识的人脑三维医学图像分割显示的方法。首先,以框架为主要表示方法,建立完整的人脑三维知识模型,包含脑组织几何形态、生理功能、图像灰度三方面的信息;然后,采用“智能光线跟踪”方法,在模型知识指导下直接从体积数据中提取并显示各组织器官的表面。

3.4基于模型的方法

该方法根据图像的先验知识建立模型,有动态轮廓模型(ActiveContourModel,又称Snake)、组合优化模型等,其中Snake最为常用。Snake算法的能量函数采用积分运算,具有较好的抗噪性,对目标的局部模糊也不敏感,但其结果常依赖于参数初始化,不具有足够的拓扑适应性,因此很多学者将Snake与其它方法结合起来使用,如王蓓等利用图像的先验知识与Snake结合的方法,避开图像的一些局部极小点,克服了Snake方法的一些不足。Raquel等将径向基网络(RBFNNcc)与Snake相结合建立了一种混合模型,该模型具有以下特点:(1)该混合模型是静态网络和动态模型的有机结合;(2)Snake的初始化轮廓由RBFNNcc提供;(3)Snake的初始化轮廓给出了最佳的控制点;(4)Snake的能量方程中包含了图像的多谱信息。Luo等提出了一种将livewire算法与Snake相结合的医学图像序列的交互式分割算法,该算法的特点是在少数用户交互的基础上,可以快速可靠地得到一个医学图像序列的分割结果。

由于医学图像分割问题本身的困难性,目前的方法都是针对某个具体任务而言的,还没有一个通用的解决方法。综观近几年图像分割领域的文献,可见医学图像分割方法研究的几个显著特点:(1)学者们逐渐认识到现有任何一种单独的图像分割算法都难以对一般图像取得比较满意的结果,因而更加注重多种分割算法的有效结合;(2)在目前无法完全由计算机来完成图像分割任务的情况下,半自动的分割方法引起了人们的广泛注意,如何才能充分利用计算机的运算能力,使人仅在必要的时候进行必不可少的干预,从而得到满意的分割结果是交互式分割方法的核心问题;(3)新的分割方法的研究主要以自动、精确、快速、自适应和鲁棒性等几个方向作为研究目标,经典分割技术与现代分割技术的综合利用(集成技术)是今后医学图像分割技术的发展方向。

4.医学图像配准和融合

医学图像可以分为解剖图像和功能图像2个部分。解剖图像主要描述人体形态信息,功能图像主要描述人体代谢信息。为了综合使用多种成像模式以提供更全面的信息,常常需要将有效信息进行整合。整合的第一步就是使多幅图像在空间域中达到几何位置的完全对应,这一步骤称为“配准”。整合的第二步就是将配准后图像进行信息的整合显示,这一步骤称为“融合”。

在临床诊断上,医生常常需要各种医学图像的支持,如CT、MRI、PET、SPECT以及超声图像等,但无论哪一类的医学图像往往都难以提供全面的信息,这就需要将患者的各种图像信息综合研究19],而要做到这一点,首先必须解决图像的配准(或叫匹配)和融合问题。医学图像配准是确定两幅或多幅医学图像像素的空间对应关系;而融合是指将不同形式的医学图像中的信息综合到一起,形成新的图像的过程。图像配准是图像融合必需的预处理技术,反过来,图像融合是图像配准的一个目的。

4.1医学图像配准

医学图像配准包括图像的定位和转换,即通过寻找一种空间变换使两幅图像对应点达到空间位置上的配准,配准的结果应使两幅图像上所有关键的解剖点或感兴趣的关键点达到匹配。20世纪90年代以来,医学图像配准的研究受到了国内外医学界和工程界的高度重视,1993年Petra等]综述了二维图像的配准方法,并根据配准基准的特性,将图像配准的方法分为两大类:基于外部特征(有框架)的图像配准和基于内部特征(无框架)的图像配准。基于外部特征的方法包括立体定位框架法、面膜法及皮肤标记法等。基于外部特征的图像配准,简单易行,易实现自动化,能够获得较高的精度,可以作为评估无框架配准算法的标准。但对标记物的放置要求高,只能用于同一患者不同影像模式之间的配准,不适用于患者之间和患者图像与图谱之间的配准,不能对历史图像做回溯性研究。基于内部特征的方法是根据一些用户能识别出的解剖点、医学图像中相对运动较小的结构及图像内部体素的灰度信息进行配准。基于内部特征的方法包括手工交互法、对应点配准法、结构配准法、矩配准法及相关配准法。基于内部特征的图像配准是一种交互性方法,可以进行回顾性研究,不会造成患者不适,故基于内部特征的图像配准成为研究的重点。

近年来,医学图像配准技术有了新的进展,在配准方法上应用了信息学的理论和方法,例如应用最大化的互信息量作为配准准则进行图像的配准,在配准对象方面从二维图像发展到三维多模医学图像的配准。例如Luo等利用最大互信息法对CT-MR和MR-PET三维全脑数据进行了配准,结果全部达到亚像素级配准精度。在医学图像配准技术方面引入信号处理技术,例如傅氏变换和小波变换。小波技术在空间和频域上具有良好的局部特性,在空间和频域都具有较高的分辨率,应用小波技术多分辨地描述图像细貌,使图像由粗到细的分级快速匹配,是近年来医学图像配准的发展之一。国内外学者在这方面作了大量的工作,如Sharman等提出了一种基于小波变换的自动配准刚体图像方法,使用小波变换获得多模图像特征点然后进行图像配准,提高了配准的准确性。另外,非线性配准也是近年来研究的热点,它对于非刚性对象的图像配准更加适用,配准结果更加准确。

目前许多医学图像配准技术主要是针对刚性体的配准,非刚性图像的配准虽然已经提出一些解决的方法,但同刚性图像相比还不成熟。另外,医学图像配准缺少实时性和准确性及有效的全自动的配准策略。向快速和准确方面改进算法,使用最优化策略改进图像配准以及对非刚性图像配准的研究是今后医学图像配准技术的发展方向。

4.2医学图像融合

图像融合的主要目的是通过对多幅图像间的冗余数据的处理来提高图像的可读性,对多幅图像间的互补信息的处理来提高图像的清晰度。不同的医学影像设备获取的影像反映了不同的信息:功能图像(SPECT、PET等)分辨率较差,但它提供的脏器功能代谢和血液流动信息是解剖图像所不能替代的;解剖图像(CT、MRI、B超等)以较高的分辨率提供了脏器的解剖形态信息,其中CT有利于更致密的组织的探测,而MRI能够提供软组织的更多信息。多模态医学图像的融合把有价值的生理功能信息与精确的解剖结构结合在一起,可以为临床提供更加全面和准确的资料。

医学图像的融合可分为图像融合的基础和融合图像的显示。(1)图像融合的基础:目前的图像融合技术可以分为2大类,一类是以图像像素为基础的融合法;另一类是以图像特征为基础的融合方法。以图像像素为基础的融合法模型可以表示为:

其中,为融合图像,为源图像,为相应的权重。以图像特征为基础的融合方法在原理上不够直观且算法复杂,但是其实现效果较好。图像融合的步骤一般为:①将源图像分别变换至一定变换域上;②在变换域上设计一定特征选择规则;③根据选取的规则在变换域上创建融合图像;④逆变换重建融合图像。(2)融合图像的显示:融合图像的显示方法可分成2种:空间维显示和时间维显示。

目前,医学图像融合技术中还存在较多困难与不足。首先,基本的理论框架和有效的广义融合模型尚未形成。以致现有的技术方法还只是针对具体病症、具体问题发挥作用,通用性相对较弱。研究的图像以CT、MRI、核医学图像为主,超声等成本较低的图像研究较少且研究主要集中于大脑、肿瘤成像等;其次,由于成像系统的成像原理的差异,其图像采集方式、格式以及图像的大小、质量、空间与时间特性等差异大,因此研究稳定且精度较高的全自动医学图像配准与融合方法是图像融合技术的难点之一;最后,缺乏能够客观评价不同融合方法融合效果优劣的标准,通常用目测的方法比较融合效果,有时还需要利用到医生的经验。

在图像融合技术研究中,不断有新的方法出现,其中小波变换在图像融合中的应用,基于有限元分析的非线性配准以及人工智能技术在图像融合中的应用将是今后图像融合研究的热点与方向。随着三维重建显示技术的发展,三维图像融合技术的研究也越来越受到重视,三维图像的融合和信息表达,也将是图像融合研究的一个重点。

5.医学图像纹理分析

一般认为图像的纹理特征描述物体表面灰度或颜色的变化,这种变化与物体自身属性有关,是某种纹理基元的重复。Sklansky早在1978年给出了一个较为适合于医学图像的纹理定义:“如果图像的一系列固有的统计特性或其它的特性是稳定的、缓慢变化的或者是近似周期的,那么则认为图像的区域具有不变的纹理”。纹理的不变性即指纹理图像的分析结果不会受到旋转、平移、以及其它几何处理的影响。目前从图像像素之间的关系角度,纹理分析方法主要包括以下几种。

5.1统计法

统计分析方法主要是基于图像像素的灰度值的分布与相互关系,找出反映这些关系的特征。基本原理是选择不同的统计量对纹理图像的统计特征进行提取。这类方法一般原理简单,较易实现,但适用范围受到限制。该方法主要适合医学图像中那些没有明显规则性的结构图像,特别适合于具有随机的、非均匀性的结构。统计分析方法中,最常用的是共生矩阵法,其中有灰度共生矩阵(graylevelco-occurrencematrix,GLCM)和灰度—梯度共生矩阵。杜克大学的R.Voracek等使用GLCM对肋间周边区提取的兴趣区(regionofinterest,ROI)进行计算,测出了有意义的纹理参数。另外,还有长游程法(runlengthmatrix,RLM),其纹理特征包括短游程优势、长游程优势、灰度非均匀化、游程非均匀化、游程百分比等,长游程法是对图像灰度关系的高阶统计,对于给定的灰度游程,粗的纹理具有较大的游程长度,而细的纹理具有较小的游程长度。

5.2结构法

结构分析方法是分析纹理图像的结构,从中获取结构特征。结构分析法首先将纹理看成是有许多纹理基元按照一定的位置规则组成的,然后分两个步骤处理(1)提取纹理基元;(2)推论纹理基元位置规律。目前主要用数学形态学方法处理纹理图像,该方法适合于规则和周期性纹理,但由于医学图像纹理通常不是很规则,因此该方法的应用也受到限制,实际中较少采用。

5.3模型法

模型分析方法认为一个像素与其邻域像素存在某种相互关系,这种关系可以是线性的,也可以是符合某种概率关系的。模型法通常有自回归模型、马尔科夫随机场模型、Gibbs随机场模型、分形模型,这些方法都是用模型系数来表征纹理图像,其关键在于首先要对纹理图像的结构进行分析以选择到最适合的模型,其次为如何估计这些模型系数。如何通过求模型参数来提取纹理特征,进行纹理分析,这类方法存在着计算量大,自然纹理很难用单一模型表达的缺点。

5.4频谱法

频谱分析方法主要基于滤波器理论,包括傅立叶变换法、Gabor变换法和小波变换法。

1973年Bajcsy使用傅立叶滤波器方法分析纹理。Indhal等利用2-D快速傅立叶变换对纹理图像进行频谱分析,从而获得纹理特征。该方法只能完成图像的频率分解,因而获得的信息不是很充分。1980年Laws对图像进行傅氏变换,得出图像的功率谱,从而提取纹理特征进行分析。

Gabor函数可以捕捉到相当多的纹理信息,且具有极佳的空间/频域联合分辨率,因此在实际中获得了较广泛的应用。小波变换法大体分金子塔形小波变换法和树形小波变换法(小波包法)。

小波变换在纹理分析中的应用是Mallat在1989年首先提出的,主要用二值小波变换(DiscreteWaveletTransform,DWT),之后各种小波变换被用于抽取纹理特征。传统的金字塔小波变换在各分解级仅对低频部分进行分解,所以利用金字塔小波变换进行纹理特征提取是仅利用了纹理图像低频子带的信息,但对某些纹理,其中高频子带仍含有有关纹理的重要特征信息(如对具有明显的不规则纹理的图像,即其高频子带仍含有有关纹理的重要特征)得不到利用。使用在每个分解级对所有的频率通道均进行分解的完全树结构小波变换提取特征,能够较全面地提取有关纹理特征。

由于医学图像及其纹理的复杂性,目前还不存在通用的适合各类医学图像进行纹理分析的方法,因而对于各类不同特点的医学图像就必须采取有针对性地最适合的纹理分析技术。另外,在应用某一种纹理分析方法对图像进行分析时,寻求最优的纹理特征与纹理参数也是目前医学图像纹理分析中的重点和难点。

6.总结

随着远程医疗技术的蓬勃发展,对医学图像处理提出的要求也越来越高。医学图像处理技术发展至今,各个学科的交叉渗透已是发展的必然趋势,其中还有很多亟待解决的问题。有效地提高医学图像处理技术的水平,与多学科理论的交叉融合、医务人员和理论技术人员之间的交流就显得越来越重要。多维、多参数以及多模式图像在临床诊断(包括病灶检测、定性,脏器功能评估,血流估计等)与治疗(包括三维定位、体积计算、外科手术规划等)中将发挥更大的作用。

参考文献

[1]P.Suetens.FundamentalsofMedicalImaging[M].CambridgeUniversityPress,2002.

[2]刘俊敏,黄忠全,王世耕,张颖.医学图像处理技术的现状及发展方向[J].医疗卫生设备,2005,Vol26

(12):25-26.

[3]田娅,饶妮妮,蒲立新.国内医学图像处理技术的最新动态[J].电子科技大学学报,2002,Vol31(5):

485-489.

[4]周刚慧,施鹏飞.磁共振图像的随机场分割方法[J].上海交通大学学报,2001,Vol35(11):1655.

[5]ZhangHM,YuanZJ,CaiZM.SegmentationofMRIusinghierarchicalmarkovrandomfield[J].Journalof

Software,2002,Vol13(9):1779.

[6]林亚忠,陈武凡,杨丰.基于混合金字塔吉布斯随机场模型的图像分割[J].中国生物医学工程学报,

2004,Vol23(1):79.

[7]聂生东,陈瑛,顾顺德.磁共振颅脑图像快速模糊聚类分割算法研究[J].中国生物医学工程学报,2001,

Vol20(2):104.

[8]江宝钏,张钧良.基于BP神经网络的MRI分割[J].微机发展,2000,Vol1:67.

[9]AhmedMN,FaragA.Two-stageneuralnetworkforvolumesegmentationofmedicalimages[J].Proceedings

ofIEEEInternationalConferenceonNeuralNetworks,1997,Vol28(3):1373.

[10]黄永峰,岑康,司京玉等.模糊神经网络在颅脑磁共振图像分割中的应用研究[J].中国生物医学工程

学报,2003,Vol22(6):508.

[11]CostinH,RotariuCR.Knowledge-basedcontourdetectioninmedicalimagingusingfuzzylogic[J].

InternationalSymposiumonSCS’03,2003,1:273.

[12]谢逢,罗立民,田雪琴.基于知识的人脑三维医学图像分割显示方法[J].生物医学工程学杂志,1997,

Vol14(2):124.

[13]王蓓,张立明.利用图像先验知识与Snake结合对心脏序列图像的分割[J].复旦大学学报(自然科学

版),2003,Vol42(1):81.

[14]RaquelVC,VeronicaMB,OscarYS.Couplingofradial-basisnetworkandactivecontourmodelformulti

spectralbrainMRIsegmentation[J].IEEETransactionsonBiomedicalEngineering,2004,Vol51(3):459.

[15]LuoXP,TianJ,LinY.Analgorithmforsegmentationofmedicalimageseriesbasedonactivecontour

model[J].JournalofSoftware,2002,Vol13(6):1050.

[16]HallpikeL,HawkesDJ.Medicalimageregistration:Anoverview[J].BrInstituteRadiol,2004,Vol14(6):

455-463.

[17]PetraA,ElsenV.MedicalImagemaching:Areviewwithclassification[J].IEEETransMedImage,1993,

Vol12(3):26-39.

[18]LuoShuo-qian,LiXiang.Implementationofmutualinformationbasedmulti-modalitymedicalimage

registration[A].EngMedBillSocProc22ndAnnIntConfIEEE[C].NavyPierConventionCenterChicago,

Illinois,USA:TheInstituteofElectricalandElectricalandElectronicsEngineers,Ind,2000,2:1447-1450.

[19]SharmanR,TylerJM,PianykhOL,etal.Afastandaccuratetomethodtoregistermedicalimagesusing

waveletmodulusmaxima[J].PattRecogLett,2000,21:447-462.

[20]LesterH,ArridgeSR.ASurveyofhierarchiclnon-linearmedicalimageregistration[J].PatternRecognition,

1999,32:129-149.

[21]卢健,胡志忠,杨如乃.医学图像融合技术的研究[J].上海生物医学工程,2006,Vol27(3):163-167.

[22]王新成.高级图像处理技术[M].北京:中国科学技术出版社,2001.

[23]RVoracek,HPMcAdams,puterAidedDiagnosisofInterstitialLungDisease:aTexture

FeatureExtractionandClassificationApproach[J].ProcofSPIE,1998,3338:1502-1509.

[24]UIndhal.EvaluationofalternativespectralfeatureextractionMethodsoftexturalimagesformultivariate

医学图像论文范文第2篇

将微球投入溶液中,使其分布较均匀,并置于显微镜下观察,得到清晰的微球显微图像。根据我们先前的工作,通过测定微球的外径D以及其在溶液中所成像的黑环内径的d,可以根据有关理论方程来确定微球或其周边介质的折射率。因此,需要精确测定D与d。下面介绍我们用VBAI编写的程序如何实现对微球像D与d的智能自动测定。进入VBAI的InspectionState编辑窗口,可以编辑整个程序的主要过程。我们的设计是:先在“Inspect”过程中对图像进行预处理并找到物体,得到物体个数;然后在“GOON?”过程中判断检测到几个物体,是否已经检测完全部物体;随后在“Measure”过程中对当前序号的物体进行检测。进入每个过程进行具体步骤的编辑,只需双击右侧工具中的相应操作,就可以将该操作加入程序中,在属性窗口中对操作的各项参数进行设定。在“Inspection”过程中,我们首先打开图片,选中循环取图将依次获取目标文件夹中的每个图像文件。如要测量真实尺寸,则要对图像进行标定,VBAI中Calibrateimage有多种方式。通常实验室显微镜采用显微标尺进行标定,选择第一种模式,导入显微标尺的图像,标定完成后生成标定文件,检测时自动读取。

接着我们对图像进行预处理,这将打开visionassistant窗口,可对图像进行LUT变换、滤波、分割、形态学变换等多项操作,在本实例中将图像处理为适合寻找物体的二值化图像。然后对处理过的二值化图片进行DetectObjects操作,得到物体数列。SelectImage操作将原图像读入,代替处理过的二值化图像,为下一步检测做准备。SetVariable的操作是将DetectObjects操作中检测到的物体个数存入代表剩余物体数的X。“GOON?”过程中没有图像处理的具体操作,只在InspectionState编辑中有一个判断,在指向end的箭头定出编辑走向end的条件,为剩余物体数X<1,当X≥1时将执行默认箭头,走向“Measure”过程。“Measure”过程中,首先IndexMeasurements读取之前DetectObjects中检测得到的物体数列的的第X个物体。接着,要设置程序可以根据物体的位置、大小等自动建立相应的ROI,即检测区域,由于要进行微球图像直径的检测,因此区域类型选择圆环形。然后就可以在检测区域内进行圆的直径检测了,利用FindCircularEdge操作可以很方便地做到这一点。在直径检测中,程序在检测区域内沿径向生成一系列的检测线,曲线为沿检测线方向上灰度值变化曲线的一次导数曲线,反映了灰度值的变化速率,负数部分对应图像由亮变暗,正数部分对应图像由暗变亮,极值处即变化速率最快处,也就是边缘所在位置。曲线上方的参数设定包括判断边缘的阈值,平滑算子的大小,取样宽度,每条检测线之间的间隔等。由于是根据拟合出的曲线确定边缘位置,因此可以超越像素的限制,实现亚像素等级的超分辨率精确度。

检测程序首先得到每条检测线上的边缘点位置,再根据所有边缘点拟合出圆形边界,计算出直径数值,程序中给出精确到0.01个像素的结果。结果的稳定性还要取决于拍摄环境、光照、相机稳定性等。图像中微球边缘的黑环是由于光线折射造成的,根据我们先前工作,证明其粗细与微球与溶液的折射率比值成一定比例关系。因此,程序中通过分别测量各微球的D与d,调整FindCircularEdge操作中搜寻方向、边缘种类等参数可以搜寻到内径圆和外径圆。在精确测定D与d值后,可自动根据我们先前工作导出的方程式,给出微球的折射率或是其周边介质的折射率。Calculator是界面类似LabVIEW图像化编程工具的一项功能,可以由用户自己选择输入输出量、制定复杂的运算程序等,本实例中为利用文献的方程式计算出微球的折射率。DataLogging可以选择需要记录的数据写入指定的txt或csv文件,以便后续的数据分析统计。最后SetVariable将变量X减1。VBAI应用编写完成后可作为专用的检测软件使用,处理图片时将需要分析的图像放在同一目录下,进入VBAI文件,指定该路径,点击RunInspectioninLoop,就可以自动完成所以图片的分析,并得到记录有数据的txt或csv文件。这样生成的检测程序智能、客观、准确、快速,实现了图像中微球的识别寻位、移动ROI建立、两个直径的测量、折射率计算、数据保存等操作的完全自动化运行。而且整个操作与运算排除了人为操作中的主观性因素,精度亦达到亚像素水平,平均单个微球的测量时间仅需0.20s。为了检验其测定的准确性,在对拍摄系统和环境进行标定和控制之后,选择合适的微球作为检测对象进行多次检测。同时,用以往常用的油浸法对微球折射率作对照测定,测得的折射率与本VBAI生成系统测定结果高度吻合,说明VBAI检测程序的测量准确性可重复性较高。

2应用于细胞检测

2.1背景

细胞是生物医学研究的重要对象之一,通过分析细胞的显微图像我们可以得到很多有用的信息。红细胞是人类血液中存在的主要细胞,一直是研究的热点。正常的红细胞呈双凹圆盘状,而衰老和不健康的红细胞会呈棘形、双凹消失等不规则的形态。通过观察与分析显微图像中红细胞的形态可以评价其健康程度。所以这里以红细胞为例说明如何采用VBAI编写适合于进行细胞图像分析的技术过程。

2.2方法

将红细胞悬浮于缓冲液中,置于显微镜下观察,利用数码CCD摄像头拍摄下细胞的图像。检测程序上需要先寻找到各个细胞,再对每个细胞进行检测,与微球检测的过程类似,程序总体设计上依然可以利用上节中微球的检测程序的设计,但需要根据有关图像处理分析的内容更改具体的图像处理分析操作。在图像预处理操作中需要将原始图像处理为适合物体识别的二值化图像,利用VisionAssistant,先对图像转灰度图像、适当的LUT处理,在分割处理上,由于细胞边缘处明暗对比较大,边缘锐利,因此选用基于移动窗口分割的算法可以较容易地找到边缘。通过实验比较证明,选用Backgroundcorrection分割,可综合局部和全局的灰度变化信息。分割移动窗口大小设置为边长接近细胞边缘宽度2倍的正方形最为合适。分割完成后再对二值图像进行一定的形态学变换操作,将边缘尽量变得闭合并填充孔洞。最后进行DetectObjects操。接着将对细胞形态进行分析。首先根据DetectObjects操作中所检测到的物体列表,对每个细胞进行检测区域的建立,即设置ROI。然后依然使用FindCircularEdge操作,在该操作中调整参数,使得检测线能较准确的发现边缘。该操作完成后,将输出一项名为Deviation的参数,该参数代表了细胞边缘与标准圆的标准偏差。同时该操作还可以得到细胞直径等相关的信息。将Deviation除以直径后可以得到细胞边缘与标准圆的相对标准偏差,由于健康红细胞的图像是近似圆形的,因此Deviation参数可以一定程度上反映红细胞的健康程度。将实验中拍摄到的采用不同保存格式、保存不同天数的红细胞图片归类,用VBAI程序进行分析,结果保存在csv文件中。为较健康的细胞,图像中细胞外轮廓近似圆形,Deviation/R=1.2‰;为发生了一定形变的细胞,Deviation/R=3.2‰为严重变形的棘形细胞,Deviation/R=7.3‰。随着细胞变形程度加重,细胞的相对标准偏差值也随之增加。通过软件分析的优势在于:可以客观而定量地给出每个细胞的变形程度;可以快速自动地分析大量的图片,得到大量的数据,并对数据进行后续的统计处理,具有统计学意义。除此之外,还可以获得细胞的大小信息,通过视野内细胞个数,得到细胞分布密度信息等。

3应用于图像的改善

3.1背景

某些生物医学样品的显微图像,由于各种原因,其清晰度与对比度都不能满意,对此,也可以运用VBAI的图像处理的方式对图像进行改善。下面介绍花粉孢子断层扫描图像中噪音及对比度不理想的断层图作改善的技术过程。

3.2方法

首先对整幅图像中的噪杂进行去除,通常改善的方法有空域滤波和频域滤波,两种方法都可通过VisionAssistant中的算法实现。其中空域滤波的算子较多,功能更加丰富。不仅提供了低通、高通等10多种算子、每种算子3×3,5×5,7×7三种尺寸,还可以由用户自定义算子以满足特殊需要。整幅图像改善完成后对左右对比度及清晰度不理想的花粉孢子断层图像进行增强,首先建立一覆盖中央花粉孢子像的区域,使用一可旋转的长方形区域,长方形的方向与左右像平移的方向垂直,宽度等于左右像平移的距离。接着利用Calculator操作计算图11(a)左右像的位置。输入中央像的中心点(X0,Y0)、角度α和平移距离L,则左像、右像中心点(X1,Y1),(X2,Y2)分别为:X1=X0+L•cosαY1=Y0-L•sinαX2=X0-L•cosαY2=Y0+L•sinα以此为中心点坐标参数,长宽与角度参数使用中央区域的长宽与角度,分别建立覆盖左右像的区域,使用VisionAssistant对左右区域内的图像进行对比度、明暗度的调整增强。得到处理后的图像,三个层面的图像的对比度基本相同。利用VBAI对图像进行处理与改善,不仅功能丰富,适用性强,且操作简单,易于掌握,程序建立完成后还可以快速的对其他同类图片进行处理,大大节省了时间。

4结语

使用VBAI创建图像分析处理程序,可对各种生物医学对象进行分析和检测,可对图像进行处理与改善,其优势在于:

(1)相比起人眼观测和手动测量,本方法能够提供客观和量化的数据,可快速对大量图像进行自动分析并保存检测结果。

(2)相比起通用化的测量分析软件,本方法针对性强,针对各种特定情况和需要制定适应的程序,准确性、有效性和实用性高。

(3)相比起使用VC等编程软件编写特定测量分析软件,本方法简单,有大量强大的模块化功能自由选用,程序开发周期短,工作量小,不需要专业编程技能,一般人易于掌握,且程序易于调整改进。综上所述,使用VBAI可简单快捷的针对不同生物医学图像建立相应检测处理程序,可快速自动地对大量图像进行分析,得到客观量化的数据。VBAI是实验室快速建立生物医学图像处理与分析检测程序的有力工具。

医学图像论文范文第3篇

Photoshop是由Adobe Systems开发和发行一款功能强大的图片处理计算机软件,目前其已广泛应用于户外平面广告设计、影楼摄影后期处理和多媒体课件制作等领域,其功能强大且操作便捷,目前已成为应用最为广泛的图片处理软件。本文就该软件在医学论文图片整合中的一些应用技巧做一简要介绍,旨在为医学工作者在论文撰写图片整合方面提供针对性的实践参考。

【关键词】Photoshop 医学论文 图片整合

1 医学论文图片整合过程中常见的问题

医学工作者在论文撰写过程中常常遇到图片的调色、图片格式的转换、像素的设置、多个单幅图片向一副图片的整合等诸多问题,由于图片处理技巧的缺失,往往造成图片处理不符合期刊的要求,延误论文撰写和发表的进度,笔者就医学期刊论文图片处理要求,就多个单幅图片向一副图片的整合(包含序号和标尺的添加)处理技巧做一针对性的介绍。

2 Photoshop在医学论文图片整合中的应用

2.1 Photoshop版本的选择

本文软件选择Photoshop cs2.0简体中文版,cs2.0版虽然是Photoshop较为早期的版本,但具有该软件最基本和最常用的功能,cs2.0中文版的优势是软件本身只有数百兆,占用内存小,删减了不常用的功能,对计算机配置要求较低,且已被汉化便于操作使用,完全能满足对医学论文图片处理的要求。

2.2 多个单幅图片向一副图片的整合

本文以四副单个图片整合为一副图片为例,在软件中依次将四副单个图片打开,任选一幅图片点击菜单栏图像-图像大小,并记录图片的宽度、高度及分辨率;空白背景图层构建:点击菜单栏文件-新建,参数设置:高度和宽度设置约为单幅图片的二倍多一些(空白图片上放置四幅图片),像素设置与单幅图像素一致(图1);四幅图片移动至空白图层:选择工具栏移动工具,依次拖动四幅图片至空白图层,形成一个多图层图片,同时关闭原四副图片,在活动图层面板分别点击“图层1-4”文字给每张图片针对性命名;图片的排版:以四副图片平排各两张为例,使用工具栏移动工具分别移动各张图片至大置,在软件上、下刻度线上拖动形成交叉参照线用于精确定位(参照线不会被保存至图片),图片与图片间的距离根据期刊要求参照刻度线确定,操作同时可使用放大镜功能放大图层,使用键盘上下左右进行微量精准调节(图2)。

2.3 图片序号和标尺的添加

序号的添加:点击图层面板下部“创建新图层”,选择新图层,点击“排版文字工具”并选择字体和字体大小,在空白图层上依次键入ABCD,并分别拖动文字至图片右下角,可使用参照线进行准确定位;标尺的添加:标尺是医学论文表示图中显微结构大小的参照线,新建空白图层并双击文字重新命名“标尺”,选择“标尺”图层,点击选择“矩形选框工具”,在标尺图层中建立矩形空白选取,然后点击菜单栏编辑-填充,颜色使用黑色(可根据需要变换颜色),Ctrl+D取消选区,快捷键Ctrl+T可通过控制滑块调节标尺的长度和宽度。

2.4 图片的保存

图片保存常用格式有三种:JPEG、TIFF和PSD,三种格式各有特点。JPEG格式压缩量较大,图片数据容量较小,为常用格式,TIFF格式压缩量小,图片数据容量较大,但图片显示细节较好。PSD格式是多个图层并存能够被Phtoshop识别的一种图片格式,严格来说并不是图片,但它能保存图片的图层原始状态,其优势是为图片的修改做了备份储备。

3 结语

Photoshop软件功能强大使用方便,在各个领域应用十分广泛,医学领域尤其是医学形态学领域使用最为常见,熟练掌握该软件的操作技巧在医学工作者图片处理过程中能起到事半功倍的效果。本文除了以文字形式介绍外还制作了相关操作屏幕录像视频供交流学习(https:///cknZu4Xy9Dk9w 访问密码 d954),旨在为医学工作者论文图片处理提供一些基础性操作帮助。

(通讯作者:李明)

参考文献

[1]陈瑛,龚著琳,苏懿,等.以能力培养为导向的“医学图像处理与分析”研究生课程教学改革初探[J].中国高等医学教育,2010(06):79-80.

[2]蒋斌.Photoshop实用教程[M].电子工业出版社,2004:15-18.

[3]马月进.Photoshop图像处理课程案例教学实践[J].计计算机教育,2010(02):87-89.

[4]张昌林,陈 素,李 彬,陈健美.多媒体技术及其医学应用[M].北京:人民卫生出版社,2009:111-161.

[5]张屹,黄欣,谢浩泉,等.交互式微视频教学资源的研发与应用――以“教育技术学研究方法”为例[J].电化教育研究,2013(05):48-54.

作者简介

高欣(1977-),女,山西省吕梁市人。现为长治医学院讲师,主要从事计算机基础教育。研究方向为计算机技术在医学教育中的应用研究。

作者单位

医学图像论文范文第4篇

关键词:计算机技术;大数据医疗;分析处理;

文章编号:1674-3520(2015)-09-00-01

引言

因为计算机技术运用的广泛性,所以我们医学领域也受益于计算机技术,看病变的更加的方便了,我们在看病的时候很多方面都要用到计算机技术来提供便利。我们用计算机来处理复杂的医疗信息,统计病人的病例,在某些方面可以让计算机来诊断病情,方便与其他的医生进行交流病情等等。因为计算机按照程序来运行,所以程序不出问题计算机一般就不会出现问题了,而人脑难免会出错,所以我们借用计算机来判断,医生误诊的几率就会大大减少,并且可以用它储存大量的医学信息,这也是人脑无法比拟的,所以我们要想提高我们的医学水平,就要研究计算机技术和医学的关系,因为它的前景非常广阔,所以我们要大胆尝试为医学水平的发展贡献力量。

一、计算机技术应用在医学信息系统中的应用

(一)用计算机技术来储存大量的医疗信息。现今医学的发展已经离不开高新技术的发展,要想提高医疗水平,就要大力发展新技术,建立新的医疗信息库,为患者提供快捷、准确的疾病信息。海量信息要录入,传统人工行为已经不可取,所以就要大力发展信息库系统,提高医院的计算机信息化管理水平。而计算机网络信息技术则为医疗数据的处理提供了有效的帮助,记录大量的医疗信息,同时也可以在线为患者提供医疗服务,极大缩短了治疗时间,而且我们利用这个信息库可以快速地找到对应的症状为病人的急救节省时间,它也可以随时监测医院各个部门的运行,而且可以很快速的收集各方面的信息进行汇总,方便了医院智能化的管理。

(二)建立信息共享数据库。每家医院不可能看见所有的病例,所以医院之间的交流就显的尤为重要,国内外的一些著名的大型医院都建立了信息共享数据库,他们可以通过计算机来进行信息共享,对一些疑难杂症可以通过数据库来寻求解决办法,这种信息平台很好地为快速解决医学病症提供了方便的途径,计算机能容纳大量的数据信息资源,其中包括大量的事例文字和事例图片甚至具体的视频来全方位呈现所要查找的信息,而且其中的信息涵盖的范围广,检索的途径比较方便,所以我们要大力建立信息数据库为医院建立方便的病例查询系统。

二、计算机在医学管理决策中的应用

(一)计算机储存病例。我们现在的医院在利用计算机信息技术制作的病历做成了电子病历的模板,将患者的病情通过程序记录在计算机中去,相较于传统的纸质病历,电子病历有着以下传统病历无法比拟的优点:首先是保存很方便,因为是保存在电脑中,只要一个机房就可以了,而且这些信息可以缩刻在一个小小的硬盘里面,也节约了用地;其次就是它记录很方便,因为不用医生来手写,只需要编制表格录入就可以了,而且在翻阅的时候不用一篇篇的翻阅,可以直接用查询系统找到自己想要看到的内容;最后就是分享很方便了,可以直接复制粘贴就可以将电子病历传给其他的医生来观看,甚至可以跨越国家来进行诊断,这样就可以大大缩短了病人的治疗时间。

(二)临床决策系统。1、计算机了用信息库的资源可以对相关的数据进行储存。医生利用计算机中的决策系统能为医生解决病症提供一些参考,在诊断的时候,如果计算机检测到病人对应信息库里面相似的症状,可以提醒医生病人患病的情况,并且会罗列出与这个症状相似的所有病因。2、计算机的智能诊断系统。因为在面对一些病情比较复杂的病人时,医生要对病人的情况进行全方位的分析,但是难免会有遗漏的时候,这时候计算机可以根据病人的情况对应数据库的病情资料并且进行智能诊断,它帮助医生进行全方位的病情分析,提高医生的诊断效率。3、电脑的诊断分析。在做好病人的病情分析后,计算机可以根据事先输入好的数据,将要使用的药方信息给主治医生看,也会呈现相应的医生的嘱咐。

三、计算机图像处理技术在医学领域中的应用

(一)医学图像种类。因为计算机的程序化分析,所以在对一些比较复杂的医学图像比如:X光、B超、核磁共振成像等等可以快速地做出分析,现在我国的医院大多都配备了这样的仪器,光靠医生的分析是需要一定的时间的,所以用计算机来分析这些信息图像可以大大提高医院的快速医疗和新人的培养水平。

(二)医学图像处理技术概述。医疗图片中大量地运用计算机图像处理技术,计算机要对这些图片进行绘制,储存,运输,分析,决策等这几个方面的处理。它的作用能在下面一些处理中得到体现:一、对图像进行转化,压缩,变形等等;二、对图像里面涉及的数学公式进行分析和运算;三、进行数字和图像之间的相互转换;四、对收集的医疗数据进行分析,并转化为各自相对应的图像,为后期的诊断和治疗提供方便;五、对图像做处理,可以放大,缩小,改变分辨率等等;六、对于模糊的或者残缺的图像,计算机可以进行模拟还原;七、计算机技术可以利用不同的图像处理软件将原本比较大的图像进行压缩转换成比较容易储存和传递的文件;八、将原本比较复杂的图像可以分解为较小的几个部分,可以方便医生对图像进行细致的分析,它可以对一些比较模糊的边角区域进行检测。

现今的医学已经离不开计算机技术的发展了,我国的医院里大多都配备了计算机智能系统,大大提高了医院的医疗水平,从目前来看,计算机技术应用的前景十分的广阔,还有很多的医学领域已经或者将要得到开拓。我相信随着计算机技术不断的发展,我们的医学技术一定会取得巨大的突破。

参考文献:

[1]王玉华 浅议计算机在医学中的应用[期刊论文]-计算机光盘软件与应用 2014(5)

[2]潘振宇 计算机在医疗领域中的应用浅析[期刊论文]-计算机光盘软件与应用 2011(21)

[3]王金花.周栋 区域医疗领域大数据应用系统测试研究[期刊论文]-信息技术与标准化 2014(6)

医学图像论文范文第5篇

一、计算机化病历

计算机化病历是医学信息学的一个重要研究方向。它是指存在一个系统中的电子病历,这个系统可支持使用者获得完整、准确的资料;提示和警示医疗人员;给予临床决策服务;连接管理、书刊目录、临床基础知识以及其他设备[2]。电子病历的优点如下:完整的电子病历存储系统支持多个用户同时查看,保证个人医疗信息的共享与交流。通过网络,医师可以在家中或在世界任何一个角落随时获得患者的电子病历。同时可根据不同的用户给予不同的资料查询权限,从而保证了病历的安全性。授权用户在适当时间才能查看合适的病历。

此外,电子病历不再是一个被动的医疗记录。论文通过与图像信息的整合,可提供实时医疗监控,药物剂量查询等多种功能。电子病历已成为新兴信息技术和信息工具的基础。

电子病历目前可大致分为单机电子病历和网上电子病历两种。网上电子病历的优点是采用了ASP服务器提供全球,安全性与数据完整性则由ASP供应商解决;缺点则是数据不在医师所工作的计算机上。

虽然医疗界投入巨资,电子病历仍存在许多问题亟待解决[3]。首先,病历数据的输入界面仍不够简单;其次,电子病历需要统一的医学用语标准。目前,美国国家医学图书馆已制定出统一医学用语系统(unifiedmedicallanguagesystem,UMLS),这一系统包含了近一百万个术语描述医学概念。一旦该系统得以推广,将极大地促进全球医学用语的标准化。

二、医学信息系统

医学信息系统与其他工业系统有很大的不同。毕业论文不同的部门对信息的要求不同,这是对医学信息系统最大的挑战。例如,信息系统用户可分为基本用户和二级用户,基本用户包括医师和其他护理人员;二级用户则包括医疗保险公司、政府医疗保险机构等。不同用户需要的信息不同,导致信息管理的复杂性。同时,如何有效地利用不同的信息系统解决不同的医疗管理也日益成为人们重视的课题。

信息系统包括实验测试系统、医疗设备订购与维护系统及影像图片存储与交换系统等,存储于不同的计算机和不同的信息网络中。对于特定的用户来说,前端界面可能有所不同,但是后端数据必须是一体化和标准化的。

医学信息系统包括企业资源规划系统(ERP)、患者关系管理系统(patientrelationshipmanage—ment,PRM)、数据挖掘及决策支持系统等|4J。ERP技术在商业领域取得巨大成功,近年来,其在医疗机构中也得到广泛应用。其特点是将企业信息整合为一体(整合的数据库),所以各系统都提供一致的数据。一次输入,多次使用,有效地降低了输入费用,并保证各系统得到完整、实时、一致的数据。其次,ERP系统可用来决策医疗设备订购、管理和维护,例如通过一个整合的数据库,根据病床的使用率,ERP系统可自动选择最合适的时间对医疗设备进行维护。PRM是侧重于患者需求的信息管理系统。PRM记录患者生活习惯、个人病史、家庭病史以及过敏反应等,医院从而可提供更加个性化的医疗服务。同时通过PRM,患者也可向医院询问医疗方案。数据挖掘技术在医疗管理上也日益重要,这种技术的主要优点是降低成本,为医师提供最有价值的信息,从而提高医疗诊断的质量。Bresnahan[5]指出,上千种的服务、多种治疗方案以及相互关系使信息系统越来越复杂,而这种复杂性推动了数据挖掘技术在医疗上的使用,已远远超过其在银行业和零售业的应用范围。

三、医疗决策系统

医学实践最重要的是作出正确的医疗诊断,因此医学信息学将研究重点也放在决策系统上。硕士论文决策系统不仅需要先进的信息科学技术和工具,而且需要理解医师如何利用推理知识作出医疗判断。

当前决策系统主要基于两种方法论:着重于统计分析的定量分析法,以及侧重于逻辑推理的专家系统法。定量分析法产生于上世纪50和60年代,主要用于解决心脏疾病和异常疼痛等临床问题。早期系统以概率决策理论为解决问题的依据。最新的此类系统以美国Stanford大学PANDA项目最为著名[6]。PANDA项目使用了决策分析技术,主要应用于胎儿期诊断,根据概率分析方法对胎儿期中的问题作出最有利于患者的选择。专家系统法以逻辑推理为解决问题的核心。最著名的第一代专家系统是MYCIN系统[7]。此系统主要用于对多种传染病的诊断和治疗,其中的医学知识不是包含于工具中,而是存储在规则中。第二代专家系统则以Asgaard系统最为成功[8]。系统大大扩展了MYCIN的功能,并补充了一系列的推理方法,其中包含了所有相关领域中的复杂知识。通过与数据库的连接,系统可自动提取带有时间标志的数据,而这种功能则使系统可针对某个患者作出特定阶段最适合的治疗方式。另外通过反溯法可比较不同的医疗护理,并作出相应的质量报告。

四、影像信息学技术

自上世纪70年代中期,以计算机为基础的医学影像学随着数学、生物物理学和工程模型学蓬勃发展起来。但是由于各类学术会议侧重于影像,而忽视了信息学,导致医学影像信息学科发展缓慢。

直到近年,界面友好的医学影像数据库与二维、三维结构及可视化的结合将医学影像信息学带入了一个崭新的时代。开始于1990年的“可视人”项目提供了大量的人体模拟图像,这一技术的广泛应用带动了各类解剖学教育软件的开发,更为重要的是引发了关于模型、摸拟及大型数字化图像搜索等一系列的信息学问题。同一时间开始的“人类大脑”项目则直接导致了大量关于大脑数据图谱登记、分ShanghaiMedJ,2004,VoI27,No9区等课题的开展。新的信息学、生物计量学、计算图像学的结合,使人们重新认识到影像信息与模拟学的重要性。

现代影像信息学研究的重点包括图像传递标准、传递规则、医学术语、信息压缩、图像数据库索引及图像病例传递安全等。从“虚拟细胞”[9]到“虚拟人”[10],当前影像信息学从分子水平、细胞水平、组织水平到个体都得到广泛的应用。然而,医学信息学面临着更多亟待解决的现实问题。影像信息的完整化需要更深层的科学、技术和医疗实践的结合,包括对二维和三维图像自动分区与注册的新技术;数据抽象与概括;图像数据库中生物多样性来解释群体图像数据和表现型与基因型之间的关系;开发医学信息数据注释语言整合高级图像系统和医院信息系统等。

五、远程医疗与互联网

随着宽带网进入千家万户,远距离传递诊断和患者管理信息成为可能,远程医疗成为新的研究热点。通过网络电视和无线技术,使医师及患者能随时传递相应的医学相关信息,从而为远程医疗开创了更为广阔的应用前景。然而远程医疗昂贵的医疗费用使其现阶段只限于特定的人群。

互联网的出现提供了图片和文字传输的介质,而且为医疗机构提供了海量的信息数据。英语论文在互联网的帮助下,医师不仅可以全球共享医学资源,而且可以针对某一特殊病例进行广泛的交流。例如,美国国家医学图书馆提供医药在线(MEDLINE)数据库,其成员可查看、打印各类文献资料;医学网(CLINICWEB)则提供所有临床信息的索引,是医学界常用的搜索引擎。同时互联网的发展为一些身患相同病症人群的相互交流提供了可能,此类患者交流组织的形成有利于自我寻找最合适的治疗。

六、数据标准的重要性

电子病历和病案的大量应用、医疗设备和仪器的数字化,使得医院数据库的信息容量不断地膨胀。然而简单存储信息只是数据库的低端操作,数据的集成和分析以及医学决策和知识的自动获取才是信息学研究的重点。要对数据进行加工和分析,数据必须以特定的结构方式来存储。数据结构允许计算机轻易地传递符号和像素,并大大提高信息处理的速度。然而,这种数据结构不是仅由输入来决定的,医护人员必须有一约定俗成的数据标准,并为社会所公认。这一数据标准明确了数据库中存储的特殊符号所具有的涵义。其作用正如字典一样,起到咨询和定义的功能。数据标准又可分为文字标准和信息标准。

文字标准是指标准必须以文字形式表示,而不能以图像形式表达,国际上称为医疗数据系统,它包括一系列有特定涵义的单词。意识到标准的重要性,越来越多的医学和信息组织参与到此标准的制订中来。其中最著名的为美国病理协会制订的人类与兽类医学系统术语标准SNOMED和英国健康中心制订的医学系统术语标准ReadCodes。

信息标准则同时定义文字和图像数据。当今最通用的信息标准称为HL7(HealthLevelSeven),也可称为标准卫生信息传输协议,其中又包括医学数字化图像和传递标准(DICOM)。HL7标准确定了数据库系统中信息传递的顺序和格式,涵盖了实验测试术语、药品设备采购术语、收费术语、出院转院术语及电子监护术语等,并提供了一种类似于数据库的结构,利于患者信息在电子病历系统、实验室系统等多种数据系统中传递。

DICOM可明确图像在数据流传递过程中压缩和加密的格式,并确定CT图像或B超图像在数据库中存储的方式。

七、结语

医学信息学是计算机技术、生物物理学、统计学等与现代医疗结合的新兴学科,也是提高医疗服务质量、医院管理水平和降低成本的必然结果。这一学科需要多领域科研人员和医务工作者的大力合作。可以预见,不久的将来医学信息学将在医院管理、教学和科研、疾病的预防、诊断和治疗等方面发挥巨大和不可替代的作用,并将带动整个医学界的革新。

参考文献

1GreenesRA.ShortliffeEH.Medicalinformatics:anemerginga-cademicdisciplineandinstitutionalpriority.JAMA,1990,263:1114—1120.

2SteadWW.HalrlmondWE.Computer-basedmedicalrecords:thecenterpieceofTMRMDComput,1988,5:48—62.

3McDonaldCJThebarrierstoelectronicmedicalrecordsystemsandhowtoovercomethemJAmMedInformAssoc,1997,4:213—221.

4SiauK.Healthcareinformatics.IEEETransInfTechnolBiome-di.2003.7:1-7.

5BresnahanJ.Dataminging:adelicateoperationCIOMag(on-line).1997.

6OwensDK,ShachterRD,NeaseRF.Representationandanaly-sisofmedicaldecisionproblemswithinfluencediagrams.MedDecisiMaking,1997.17:241—262.

7YuVL,FaganLM,WraithSM,eta1.Antimicrobialselectionbyacomputer:Ablindedevaluationbyinfectiousdiseaseexperts.JAMA,1979,242:1279—1282.

8ShaharY,MikschS,JohnsonP.TheAsgaardproject:ataskspecificframeworkfortheapplicationandcritiquingoftime-on-entedclinicalguidelines.ArtifIntellMed.1998.14:29—51.

9LoewLM.SchaffJCTheVirtualCell:asoftwareenvironmentforcomputationalcellbiology.TrendsBiotechnol,2001,19:401—406.

医学图像论文范文第6篇

关键词:研究综述;信息检索;图像检索

1.引言

伴随着计算机网络技术、多媒体技术和数字化信息处理技术的飞速发展,互联网上的多媒体信息迅速膨胀。与此同时,计算机所能处理的媒体信息范围也在不断扩大。如何对海量数字图像信息资源进行高效地组织、管理和检索成为了当前热门的研究课题。图像检索成为多媒体领域研究热点的现实原因包括:一方面,图像作为一种内容丰富、表现直观的媒体资源,已经应用在社会各个层次和领域;另一方面,人们面对日益增长的多样化的图像信息,如何在这些海量图像信息中检索出满足自身需求的资源,是近年来网络图像信息处理领域迫切需要解决的问题。

2.图像检索国内研究综述

从20世纪70年代开始,国外有关图像检索的研究就已开始,当时的研究内容主要是基于文本的图像检索技术,到90年代以后,出现了对图像内容语义检索的研究,即基于内容的图像检索。与国外相比,我国有关图像检索的研究起步较晚,从20世纪90年代开始,我国图情领域的核心期刊才开始有相关图像检索的研究论文出现,研究内容大多也是参考国外的研究方向。近年来,随着相关专家、学者对图像检索领域关注度的提高,我国图情领域有关图像检索的研究论文大量出现,相关研究的理论和技术也取得了一定进展。

2.1图情领域核心期刊中图像检索研究论文分布及相关分析

根据中国社会科学引文索引(CSSCI)数据库1998年来对图书情报领域有关图像研究来源文献的收录情况,下文将运用文献计量方法对目前我国图情领域有关图像检索的研究论文按期刊种类、年份、研究主题分布等进行统计分析。

2.1.1图像检索研究论文年度分布情况及相关分析

从表l可以看出,截止到2014年我国图情领域的相关核心期刊在图像检索方面论文收录量总体上呈余弦波状趋势。其中,2002年以前,我国有关图像检索的论文在图情领域核心期刊上的分布处于量少且分散化的状态。2002年到2006年来数量相对较多,属于有关图像检索研究的高峰期,2005年达到最大值。但在2006年以后,相关论文数量趋于明显回落的状态。从以上表格数据的分布状况可以看出,尽管我国图情领域的专家、学者对于图像检索领的研究出现过关注密集期,但重视程度并非长期处于始终如一的状态。

另外,从上表中还可以看出研究论文在核心期刊的分布状态,其中《现代图书情报技术》、《情报科学》、《情报杂志》、《图书情报工作》这四种期刊对图像检索这一研究方向相对关注较多,几乎每年都有相关的。其余的期刊对图像检索研究方向的关注程度相对不高,只有少量其上,并且期刊中有关图像检索的研究论文按年度划分时,总体分布也是相对比较分散的状态。

2.1.2图像检索相关研究论文主题分布及整体分析

对于CSSCI中所收录的126篇有关图像检索研究的文章,按照所研究的相关内容可大致划分为图像检索基本理论与概述、基于具体图像特征的检索、图像检索的具体应用、图像检索交互性与反馈机制、图像检索系统及搜索引擎的设计与评估和图像检索技术、方法研究六个主题方向。

以上结果表明,我国图书情报领域近十年以来对图像检索的研究主要集中于图像检索基本理论与图像检索技术、方法方面。通过对这些相关主题研究论文的阅读,可以发现近十年来,我国对图像检索的研究比较理论化,缺乏对具体图像检索系统的设计、图像检索技术在实际生活中的应用与用户交互性方面的研究。对基于内容的图像检索技术,无论是从低层视觉特征,还是从高层语义中的图像检索,均是涉及理论方向的探讨居多。这表明我国图情领域有关图像检索的研究,无论是从广度还是深度上,均有较大提升空间。另外,有关图像检索系统及搜索引擎的设计与评估方面,则比较注重典型系统和搜索引擎的比较和分析,新的图像检索系统的设计较少。

(1)图像检索基本理论与概述

该主题方向主要包括图像检索的所涉及的基本原理、基本理论模型构建、已有的国外检索系统简介等。相关论文及研究内容有,毛力、张晓林1999年在“基于内容的图像检索技术与系统”一文中首先简述了传统图像检索中出现的问题,又初步探讨了基于内容的图像检索的原理,并简要介绍了国外几个典型基于内容的图像检索系统,开了我国研究基于内容图像检索的先河。2005年王彤、魏成光在“数字图像信息的组织和检索”一文中介绍了网络信息环境中数字图像信息的检索原理。随后,又有一些新的学科理论原理相继在图像检索领域涉及和应用,相关论文包括“基于压缩与特征点的快速图像检索”、“基于贝叶斯定理的遥感图像检索”“数字图书馆中基于本体的图像检索”等。由研究论文所涉及的内容可以看出,越来越多的新的学科内容将应用于图像检索领域中。

(2)基于具体图像特征信息的检索

该主题主要涉及基于具体的图像内容特征的检索方式,包括基于图像的颜色、纹理、形状等具体内容特征及其在具体实验中的应用。彭斌2000年在“基于颜色内容的图像检索”一文中论述了基于颜色内容的图像检索方法,并提出基于图像分割的颜色直方图和将主色调进行适当扩展检索,这是对原有基于颜色特征的图像检索方法进行改进的开端。随后又有多篇关于颜色内容特征的研究论文相继出现,例如毛力、张晓林的“基于颜色内容的图像检索原理与方法”、张学福的“论图书馆基于颜色内容的图像检索技术”、何立民、万跃华的“数字图书馆基于内容的多分辨率颜色特征检索和相关反馈技术”等。2006年来,并未有涉及具体图像特征信息检索的研究论文出现。

(3)图像检索的具体应用:

主要包括图像检索技术在社会农业、商业、工业、医学、艺术等方面的实际应用及实际现象研究。1999年张学福、冷伏海发表“商标数据库信息检索技术研究”一文,基于当时图像检索技术水平探讨了图像商标信息数据库的检索问题,旨在推进我国商标数据库的建设和利用,更好的满足我国市场经济发展需要。黄琨、赖茂生2007年在“彩色自然风景图片的四季特征提取”一文中根据彩色自然风景图片的特点,提出“天空去除”和“1/2区域分析”提取图像特征改进方法,同时采用四季调查法收集用户评价,然后通过多元线性回归方法建立颜色特征与用户评价的映射关系,用于彩色自然风景图片四季特征的自动提取,通过实验验证了该映射机制对于正确预测彩色自然风景图片四季特征的有效性。近年来并没有相关图像检索的具体应用研究论文的出现。

(4)图像检索交互性与反馈机制

主要讨论目前图像检索系统的交互和有关用户反馈及其相关反馈技术的发展。董文军2001年在“基于内容的图像检索的相关性反馈机制”一文中阐述了一种新的相关性反馈机制―通过对用户指定的相关及不相关图像的特征分布进行统计分析来动态更新相似性度量和查询,从而更准确地表达用户特定的信息需求及提高检索系统的性能。2006年黄琨,赖茂生在“以用户情感为线索的图像检索研究”一文中介绍了以用户情感为线索检索图像的产生背景,并提出了其实现原理、检索流程、检索系统的一般架构。从2006年以后,我国图像检索领域未有关于用户交互性的研究论文在图情领域的核心期刊中出现。

(5)图像检索系统及搜索引擎的设计与评估

该部分主要研究内容有原有系统的改进以及新系统的设计,此外还包括相关搜索引擎的设计与评估标准的研究。文燕平2001年初在《现代图书情报技术》上发表“基于内容的图像检索系统研究”一文,首次介绍了一些国外著名的图像检索系统,并且对图像检索系统的新成果进行了详细阐述。王惠、沈玉利2005年发表“基于内容的图书馆图片检索系统”一文,该文提出了一种基于特征向量的索引方法,构建了一个高效实用的图书馆图片检索系统,并对系统的构建方法进行了较详细的讨论。近年来,又相继有多篇关于图像检索搜索引擎的研究论文出现,例如:“集成式图像搜索引擎体系结构分析”、“基于用户满意度的图像搜索引擎评价研究”等。

(6)图像检索技术、方法研究

主要包含各种各样的图像检索系统的检索工具、支持技术等,以及对原有技术的评估以及对新的核心技术进展的探讨。袁方、刘明2001年在“数字图书馆中的基于内容图像检索技术”一文中分析和介绍了图像数据库构建、图像的内容描述、特征提取和匹配、快速检索等基于内容图像检索的关键技术。高仕龙2010年在“基于特征融合的图像检索算法研究”一文中提出了一种新的基于特征融合的灰度图像检索算法。期间又有多篇有关图像检索技术、算法研究论文的出现,如“图像检索中版面自动分析技术研究”、“图像检索中索引技术研究”等等。

2.2存在问题

通过阅读近年来我国图情领域核心期刊所包含的有关图像检索的126篇研究论文,并对其在发表时间、研究主题、发表期刊的分布状况进行了统计分析,发现目前我国图情领域对图像检索的研究存在着一些不足,需要做出相应的对策以促进其的进一步发展。

2.2.1整体研究水平不高

多年来我国图情领域对图像检索的研究总体关注度不高,有关研究文献分布上较为分散,并没有大量、集中、系统性的研究性文章集合出现。这种分散的趋势给有关人员查找、利用相关信息带来了不便,也不利于图像检索的深入研究。另外,我国图情领域对图像检索的研究课题独立性不强,研究理论和技术也不够成熟。因此,在重视研究成果的系统性与全面性的前提下,更应该积极借鉴国外有关图像检索的研究成果,紧密跟踪图像检索发展动态,关注热点、难点、前沿问题,提高我国图像检索领域的整体研究水平。

2.2.2研究内容不平衡

正如前面表2对论文研究主题统计分析的一样,近十年来我国图情领域有关图像检索的研究集中于图像检索基本理论与图像检索技术、方法方面,缺乏具体图像检索系统的设计,图像检索技术在实际生活中的应用与用户交互性方面的研究设计的也较少。面对这一研究现状,一方面应对现今较成熟的研究方向继续深入探索。另一方面,应拓宽研究领域,促进其他研究方向共同发展。尤其是系统用户界面、图像检索的具体应用等研究薄弱的方向更应该引起相关领域的专家、学者的足够重视。

3.发展与展望

由于其检索对象和应用领域的多样性,有关图像检索的研究具有广泛的内容,它不但吸收了传统计算机信息的存储、检索和图像处理等各方面的理论和技术,同时又促进了这些理论和技术研究的深入和发展,成为了一个目前比较热门的研究课题。目前,在图像检索技术的新发展方面,还要解决多种检索手段相结合的问题,以提高图像检索的查全率、查准率。有关图像检索算法、方法研究的发展趋势表现为,一是对原有算法的不断改进;二是新方法、新概念的引入和多种方法的有效综合运用。与此同时,图像检索有关新的算法、方法应该向更智能化、精确化和实用化方向发展。本文通过对我国图情领域有关图像检索的研究论文进行统计分析,发现我国图情领域有关图像检索研究的不足,并预测未来的发展方向,以期为今后我国图像检索领域的发展与完善起到参考作用。(作者单位:乐山职业技术学院)

参考文献:

[1]韩建新.图像数据库与图像检索.图书与情报(J),1993(03):38―40

[2]毛力,张晓林.基于内容的图像检索技术与系统.现代图书情报技术(J),1999(05):30―33

[3]柳群英.基于形状特征的图像检索技术.情报杂志(J),2004(04):87―88

[4]董文军.基于内容的图像检索的相关性反馈机制.情报杂志(J),2001(07):17―18

[5]黄琨,赖茂生.以用户情感为线索的图像检索研究.情报科学(J),2006(09):1395―1399

[6]严丽君.新浪、Google、Yahoo图像搜索引擎比较.图书情报工作(J),2003(10):83―87

[7]吴金红,张玉峰.基于内容的图像检索之相关标准研究.图书情报工作(J),2004(09):48―51

[8]高仕龙.基于特征融合的图像检索算法研究.情报杂志(J),2010(04):126―129

[9]郭小青.近十年国外图像检索研究论文定量分析.图书馆(J),2008(04):56―58

医学图像论文范文第7篇

博观而约取厚积而薄发

自2002年于暨南大学攻读硕士学位起,杨荣骞选择现代医疗仪器作为研究方向,不仅在电子信息、计算机应用与仪器仪表的理论和设计方面打下坚实的基础,而且扩展了基础医学知识,紧密结合临床对医学仪器的需求,负责企业规划的多项医疗器械新产品的研发,完成了妇产康复治疗仪、LEEP手术系统等5个产品的研制。

在上海交通大学攻读博士学位期间,他师从中国无创医学领域开拓者之一陈亚珠院士从事肿瘤物理治疗领域的研究。深入研究实时温度测量的理论和技术,提出了基于结构光的三维红外成像方法,在结构光系统标定、三维表面数据快速重建等方面取得了创新性成果。发表SCI论文4篇、EI论文3篇,获国家发明专利授权1项。

进入华南理工大学生物医学工程系任职后,杨荣骞组建和带领由青年教师、博士生和硕士生组成的科研小组,开展以手术导航、心功能评价和放射治疗等为特色方向的理论与应用研究,主持承担国家自然科学基金及省、市级科技项目多项。提出基于配准的四维心脏图像全自动分割、精确近红外摄像机标定、标记点自动提取与立体匹配等新方法,设计高精度近红外光学定位系统,完成了手术工具的标定、跟踪定位等算法。发表学术论文25篇,其中SCI论文3篇、EI论文7篇;申请国家发明专利6项,其中授权1项;获软件版权1项。

紧跟前沿科技结合临床应用

随着生活水平提高和生活方式变化,人类预期寿命在延长,但心血管疾病发病率和死亡率也在不断上升,对国民健康形成巨大威胁。心血管疾病的早期诊断和预防已成为全球关注的重大问题。在心脏医学影像领域,常见的有MRI、SPECT、CT、US等,基于不同图像来源可重建出不同精度的模型。近年出现的双源CT(DSCT),为采集清晰动态的心脏图像提供了可靠的影像学保障,可实现在无需使用β-受体阻滞剂和不受心率影响的情况下对心脏病患者进行成像。CUDA(computeuni fieddevicear chitecture)是建立在图形处理单元(graphic proces singunit,GPU)基础之上的通用计算开发平台,通过它可以将GPU视为一个并行数据计算的设备。利用DSCT提供的良好的心脏断层图像,结合GPU并行计算能力,为可视化心脏辅助诊断系统的研究提供了良好的医学影像学和计算机基础。

紧跟这项前沿科技,杨荣骞主持完成了“基于GPU的心脏DSCT系列图像精确分割技术及三维可视化研究”(中央高校基金面上项目),采用基于模板的配准技术实现创新的四维心脏图像的全自动分割,不仅大大减少了医生半自动分割图像的时间,而且提高了分割精度。通过与广州总医院放射科密切合作,还获得了冠脉灌注测评和动态心功能评价方法等相关研究的新成果。将进一步结合临床影像数据和医学专家知识,构建符合国人特征的具有临床应用价值的辅助诊断和评价模型。

在肿瘤开颅手术前,须先进行手术入路规划。目前,神经外科医生一般是根据影像学提供的病灶信息,结合自己的经验,采用定性的方法设计勾画开颅部位。由于对肿瘤的形态、尺寸及空间位置不能精确量化,往往造成较大切口引起更大损伤,也可能因反复探查而拖延术前计划时间。依靠经验定性方式的入路规划也不利于术中脑功能区保护和有效完全切除肿瘤。如果采用立体定向头架或神经外科导航系统,则能精确定位脑部肿瘤,且正确引导手术入路的方向和深度,但费用昂贵、操作繁琐,难于在医院普及。

为克服人工经验方法的不足,提高定位精确度,减小手术损伤,保障手术的有效性和安全性,杨荣骞团队成功研究一种不依赖昂贵设备,且操作简便,易于掌握的辅助肿瘤开颅手术入路规划方法和软件,基于术前检查获取的医学影像数据,确定肿瘤病灶的三维形态和空间位置,对肿瘤、头皮表面和设定标志点进行三维可视化重建。在这个虚拟半透明可视化模型中可直观地看到肿瘤在头皮的投影,人机界面能够辅助医生进行手术入路规划设计,以实际尺寸等比例打印方式输出规划结果。该项技术与广州总医院神经外科合作研发,并得到临床试用60多例,明显比人工经验方法提高了定位精确度,减小了开颅创口,缩短了入路规划时间。该成果的进一步研究发展,将结合生物力学机理研究有效抑制开颅后脑漂移对肿瘤定位的影响,把电刺激获取的脑功能区位置映射到MRI影像中为医生提供更丰富的信息规划手术路径。

致力导航技术延伸医生视觉

手术导航为微创手术提供了重要的辅助手段,从一开始就在神经外科中得到应用和大力发展,特别是对颅脑肿瘤手术治疗而言,实现了手术医生的视觉延伸。通过术前计划和虚拟导航辅助制定详尽的手术计划,指导术中精确定位,对提高手术精确度,保障手术安全有效,提高手术效率发挥了极大作用。手术导航是现代医学影像、双目视觉、虚拟可视化、立体定向等技术与计算机应用技术有机结合构成的医疗仪器系统,目前的手术导航产品最成熟的技术主要是在术中导航精确定位部分,已经可以达到较高的跟踪定位精度。关于术前计划部分,主要是虚拟手术研究领域的相关进展,在CT、MRI图像融合技术及应用软件方面取得较好成果,但是还未有机地融入到手术导航系统中。此外,手术导航的术后评估方法已经逐渐进入研究关注范围,但现有进展不够深入,基本未形成示范性有价值的指导。

鉴于导航技术在现代医疗设备中的重要地位和面对关键技术难点提出的挑战,杨荣骞主持承担了“高精度近红外光学导航技术”(中央高校基金重点项目)和“手术导航中高精度大视场光学定位技术研究”(国家自然科学基金项目)。由于光学定位技术具有定位精度高,使用灵活,基础技术较成熟等优势,且得到广泛的应用,因而选择光学定位技术构建系统并深入开展导航技术研究。仔细分析了目前光学定位技术存在的两个主要缺点:一是光学成像设备受摄像机有效视场限制,使得手术必须在摄像机的有效视场范围内完成;二是手术中光线容易被阻挡。医生只能调整成像设备或者手术工具到合理的位置来完成定位,给实际使用带来了很大的不便。杨荣骞提出创新的能够自动跟踪手术工具的大视场高精度近红外光学定位技术,达到克服上述缺陷的目的。每个摄像机的内外部参数都通过光学测量精确标定,实现了多件手术工具高精度定位和实时跟踪。基于FPGA(现场可编程门阵列)新设计了一种近红外光学定位单元,实现多摄像机的动态图像信号同步采集,很好地消除了由于图像采集不同步而产生的抖动现象。

通过多年来对手术导航领域的研究,杨荣骞深切体会到导航技术进一步发展的动力必须是理工医有机结合,只有将医学基础知识、医学专家经验以及具体的临床诊断治疗手段的需求融入到医疗仪器系统设计和应用软件中,才可能有效解决诸如术前计划、术中导航和术后评估之类的难题。杨荣骞团队与广州总医院神经外科多年密切合作,借助医院优秀专家指导、先进的医疗装备条件及大量临床诊治病例,结合现代医疗仪器原理,大大推动了神经外科手术导航技术平台研究,正朝着术前计划、术中导航和术后评估一体化的目标努力。在术前计划手术入路、多模影像融合、微小血管识别及脑功能区识别等方法研究和操作软件设计方面取得明显的进展。

医学图像论文范文第8篇

关键词: 法学基础理论教育 法律认知科学 实验 教学步骤

法学基础理论教育是法学教育的基石,由于其所涉及的理论问题众多,与其他人文社会学科的交叉较多;长期以来,深受哲学、政治学、社会学和历史学的影响;最近一二十年又受到了经济学的重大影响,因此,传统法学教育以讲授、探讨为主,后来受到社会科学的影响,加入了社会调查和经济分析演算的模式。但是,法学教育与自然科学存在一定交叉,也能进行一些实验课程,典型就是犯罪学、侦查学方面的实验研究。在法律心理学方面,不仅能够进行法律心理学的社会研究,还能够进行生理、心理学方面的实验研究,典型的就是从事“法律与认知科学”交叉问题的实验研究。本文以“法律认知科学”(法律认知心理)实验为例,对法律实验问题进行探讨。

法律属于社会科学,作为法律基本理论的法哲学问题则既属于社会科学问题,又属于哲学问题。所以,法哲学属于人文社会科学。法律认知科学是指运用认知科学的一些理论和方法对法哲学的基本问题进行研究;法律认知科学是运用自然科学的方法研究人文社科的法哲学问题,其属于人文社会科学与自然科学的衔接。

与传统的法哲学讲授、讨论的方法不同,法律认知科学也可以采用实验的教学研究方法。但是,法律认知科学实验与自然科学(医学和生物学)实验有本质区别。一般的医学和生物学实验是研究生命体的生理状况和病变的医治问题,而法律认知科学的实验则是运用医学或生物学的手段,研究法律决策中生理心理过程,研究人文社科问题的生理基础。

法律认知科学实验的教学步骤如下。

一、实验之前的课程讲授

1.相关法哲学理论的讲授。法哲学理论的讲授,主要是介绍现有的一些法哲学流派和主要的法哲学观点争议,这为日后提出问题奠定了基础。法律认知科学的实验设计主要是运用生理实验解决法哲学问题或者部门法的主要问题,所以人文社科问题是实验的目的之所在。很多法律认知科学的生理实验流程大同小异,运用的设备相差无几,但是其所解决的法哲学问题却大相径庭,所以,相关的法哲学理论的基础必须夯实,否则实验就是无的放矢。

为了进行“法律认知科学”的实验,就必须让学生选修“法哲学”、“西方法律思想史”和各个部分法的法哲学课程(如“民法哲学”、“刑法哲学”、“诉讼法基础理论”等课程)。为此,我们开设了“西方法理学”和“法哲学”等课程。通过相关法哲学课程的讲授,并组织学生对部分重点问题、争议问题进行详细分析,提炼出核心争议之所在,由此设想日后可以进行实验的粗略方案。这一点也是体现“认知研究”与“治疗研究”之间的区别,体现我们研究的人文社科的目的指向(而非一般的自然科学或医学意义)。此外,我们还为法学硕士生开设了“神经元法学”和“法律认知科学”等课程,对此类问题的探讨更为专业、细致。

2.联系医院的医生前来讲课。由于课程具有跨学科性质,这种课程需要其他学科的知识。而本学科的教师虽然具有一定的跨学科知识背景,但毕竟其主导学科还是法学或法理学,在其他学科方面的学识显然不如这个领域的专家。所以,邀请其他学科的教师或研究人员前来授课就显得很有必要。而对于法律心理实验课程而言,这方面主要是请医院的医生前来上课。这里包含了以下三类,一类是神经科专业的医生,其为我们讲解脑神经系统的相关知识。部分高学历的医生由于拥有系统的硕士、博士乃至博士后的教育和科研知识,甚至还可能从事过“认知”领域的生理研究,就能够从“生理心理学”的“认知”角度为我们讲解实验设计的方案、流程等对实验特别有意义的问题。

3.带领学生前往实验室参观。由于法学专业学生对工科和医科的实验室一般都比较陌生,如果他们对医疗设备或者医学实验室没有相关的认识,就不可能设计出好的实验方案,因此,非常有必要让他们参观实验室或者医疗设备。在参观的过程中,由医务和实验人员进行相关知识的讲解,其中包括仪器、操作流程和仪器软件的介绍。老师和学生甚至可以进一步接触机器,如进入密封的磁共振室,躺入磁共振仪器内模拟作为实验的受试者。这样,他们能够亲身体会到躺在仪器内接受检查或实验者的境况,设计出更加切实可行的实验方案。

从事“法律认知科学”实验的仪器设备与“医学治疗和检查”的实验设备虽然相同,但是依旧存在一些差别。如磁共振机器,一般医学治疗目的进行的检查往往只需要运用“1.5T”级别的机器;虽然这种级别的机器也能运用于“法律认知科学”实验,但是相关实验对仪器的要求往往更高,通常要求是“3.0T”级,此级别仪器在普通医学检查中的运用就比较少;认知科学实验的磁共振仪器甚至使用到高达“12T”级别。

二、带领学生进行实验工作

1.通读实验报告。法律认知科学相关的实验论文很多,必须进行大范围的选题筛选。粗略筛选之后的论文,由任课教师组织学生进行研读。研读的目的有两个,一是看看研究现状,知道他人的研究进程、重点、热点和难点。通过这些研读,我们就能够根据现有的研究进度,选择尚未研究(发表的)而又可能比较重要的一些问题,这些问题就是日后实验选题的大致范围。

二是参考他们的研究手段、流程,对他们的研究方法进行借鉴。现在发表的论文,一般都会大致介绍实验的流程。然而,学术论文毕竟不是实验报告,其更多侧重于问题的提出、解决和分析,流程的介绍往往比较粗糙。当然,部分学术论文也有比较详细的实验流程,对此类论文的仔细研习,就能对实验设计产生比较大的影响。①

2.对主题进行社会科学的探讨。在进行文献研读的基础上,我们能够得出大致的可能的研究“主题”,这时返回法律社会科学领域,以法哲学的视角重新进行审阅,才能更好地获得“生理心理学”和“人文社会科学”之间的自然衔接。在生理自然科学领域可能可以从事实验研究的“主题”,还必须获得“法哲学”、“法社会科学”上的意义。因为,有的问题虽然在自然科学上具有很大的研究价值,然而从人文社会科学的角度看,其意义可能就会大打折扣(或者意义就不那么直接)。此类论文的价值更多是在“治疗性”而非“认知性”。很多人文社会科学(法哲学)的问题虽然意义重大,但从自然科学(生理心理学)的角度看,在现阶段却还缺乏研究该问题的“方法”和“设备”。所以,必须获得二者的协调和平衡。

主题的选定是法律认知科学实验的第一个难点。这个难点意指“我们要解决什么主题”,其既涉及“什么主题十分重要”,又指“对该主题的研究到什么程度”,还指“现在已经具备研究该主题的手段或方法”。

3.组织实验设计。从法律认知科学实验的角度看,组织实验设计的第一步是设计实验方案,这是最重要的一步。设计何种方案、设计何种场景、设计何种问题,以及何种音像、问卷材料,都关系到实验结果的真实与否。这也是法律认知科学实验的第二个难点。我们要设计出一些“场景”或者“问题”,让受试者在这种环境下能更真实地思考或者表达情绪,从而得出比较真实的实验结果。

西方国家在以往的研究中,存在比较巧妙的实验设计,例如对于道德中不公正问题的容忍情况,研究者在最后通牒实验中,部分受试者拒绝接受不公平的分配方案,这是其情绪化的表现。该实验设计如下②:19名(方案接受者,“responder”)接受磁共振扫描,共进行了30轮游戏,对手(方案的提出者,“offer”)部分是人,部分是计算机。每次都涉及10美元的瓜分。对手所提出的方案中,一半是公平的(对半开),剩下的为2次“9比1”,2次“8比2”,1次“7比3”;在这些方案中,方案提出者的分配比例较大,而接受者的比例较小。结果是,对于公平的方案,方案接受者都接受了;越不公平的方案,则参与者的接受率越低,“7比3方案”至“对半开方案”的所有方案(即“5∶ 5”,“6∶ 4”,“7∶ 3”)都被接受了。在“9比1”和“8比2”两种方案中,如果“方案提出者是人”,则其方案的接受率低于“方案的提出者是计算机”。这就意味着方案接受者对于不公平方案存有情感性反应。这种不公平引发的脑区为:两侧前脑岛(bilateral anterior insula)、背外侧前额叶皮层(dorsolateral prefrontal cortex,DLPFC)、前扣带回(anterior cingulate cortex)。这证明了两侧前脑岛(bilateral anterior insula)厌恶不公平,作为负面情感的脑区,其反映出了对于不公平方案的厌恶。诸如此类实验设计非常巧妙,就能够为我们进行相关实验提供设计上的参考或模仿。

4.进行预实验。在实验设计之后,有必要进行预实验,检验实验的可实施程度。这种预实验,可以提升实验者的信心,也可以作为申请相关课题的依据。更为重要的是,预实验还可以检测实验的可行性,对可能出现的问题或缺陷进行适当的修正。

在预实验之后,还必须进行志愿者的招募和筛选。

三、实验操作

实验操作是实验的核心状态。法律认知科学的实验流程具有自己的特殊性,其与医学实验相比通常更简单。其运用的仪器设备有核磁共振(FMRI)、眼动仪和脑电图等,其中核磁共振最为典型。该仪器不仅运用于医学治疗和研究,现在还广泛运用于认知科学的各类研究。核磁共振运用于法律认知科学的研究,主要优点在于其定位非常准确(虽然时间上稍有迟滞)。

由于实验的磁共振仪器操作是高度专业化工作(而且机器极为昂贵),只能由专业的实验技术人员进行操作,因此法学教师和学生不能从事,在此不做详细介绍。

四、实验之后的分析总结

实验之后的分析总结属于实验的后期工作,主要是数据、图像分析,以及人文社会科学分析总结。

1.数据、图像分析。数据分析具有客观性,需要专业的实验工作人员进行数据和图像的分析。法律认知科学实验主要运用核磁共振仪器,对于脑区图像的要求比较高,还需要比较好的核磁共振配套分析软件,对此进行精细的分析。此类软件一般只有磁共振专业技术人员才会使用,由他们进行相关数据图像分析比较科学。如果涉及大量的数据分析和必须建立数据模型,则还需要数学专业人士进行相关的工作。

此外,除了实验工作人员和数学人才外,还需要神经科专业医师或者认知神经学专家对此类数据和图像进行“认知神经心理”方面的分析。这种分析就是我们后期进行人文社会分析和理论化的基础。

2.进行相关的人文社会科学分析总结。与前一步工作的科学性和客观性相比,对实验结果进行人文社会科学的分析总结则具有一定的主观性质。我们需要从已有的数据和图像,根据我们需要解决的人文社科(法哲学)主题进行解读。这种解读是人文社科的解读,是运用实验数据和图像得出人文社科的结论。所以,一定的主观性是原有的实验设计思路和人文社科理论基础的延续。现有实验的理论分析,如道德的情感性实验,就需要根据道德哲学理论进行分析;“先天犯罪人”问题的实验,这就需要根据刑法哲学理论进行相关探讨。

五、注意事项

1.“主题的选定”、“实验设计”和“理论性总结”这三点是整个流程的重中之重。这三点工作如果没有做好,整个实验就是失败的实验。这三点如果做好了,实验获得成功的概率就非常大。

2.法律认知科学的实验需要人文社会科学(法律基础理论)和医学两个大领域(两大领域内还有各个小专业)的工作者进行跨学科的合作,尤其需要强烈的团队合作精神。因为随着知识分工越来越精细,知识总量的迅速膨胀,此类合作需要跨越多个传统学科。一方面,我们跨越的知识领域非常大,另一方面,在各种细微领域却依旧要求保持原有的严谨性(否则就违背科学的客观性)。所以,很难有一个人在多个领域内同时保有各个领域的专业技术水平。因此,为了在多个学科领域内的合作能够维系原有各个学科的严密性,我们只能求助于多学科专业人士之间的合作。这是完成此类工作的最佳模式,所以我们必须组建紧密团结的团队。

注释:

①在认知科学领域,例如以下论文:M.R.DELGADO,H.M.LOCKE,V.A.STENGER,J.A.FIEZ.Dorsal striatum responses to reward and punishment:Effects of valence and magnitude manipulations.Cognitive,Affective& Behavioral Neuroscience,2003,3(1):27-38.

②Fiery Cushman,Liane Young,Marc Hauser.The Role of Conscious Reasoning and Intuition in Moral Judgment.PSYCHOLOGICAL SCIENCE,2006,(17):1082-1089.

③Qian Luo,Marina Nakic,Thalia Wheatley,Rebecca Richell,Alex Martin,band R.James R.Blair.The neural basis of implicit moral attitude-An IAT study using event-related fMRI.NeuroImage,2006,(30):1449-1457.

医学图像论文范文第9篇

关键词:灰度直方图;特征提取;matlab;医学图像

中图分类号:TP391.9文献标识码:A文章编号:1009-3044(2009)32-9032-03

Gray-scale Histograms Feature Extraction Using Matlab

LIU Yi-xin1, GUO Yi-zheng2

(1.Department of Computer, Jinshan Vocational Technical College, Yangzhong 212200, China;2.Department of information science and technology, Nanjing Normal University Taizhou College, Taizhou 225300, China)

Abstract: The feature extraction of image is a foundational work for image recognition, image data mining, content-based image retrieval (CBIR), etc. And it is a hot topic in the research of image now. This paper analysised and implemented CT liver image gray-scale histograms feature extraction using Matlab. The experiments proved that these features are different prominently between normal liver and abnormal liver.

Key words: gray-scale histograms; feature extraction; matlab; medical image

图像特征是用于区分图像内容的最基本属性,它们可以是原图中人类视觉可鉴别的自然特征,也可以是通过对图像测量和处理人为定义的某些参数。所谓特征提取是对研究对象固有的、本质的及重要的特征或属性进行量测并将结果数值化,或将对象分解并符号化,形成特征矢量或符号串、关系图的过程[1]。

医学图像内容丰富且结构复杂,提取有效特征来描述这些图像内容是医学图像分析和理解的重要内容。对于医学图像特征提取算法,大体可以分为三大类:颜色(灰度)特征提取[2]、纹理特征提取[3]和形状特征提取[4]。其中颜色特征是医学图像的重要特征之一,且广泛应用于图像处理系统中。在医学图像中,大部分是灰度图像,而不是彩色图像,因此与颜色特征相对应的是灰度特征。医学图像灰度特征,是利用灰度具有一定的稳定性,对大小、方向都不敏感,能表现出相当强的鲁棒性。

基于灰度直方图的特征提取是医学图像颜色特征提取中的一个典型算法。任何一幅图像的灰度直方图都包含了丰富的信息。图像的灰度直方图是表示一幅图像灰度分布情况的统计特性。图像的灰度直方图简称直方图,是图像处理中一种十分重要的分析工具。图像灰度直方图特征是医学图像的基本而重要的特征数据。本文对基于灰度直方图的特征提取进行了Matlab分析与实现。实验结果表明,正常异常肝脏图像的灰度直方图特征有明显差异,为图像分析与理解、图像检索、图像识别和图像挖掘等后继研究奠定了一定的理论基础。

1 灰度直方图的定义

一幅数字图像的灰度直方图就是一个灰度级的离散函数,可以用式(1)来表示图像灰度直方图的定义[5]。

(1)

其中i表示灰度级,L表示灰度级种类数,ni表示图像中具有灰度级i的像素的个数,N表示图像总的像素数。公式描述的是图像中具有该灰度级的像素的个数占图像总像素的百分比,即图像中具有灰度级i的像素出现的频率。其横坐标是灰度级,纵坐标是该灰度出现的频率。

图像的灰度直方图提供了该图像外观的一个全局描述,所提取的特征具有RST不变性,即旋转、比例和位移不变性,缺点是不能有效地表示图像的空间信息,如图1表示的是一幅医学图像的直方图示例。

2 基于直方图的统计特征

一般不是直接将医学图像的直方图作为特征,需要通过用一些统计量来反映图像的直方图,这些统计量通常称为直方图的统计特征。常用下列几种统计量来反映图像的直方图特征:

1) 均值(mean):均值反映的是一幅图像的平均灰度值。

(2)

2) 方差(variance):方差反映的是一幅图像的灰度在数值上的离散分布情况。

(3)

3) 歪斜度(skewness):歪斜度反映的是图像直方图分布的不对称程度,歪斜度越大表示直方图分布越不对称,反之越对称。

(4)

4) 峰态(kurtosis):峰态反映的是图像的灰度分布在接近均值时的大致状态,用以判断图像的灰度分布是否非常集中于平均灰度附近。峰态越小,表示越集中;反之,表示越分散。

(5)

5) 能量(energy):能量反映的是灰度分布的均匀程度,灰度分布较均匀时能量较大,反之,较小。

(6)

6) 熵(entropy):熵也反映了直方图灰度分布的均匀性。

(7)

3 灰度直方图特征提取的Matlab实现

以图2所示的肝脏CT图像为例。众所周知,灰度图像在计算机中的表示是一个M*N的二维矩阵,这里M=N=512。一个像素就对应着矩阵中相应位置的一个灰度值,由于灰度级是256,因此灰度值范围在0~255之间,最小灰度值0代表黑,最大灰度值255代表白。

对于肝脏CT图像,纯黑对应背景区域,纯白对应骨骼组织,这两部分对于图像的特征提取没有意义,因此公式中i的取值为1~254。以提取基于直方图的均值特征为例,程序如下。

tic

filename='1.bmp';

pi=imread(filename);

pix=double(pi);

s=double(zeros(254,1));

for i=1:512

for j=1:512

for k=1:254

switch pix(i,j)

case k

s(k)=s(k)+double(1);

otherwise

end

end

end

end

sum=double(0);

for k=1:254

sum=sum+s(k);

end

h=double(zeros(254,1));

for u=1:254

h(u)=s(u)/sum;

end

junzhi=double(0);

for i=1:254

junzhi=junzhi+i*h(i);

end

filename

junzhi

toc

上述代码运行结果如下,可见,图2所示的肝脏CT图像,其基于直方图的均值特征 ,程序运行时间0.938000秒。

filename = 1.bmp

junzhi =129.0577

Elapsed time is 0.938000 seconds.

现在随机抽取10幅正常肝脏CT图像(如图3所示)和10幅异常肝脏CT图像 (如图4所示)。比较其均值特征,如图5所示,由曲线图清晰可见,正常肝脏CT图像与异常肝脏CT图像在均值特征上差别明显,正常肝脏CT图像均值在129.2879左右,异常图像的均值在115.2091左右。值得注意的是,结果并非表明用这一个特征就可以完全区分正常肝脏与异常肝脏,细看曲线图可知,异常肝脏CT图像中第一幅图就无法使用均值判断其正常异常与否,仅仅使用均值就会误判。现实生活中,肝脏CT图像因拍摄位置、拍摄仪器等多方面原因,要想理想判断其正常还是异常,使用一个或一类特征是远远不够的。

图3 随机抽取的10幅正常肝脏CT图

图4 随机抽取的10幅异常肝脏CT图

4 总结

本文对基于灰度直方图的医学肝脏CT图像特征提取进行了Matlab分析与实现。特征的提取很重要,特征提取的好坏直接影响到图像识别、基于内容的图像检索、图像挖掘、图像分析与理解等后继工作的成败。由于医学图像与普通图像存在很大的不同,医学图像具有灰度分辨率高、所含信息量大、数据的巨量性、异构性、噪声显著性等特点,单一的特征提取方法都还不能很好的表达医学图像的内容,寻找适合医学图像的特征提取方法仍是一个需要深入探索的领域。

参考文献:

[1] 郭依正. 基于多特征融合的医学图像识别研究[D].镇江:江苏大学,2007.

[2] Yong Rui . Image Retrieval: Current Techniques, Promising Directions and Open Issues [J]. Journal of Visual Communication and Image Representation, 1999,10(3):39-62.

[3] MANJUNATH BS, MA M X. Texture Feature for Browsing and Retrieval of Image Data [J]. IEEE-PAMI, 2000, 18 (8): 837-842.

[4] 胡小锋,赵辉.Visual C++/MATLAB图像处理与识别实用案例精选[M].人民邮电出版社,2004:119-121.

医学图像论文范文第10篇

1 完善各项规章制度, 抓好落实

要提高超声诊断质量, 必须做好规范化建设, 建章立制。严格执行国家《执业医师法》、《大型医用设备配置与应用管理暂行办法》、《医疗技术操作常规》等法律法规, 持证上岗。设立完备的医疗设备管理制度、监督机制、故障应急预案、维修档案等质量管理制度, 使影像管理工作制度化、科学化有章可循。对各项检查以《超声技术操作规范》为指导, 规范操作规程, 对操作步骤、方法、程序、结果、图片质量、报告书写规范等检查设立绩效考评机制, 有效进行质量控制, 量化管理, 科学地统计、规范各脏器及常见疾病的检查范围。

2 学科基础建设, 人才是关键

2. 1 无论超声设备如何发展, 科室的持续发展, 取决于高素质的专业团队及合理的梯队建设。医学是一门经验学科, 人才的成长是一个晚成熟期。必须分析科室人员的构成及其优势, 做好职业规划及培养方向。从事超声医学工作的人员来源于临床医学及医学影像专业, 专业的不同, 知识结构会存有差异, 临床医学毕业生临床知识相对丰富, 但影像理论基础原理欠缺, 而医学影像专业毕业生影像专业理论知识较为熟悉, 但临床知识存在不足。不同的院校、不同的专业有其不同的专业理论和实际工作能力的优势。针对不同的人员采取不同的要求, 对医学影像专业毕业生, 强调临床技能的学习;鼓励参加医院临床知识学术讲座, 增加临床知识。对临床医学专业毕业生, 强调超声基础理论知识及其他影像专业知识的学习, 打牢基础。活跃的学习氛围, 形成专业互补, 强化了综合素质提高。

2. 2 加强在职培训, 全面开展医学继续教育, 只有不断地充实自己才能提高专业技术。①打牢基础是关键, 对新入职影像专业毕业人员, 采取岗前临床科室轮转 , 学习临床知识, 拓宽视野, 建立临床思维方式, 了解临床不同专业超声检查的目的所在, 了解本院临床科室发展水平及开展的新技术;对临床医学专业毕业生, 在了解超声专业的基础理论、超声解剖、仪器操作检查方法后, 采取到其他影像专业短期轮训, 了解其他影像专业特点, 诊断优势, 建立大影像概念, 充实和拓展思维模式。在强调理论培训的同时 , 突出实际操作能力的规范与提高, 要求大家勤于实践, 规范操作并不断熟练。②适时选派工作作风扎实, 安心本职工作, 有上进心的技术骨干到技术力量雄厚的大医院进修, 进行系统的规范化训练, 并根据个人的专业特长及科室专业的发展需要, 选派参加不同的专题学习班或提高班, 将让个人的成长与科室的发展前景结合, 激励其发挥更大的工作、学习热情, 使科室人员“人人有专业, 人人有特长”, 既避免了内耗, 又提高了科室整体技术力量。③加强对外学术交流, 鼓励在职人员进行工作经验的总结, 撰写论文。撰写论文的过程也是对一个疾病深入学习的过程。中级以上职称的工作人员每年至少参加一次全军或全国专业学术会议, 让大家及时了解本专业的最新动态、发展方向, 了解本专业的前沿知识, 开阔视野。④聘请上级医院的专家教授指导工作, 举行专题讲座等。以多种多样的培训方式, 提高技术水平。

3 强化随访工作

超声诊断的正确性必须通过随访临床的最终诊断来印证。通过随访, 进行回顾分析, 总结经验教训, 提高诊断与鉴别诊断能力。平时将个人随机随访与科室集体随访纳入常规工作, 统筹安排, 有计划、有组织地进行。科室安排专人、专门时间, 下病区或病案室, 针对不同的临床科室、某个病种等进行统一的随访, 并统计分析随访结果,根据超声诊断阳性符合率指导科室的下一步工作;个人随访随机性比较大,尤其是个案,只有共享才能共同认识该疾病, 所以随访结果的回报交流, 共同提高尤为重要。完善的随访制度纳入科室质量控制体系,每月进行随访工作的检查与考核,才能确保随访顺利实行并取得良好的效果。利用随访结果分析超声检查的符合率, 评价超声检查质量。如果超声诊断与病理或手术结果相符, 则总结经验,加深印象, 增强信心。如超声诊断与临床不符, 则分析误诊原因, 提高鉴别诊断水平。

4 规范化留图

超声检查中普遍存在存图的随意性, 尤其患者较多时。为了提高超声质量, 必须规范化存图, 与诊断有关的阳性或阴性切面, 应做图像储存, 记录并存档。图像质量要清晰, 掌握仪器各项物理参数的调节, 熟悉已设置的不同脏器专用软件, 根据个人习惯及患者条件, 调节图像在最佳状态。在眼球或产科检查时, 严格按照规定的安全声功率输出。对于异常图像保留相互正交的两个切面, 杜绝了以往随意性存图检查中因漏查器官结构而造成的漏诊, 对异常的动态变化和前后对照分析提供了直观的图像资料, 同时为处理医疗纠纷提供证据, 规范化存图使规范化检查真正落到了实处, 规范化存图成为超声检查管理体系中的重要组成部分。

5 规范书写报告

超声检查报告书写质量体现了检诊水平。报告单作为一次检查的结论, 必须将实际情况用图文的形式报告给临床和患者。一般项目要齐全, 真实, 必须实名制。必要时, 加填仪器型号、探头类型与频率, 检查方法与途径(如:经直肠法)。描述检查内容时术语应科学化、标准化, 文字简练, 描述全面、客观, 严禁加入任何主观判断, 既不武断地以图像诊断疾病, 也不要过于随附临床资料, 杜绝先入为主, 先有结论再有图像描述的思维模式。超声提示或诊断明确提示物理学诊断, 除十分明确的病例外, 不做病理学诊断, 可以提示数种需鉴别的诊断。

6 树立服务意识

超声检查主要是为临床诊断疾病提供客观依据, 要树立为临床服务的理念, 多与临床医生沟通才能避免主观臆断, 其实与临床医生交流的过程也是学习临床知识的过程, 只有结合临床才能开展新技术、新业务, 才能谋求正确答案, 达到为患者负责的目的。

严谨的科学作风, 优良的学科文化, 是医疗质量提高的保证, 只有长期不断地对科室人员教育和培训, 质量意识才能加深、增强, 共同参与质量控制和管理就能提高超声诊断水平。

上一篇:职业培训论文范文 下一篇:细胞病理学论文范文