压缩技术论文范文

时间:2023-03-12 04:48:28

压缩技术论文

压缩技术论文范文第1篇

关键词:数字图像;图像压缩;压缩技术;任意形状可视对象编码

Abstract:Digitalimagecompressiontechnologyisofspecialintrestforthefasttransmissionandreal-timeprocesssingofdigitalimageinformationontheinternet.Thepaperintroducesseveralkindsofthemostimportantimagecompressionalgorithmsatpresent:JPEG,JPEG2000,fractalimagecompressionandwavelettransformationimagecompression,andsummarizestheiradvantageanddisadvantageanddevelopmentprospect.Thenitintroducessimplythepresentdevelopmentofcodingalgorithmsaboutarbitraryshapevideoobject,andindicatesthealgorithmshaveahighcompressionrate.

Keyword:Digitalimage;Imagecompression;Compresstechnique;Arbitraryshapevisibleobjectcode

一、引言

随着多媒体技术和通讯技术的不断发展,多媒体娱乐、信息高速公路等不断对信息数据的存储和传输提出了更高的要求,也给现有的有限带宽以严峻的考验,特别是具有庞大数据量的数字图像通信,更难以传输和存储,极大地制约了图像通信的发展,因此图像压缩技术受到了越来越多的关注。图像压缩的目的就是把原来较大的图像用尽量少的字节表示和传输,并且要求复原图像有较好的质量。利用图像压缩,可以减轻图像存储和传输的负担,使图像在网络上实现快速传输和实时处理。

图像压缩编码技术可以追溯到1948年提出的电视信号数字化,到今天已经有50多年的历史了[1]。在此期间出现了很多种图像压缩编码方法,特别是到了80年代后期以后,由于小波变换理论,分形理论,人工神经网络理论,视觉仿真理论的建立,图像压缩技术得到了前所未有的发展,其中分形图像压缩和小波图像压缩是当前研究的热点。本文对当前最为广泛使用的图像压缩算法进行综述,讨论了它们的优缺点以及发展前景。

二、JPEG压缩

负责开发静止图像压缩标准的“联合图片专家组”(JointPhotographicExpertGroup,简称JPEG),于1989年1月形成了基于自适应DCT的JPEG技术规范的第一个草案,其后多次修改,至1991年形成ISO10918国际标准草案,并在一年后成为国际标准,简称JPEG标准。

1.JPEG压缩原理及特点

JPEG算法中首先对图像进行分块处理,一般分成互不重叠的大小的块,再对每一块进行二维离散余弦变换(DCT)。变换后的系数基本不相关,且系数矩阵的能量集中在低频区,根据量化表进行量化,量化的结果保留了低频部分的系数,去掉了高频部分的系数。量化后的系数按zigzag扫描重新组织,然后进行哈夫曼编码。JPEG的特点如下:

优点:(1)形成了国际标准;(2)具有中端和高端比特率上的良好图像质量。

缺点:(1)由于对图像进行分块,在高压缩比时产生严重的方块效应;(2)系数进行量化,是有损压缩;(3)压缩比不高,小于50[2]。

JPEG压缩图像出现方块效应的原因是:一般情况下图像信号是高度非平稳的,很难用Gauss过程来刻画,并且图像中的一些突变结构例如边缘信息远比图像平稳性重要,用余弦基作图像信号的非线性逼近其结果不是最优的[3]。

2.JPEG压缩的研究状况及其前景[2]

针对JPEG在高压缩比情况下,产生方块效应,解压图像较差,近年来提出了不少改进方法,最有效的是下面的两种方法:

(1)DCT零树编码

DCT零树编码把DCT块中的系数组成log2N个子带,然后用零树编码方案进行编码。在相同压缩比的情况下,其PSNR的值比EZW高。但在高压缩比的情况下,方块效应仍是DCT零树编码的致命弱点。

(2)层式DCT零树编码

此算法对图像作的DCT变换,将低频块集中起来,做反DCT变换;对新得到的图像做相同变换,如此下去,直到满足要求为止。然后对层式DCT变换及零树排列过的系数进行零树编码。

JPEG压缩的一个最大问题就是在高压缩比时产生严重的方块效应,因此在今后的研究中,应重点解决DCT变换产生的方块效应,同时考虑与人眼视觉特性相结合进行压缩。

三、JEPG2000压缩

JPEG2000是由ISO/IECJTCISC29标准化小组负责制定的全新静止图像压缩标准。一个最大改进是它采用小波变换代替了余弦变换。2000年3月的东京会议,确定了彩色静态图像的新一代编码方式—JPEG2000图像压缩标准的编码算法。

1.JPEG2000压缩原理及特点

JPEG2000编解码系统的编码器和解码器的框图如图1所示[4]。

编码过程主要分为以下几个过程:预处理、核心处理和位流组织。预处理部分包括对图像分片、直流电平(DC)位移和分量变换。核心处理部分由离散小波变换、量化和熵编码组成。位流组织部分则包括区域划分、码块、层和包的组织。

JPEG2000格式的图像压缩比,可在现在的JPEG基础上再提高10%~30%,而且压缩后的图像显得更加细腻平滑。对于目前的JPEG标准,在同一个压缩码流中不能同时提供有损和无损压缩,而在JPEG2000系统中,通过选择参数,能够对图像进行有损和无损压缩。现在网络上的JPEG图像下载时是按“块”传输的,而JPEG2000格式的图像支持渐进传输,这使用户不必接收整个图像的压缩码流。由于JPEG2000采用小波技术,可随机获取某些感兴趣的图像区域(ROI)的压缩码流,对压缩的图像数据进行传输、滤波等操作[4]。

图1JPEG2000压缩编码与解压缩的总体流程

2.JPEG2000压缩的前景

JPEG2000标准适用于各种图像的压缩编码。其应用领域将包括Internet、传真、打印、遥感、移动通信、医疗、数字图书馆和电子商务等[5]。JPEG2000图像压缩标准将成为21世纪的主流静态图像压缩标准。

四、小波变换图像压缩

1.小波变换图像压缩原理

小波变换用于图像编码的基本思想就是把图像根据Mallat塔式快速小波变换算法进行多分辨率分解。其具体过程为:首先对图像进行多级小波分解,然后对每层的小波系数进行量化,再对量化后的系数进行编码。小波图像压缩是当前图像压缩的热点之一,已经形成了基于小波变换的国际压缩标准,如MPEG-4标准,及如上所述的JPEG2000标准[2]。

2.小波变换图像压缩的发展现状及前景

目前3个最高等级的小波图像编码分别是嵌入式小波零树图像编码(EZW),分层树中分配样本图像编码(SPIHT)和可扩展图像压缩编码(EBCOT)。

(1)EZW编码器[6]

1993年,Shapiro引入了小波“零树”的概念,通过定义POS、NEG、IZ和ZTR四种符号进行空间小波树递归编码,有效地剔除了对高频系数的编码,极大地提高了小波系数的编码效率。此算法采用渐进式量化和嵌入式编码模式,算法复杂度低。EZW算法打破了信息处理领域长期笃信的准则:高效的压缩编码器必须通过高复杂度的算法才能获得,因此EZW编码器在数据压缩史上具有里程碑意义。

(2)EBCOT编码器[8]

优化截断点的嵌入块编码方法(EBCOT)首先将小波分解的每个子带分成一个个相对独立的码块,然后使用优化的分层截断算法对这些码块进行编码,产生压缩码流,结果图像的压缩码流不仅具有SNR可扩展而且具有分辨率可扩展,还可以支持图像的随机存储。比较而言,EBCOT算法的复杂度较EZW和SPIHT有所提高,其压缩性能比SPIHT略有提高。

小波图像压缩被认为是当前最有发展前途的图像压缩算法之一。小波图像压缩的研究集中在对小波系数的编码问题上。在以后的工作中,应充分考虑人眼视觉特性,进一步提高压缩比,改善图像质量。并且考虑将小波变换与其他压缩方法相结合。例如与分形图像压缩相结合是当前的一个研究热点[2]。

(3)SPIHT编码器[7]

由Said和Pearlman提出的分层小波树集合分割算法(SPIHT)则利用空间树分层分割方法,有效地减小了比特面上编码符号集的规模。同EZW相比,SPIHT算法构造了两种不同类型的空间零树,更好地利用了小波系数的幅值衰减规律。同EZW编码器一样,SPIHT编码器的算法复杂度低,产生的也是嵌入式比特流,但编码器的性能较EZW有很大的提高。

五、分形图像压缩

1988年,Barnsley通过实验证明分形图像压缩可以得到比经典图像编码技术高几个数量级的压缩比。1990年,Barnsley的学生A.E.Jacquin提出局部迭代函数系统理论后,使分形用于图像压缩在计算机上自动实现成为可能。

1.分形图像压缩的原理

分形压缩主要利用自相似的特点,通过迭代函数系统(IteratedFunctionSystem,IFS)实现。其理论基础是迭代函数系统定理和拼贴定理。

分形图像压缩把原始图像分割成若干个子图像,然后每一个子图像对应一个迭代函数,子图像以迭代函数存储,迭代函数越简单,压缩比也就越大。同样解码时只要调出每一个子图像对应的迭代函数反复迭代,就可以恢复出原来的子图像,从而得到原始图像[9]。

2.几种主要分形图像编码技术[9]

随着分形图像压缩技术的发展,越来越多的算法被提出,基于分形的不同特征,可以分成以下几种主要的分形图像编码方法。

(1)尺码编码方法

尺码编码方法是基于分形几何中利用小尺度度量不规则曲线长度的方法,类似于传统的亚取样和内插方法,其主要不同之处在于尺度编码方法中引入了分形的思想,尺度随着图像各个组成部分复杂性的不同而改变。

(2)迭代函数系统方法

迭代函数系统方法是目前研究最多、应用最广泛的一种分形压缩技术,它是一种人机交互的拼贴技术,它基于自然界图像中普遍存在的整体和局部自相关的特点,寻找这种自相关映射关系的表达式,即仿射变换,并通过存储比原图像数据量小的仿射系数,来达到压缩的目的。如果寻得的仿射变换简单而有效,那么迭代函数系统就可以达到极高的压缩比。

(3)A-E-Jacquin的分形方案

A-E-Jacquin的分形方案是一种全自动的基于块的分形图像压缩方案,它也是一个寻找映射关系的过程,但寻找的对象域是将图像分割成块之后的局部与局部的关系。在此方案中还有一部分冗余度可以去除,而且其解码图像中存在着明显的方块效应。

3.分形图像压缩的前景[2]

虽然分形图像压缩在图像压缩领域还不占主导地位,但是分形图像压缩既考虑局部与局部,又考虑局部与整体的相关性,适合于自相似或自仿射的图像压缩,而自然界中存在大量的自相似或自仿射的几何形状,因此它的适用范围很广。

六、其它压缩算法

除了以上几种常用的图像压缩方法以外,还有:NNT(数论变换)压缩、基于神经网络的压缩方法、Hibert扫描图像压缩方法、自适应多相子带压缩方法等,在此不作赘述。下面简单介绍近年来任意形状纹理编码的几种算法[10]~[13]。

(1)形状自适应DCT(SA-DCT)算法

SA-DCT把一个任意形状可视对象分成的图像块,对每块进行DCT变换,它实现了一个类似于形状自适应GilgeDCT[10][11]变换的有效变换,但它比GilgeDCT变换的复杂度要低。可是,SA-DCT也有缺点,它把像素推到与矩形边框的一个侧边相平齐,因此一些空域相关性可能丢失,这样再进行列DCT变换,就有较大的失真了[11][14][15]。

(2)形状自适应离散小波变换(SA-DWT)

Li等人提出了一种新颖的任意形状对象编码,SA-DWT编码[18]~[22]。这项技术包括SA-DWT和零树熵编码的扩展(ZTE),以及嵌入式小波编码(EZW)。SA-DWT的特点是:经过SA-DWT之后的系数个数,同原任意形状可视对象的像素个数相同;小波变换的空域相关性、区域属性以及子带之间的自相似性,在SA-DWT中都能很好表现出来;对于矩形区域,SA-DWT与传统的小波变换一样。SA-DWT编码技术的实现已经被新的多媒体编码标准MPEG-4的对于任意形状静态纹理的编码所采用。

在今后的工作中,可以充分地利用人类视觉系统对图像边缘部分较敏感的特性,尝试将图像中感兴趣的对象分割出来,对其边缘部分、内部纹理部分和对象之外的背景部分按不同的压缩比进行压缩,这样可以使压缩图像达到更大的压缩比,更加便于传输。

(3)Egger方法

Egger等人[16][17]提出了一个应用于任意形状对象的小波变换方案。在此方案中,首先将可视对象的行像素推到与边界框的右边界相平齐的位置,然后对每行的有用像素进行小波变换,接下来再进行另一方向的小波变换。此方案,充分利用了小波变换的局域特性。然而这一方案也有它的问题,例如可能引起重要的高频部分同边界部分合并,不能保证分布系数彼此之间有正确的相同相位,以及可能引起第二个方向小波分解的不连续等。

七、总结

图像压缩技术研究了几十年,取得了很大的成绩,但还有许多不足,值得我们进一步研究。小波图像压缩和分形图像压缩是当前研究的热点,但二者也有各自的缺点,在今后工作中,应与人眼视觉特性相结合。总之,图像压缩是一个非常有发展前途的研究领域,这一领域的突破对于我们的信息生活和通信事业的发展具有深远的影响。

参考文献:

[1]田青.图像压缩技术[J].警察技术,2002,(1):30-31.

[2]张海燕,王东木等.图像压缩技术[J].系统仿真学报,2002,14(7):831-835.

[3]张宗平,刘贵忠.基于小波的视频图像压缩研究进展[J].电子学报,2002,30(6):883-889.

[4]周宁,汤晓军,徐维朴.JPEG2000图像压缩标准及其关键算法[J].现代电子技术,2002,(12):1-5.

[5]吴永辉,俞建新.JPEG2000图像压缩算法概述及网络应用前景[J].计算机工程,2003,29(3):7-10.

[6]JMShaprio.Embeddedimagecodingusingzerotreeofwaveletcoefficients[J].IEEETrans.onSignalProcessing,1993,41(12):3445-3462.

[7]ASaid,WAPearlman.Anewfastandefficientimagecodecbasedonsetpartitioninginhierarchicaltrees[J].IEEETrans.onCircuitsandSystemsforVideoTech.1996,6(3):243-250.

[8]DTaubman.HighperformancescalableimagecompressionwithEBCOT[J].IEEETransactionsonImageProcessing,2000,9(7):1158–1170.

[9]徐林静,孟利民,朱建军.小波与分行在图像压缩中的比较及应用.中国有线电视,2003,03/04:26-29.

[10]MGilge,TEngelhardt,RMehlan.Codingofarbitrarilyshapedimagesegmentsbasedonageneralizedorthogonaltransform[J].SignalProcessing:ImageCommun.,1989,1(10):153–180.

[11]TSikora,BMakai.Shape-adaptiveDCTforgenericcodingofvideo[J].IEEETrans.CircuitsSyst.VideoTechnol.,1995,5(1):59–62.

[12]TSikora,SBauer,BMakai.Efficiencyofshape-adaptive2-Dtransformsforcodingofarbitrarilyshapedimagesegments[J].IEEETrans.CircuitsSyst.VideoTechnol.,1995,5(3):254–258.

[13]EJensen,KRijk,etal.Codingofarbitrarilyshapedimagesegments[C].Proc.WorkshopImageAnalysisandSynthesisinImageCoding,Berlin,Germany,1994:E2.1–E2.4.

[14]MBi,SHOng,menton“Shape-adaptiveDCTforgenericcodingofvideo”[J].IEEETrans.CircuitsSyst.VideoTechnol.,1996,6(6):686–688.

[15]PKauff,KSchuur.Shape-adaptiveDCTwithblock-basedDCseparationandDeltaDCcorrection[J].IEEETrans.CircuitsSyst.VideoTechnol.,1998,8(3):237–242.

[16]OEgger,PFleury,TEbrahimi.Shape-adaptivewavelettransformforzerotreecoding[C].Proc.Eur.WorkshopImageAnalysisandCodingforTV,HDTVandMultimediaApplication,Rennes,France,1996:201–208.

[17]OEgger.Regionrepresentationusingnonlineartechniqueswithapplicationstoimageandvideocoding[D].Ph.D.dissertation,SwissFederalInstituteofTechnology(EPFL),Lausanne,Switzerland,1997.

[18]SLi,WLi,etal.Shapeadaptivevectorwaveletcodingofarbitrarilyshapedtexture[S].ISO/IECJTC/SC29/WG11,MPEG-96-m1027,1996.

[19]WLi,FLing,HSun.ReportoncoreexperimentO3(Shapeadaptivewaveletcodingofarbitrarilyshapedtexture)[S].ISO/IECJTC/SC29/WG11,MPEG-97-m2385,1997.

[20]SLi,WLi.Shapeadaptivediscretewavelettransformforcodingarbitrarilyshapedtexture[C].Proc.SPIEVCIP’97,1997,3024:1046–1056.

[21]SLi,WLi,etal.Shapeadaptivewaveletcoding[C].Proc.IEEEInt.Symp.CircuitsandSystemsISCAS’98,1998,5:281–284.

压缩技术论文范文第2篇

关键词:协同工作;无纸化办公

一、数据压缩知识

数据压缩技术的发展。

随着计算机技术的飞速发展,数据压缩作为解决海量信息存储和传输的支撑技术受到了人们的极大重视,对数据压缩算法的研究也不仅局限于信息论中有关信源编码的范畴,数字图像信号、语音信号的分析和处理等技术被大量引入到有关的研究领域。

1977年,两位以色列科学家Jacob Ziv和Abraham Lempel发表了名为“A Universal Algorithm for Sequential Data Compression”(顺序数据压缩的通用算法)的论文,提出了一种不同与以往的基于字典的压缩方法——LZ77,他们在1978年又提出了LZ77的改进算法——LZ78,这两个算法吧数据压缩的研究推向了一个全新的阶段。1984年,Terry Weleh发表的论文“A Technique for High Performance Data Compression”(高性能数据压缩技术)描述了对LZ78算法的改进和具体实现技术,成为LZW算法。目前,无损数据压缩领域中流行的数据压缩方法多是基于字典的压缩技术。UNIX系统上的一个实用压缩软件COMPRESS和Windows系统下的压缩软件Winzip和Winrar中所使用的压缩算法都是基于字典压缩技术的。

当数据压缩被用于减少存储空间时,可以减少程序的总执行时间。这是因为存储量的减少将导致磁盘存取次数的减少,虽然数据的压缩/解压缩过程会增加额外的程序指令,但由于程序的执行时间通常少于数据的存储时间,因此中的执行时间将减少。也正因如此,数据压缩技术在计算机技术飞速发展的今天仍然有着很重要的作用。

二、XML压缩索引

(一)XML压缩背景

上文中已经述说了XML的优点,但和其它形式的数据表示相比,XML文档往往很大。因此有些时候,传输速度和存储空间会非常重要。具体来说:

1.XML是一种清晰而易用的文本标记格式,但它的弱点就是当有大量数据需要交换,而程序内部处理部分又非常少时,会导致XML文档非常大,这样过大的空间占用意味着更大的处理代价;

2.由于本文压缩算法多年来一直是大量研究项目的课题,目前已经非常成熟。这种类型的算法都能方便的将XML进行压缩,但将XML文本作为一般文本文件进行压缩,这类算法都不大可能改善处理的速度,而且还会增加了解压后再解析的步骤;

3.我们把XML文档用于索引结构,这样就不能只保持了XML文档的结构而无法对XML进行索引搜索。也就排除了一些简单的XML压缩算法。

(二)XML压缩方法

当压缩文档时,通常首先考虑常用的压缩算法,如:Lempel-Ziv和Huffman,以及在它们上面实现变化的一些常用实用程序。在类Unix平台上通常是gzip;在其它平台上,zip更为常用,比如:PKZIP、Info-ZIP和WinZip。但这些实用程序实际上意在充分地减少XML文件的大小。但是,都没有保持了XML文档的结构,或是无法对XML文档进行索引。这样本文选择使用BWT压缩算法而不是顺序Lempel-Ziv算法。

(三)BWT数据压缩

利用BWT压缩算法,我们先把字符文本进行转换,然后进行压缩,这样就解决了XML文档过大的弊端。而且BWT压缩算法要比顺序LZ算法,解压时速度有所提高。BWT算法的具体介绍我们在第5章进行讲解。

三、系统设计

(一)XML文件整体输出

首先,我们先不考虑XML文件的结构,这样把XML数据文件提交给程序,会按照普通文本文件的方式进行处理。程序先读取整个文件的内容,之后将它们作为一个字符串,进行后缀数组排序,然后BWT转换。但是这样的结果并不如意,有以下两个缺点:

1.程序执行的效率不高,文件内容如过大,导致整体的速度下降;

2.不便于查找,整体进行排序换转后打乱了文件结构,不能成为索引;

(二)以XML文件结构进行输出

由于不能破坏XML文件的结构,只能按照XML现有的标签内容进行。这样我们就引入了XML解析器,它可以分析出XML文件的结果和具体内容。先用解析器解析XML文件,我们就方便的判断出,什么是标签,什么是数据。把每个标签或者数据,单独进行排序转换。

具体过程:

1.XML解析器读取分析XML文件;

2.建立一个空的XML文件,进行添加排序转换后的数据;

3.如分析出标签开始,则提取此标签,对其进行排序转换,把结果插入新的XML文件;并记住此标签的级别,用于插入下级标签时使用;

4.如分析出数据,则对数据进行排序转换,并直接把新数据插入包含它的标签中;

5.如分析出标签结束,则关闭此级标签,结束数据转换;并记录新的标签级别,用于插入平级标签时使用。

参考文献:

[1]Donald Knuth.Art of Computer Programming[M].2002,Volume,3

[2]N.Jesper Larsson.Structures of String Matching and Data Compression[D].Sweden:Lund University,1999

压缩技术论文范文第3篇

关键词: H.264标准;视频压缩;视频编码

0 引言

以数字视频的采集、压缩、处理为核心的现代视频监控技术,采用先进图像处理芯片对视频进行压缩处理,把智能图像处理技术用于图像显示、监控成为嵌入式视频监控系统的重点研究方向[1]。无论是MPEG1、MPEG2或者是MPEG4、H.263都已经无法满足运动图像压缩的要求,这时新一代的H.264标准便被制定,H.264作为新一代的编码方式,有效提升了视频压缩率,仅需原先的一半带宽即可播放相同质量的视频,而且视频编码的码率更加灵活,架构主要包括,帧内预测、帧间预测、转换、量化、去区块滤波器、熵编码等模块,下面将研究H.264视频编码的关键技术及其应用前景。[2]

1 H.264压缩标准

H.264是两个组织专家ITU-T和ISO为多媒体传输设计的数字视频编码标准[3],全称是MPEG-4AVC,翻译成中文意思是“活动图像专家组-4的高等视频编码”,或称为MPEG-4Part10。各种分辨率的视频图像格式都可以被H.264视频编码标准支持,包括sub-QCIF、QCIF、CIF、4CIF、16CIF等[4]。H.264是一种视频压缩标准,同时也是一种被广泛使用的高精度视频的录制、压缩和格式。H.264比其他编码标准有着更高的视频质量和更低的码率,被广泛用于网络流媒体数据、各种高清晰度电视陆地广播以及卫星电视广播等领域。H.264的特点是能低码率、高清晰持续提供较高的视频质量,能大大加强图像的编码效率和改善图像数据在网络中的传输效率。[1],使网络更加灵活、适应性更强,最大的好处就是节约了成本,弥补了技术差距,让存储与视频管理变得更高效。

2 H.264编码器的结构和特点

H.264只是规定了输入码流的格式及编码之后输出比特流的句法结构,其标准的编码思路是混合编码模式,以帧间和帧内预测来清除空间和时间的冗余分量,用变换和量化编码来清除频域冗余分量。H.264视频编码在一定情况下提高了视频压缩编码性,其视频解码与编码实现的过程相反,依据帧内编码进行逆量化,反变换,重构帧,最后经块滤波器平滑滤波后得到重建图像,[1]H.264编码器的功能组成框图如1。

3 H.264编码器关键环节分析

3.1 帧内预测 比起H.263,H.264提供了更多不同的工具来降低码率,以编码单位来说,h.264中每个宏块(macroblock/mb)大小都是固定的16×16像素,能够实现高分辨率视频的压缩,对于帧间编码来说,它允许变换块的大小根据运动补偿块的大小进行自适应的调整;对于帧内编码来说,它允许变换块的大小根据帧内预测残差的特性进行自适应的调整。

3.2 帧间预测 H.264标准与早期标准不同之处在于,它所使用的是块结构运动补偿,运算精度精确到1/4像素点上。[8]不仅如此,H.264标准还使用了多帧预测的方法,能够明显改善预测增益。[5]

3.3 整数变换与量化 H.264中整型变换与之前的MPEG系列标准所采用的DCT变换都有区别:

①它是整形变换(所有的操作都为整数运算,不存在解码精度损失)。②用整数算术变换可以确保编解码之间实现零失配。③变换的核心运算部分只用到加法和移位运算,不需要乘除运算。④到量化器的缩放乘积因子为整数,减少了乘积因子的数据位数。[4]量化的目的是减小信号的值域,以更少的比特来表示信号,从而达到减少数据量的目的。H.264中量化的步长总共有52种,其按照12.5%递增,并且变换系数的读取有双扫描和之字形两种方式。

3.4 熵编码 熵编码是对数据的冗余信息进行压缩的方法,变长编码和Huffman编码相结合进行,以较短的字长表示出现概率较大的数据,较长的字长表示出现概率较小的数据来达到降低数据量的目的。

CAVLC是一种变长编码。先对变换系数进行zig-zag扫描。用行程码(L,V)表示扫描以后的数据,V代表数值,L代表该数出现的次数。因为视频块在整形变换和量化后,大部分变换系数成为0,只有很少的数据在低频部分,用行程数L代表连续出现的0的个数,V代表0串后挨着的非零值,接着对L和V分别采用Huffman编码进一步压缩,有不同的码表可以查询亮度块和色度块。行程编码大大降低了编码的码字字长。CABAC是一种二进制算术编码,其通过构建模型来预测当前的视频信号。相对于CAVLC编码,CABAC的编码效率更高,更节省码率。[4]

3.5 码率控制 H.264视频编码标准虽然对于编码器的结构实现模式没有具体的规定,但编码器实现的核心问题要解决编码器的结构、相应的视频编码如何控制。H.264编码器采用基于拉各朗日Lagrangian优化算法的率失真优化模型实现视频编码的控制,其实现方法简单而且效率高。[5]

H.264编码标准由于以上关键技术的支持,获得了较高性能编码,但编码器复杂度增加,约为MPEG2的4倍,MPEG4的2倍。其高复杂度原因有两个方面,一是编码选项复杂,二是计算量高。具体内容有宏块的划分及搜索模式的组合的选取、高精度亚像素运动补偿和多参考顿预测,H.264更细化,更精确的数据压缩导致了计算量高。[6]

4 应用前景

H.264作为一种具有高效压缩性能的视频压缩编码技术,其在制定的过程中就充分参考和吸收了H系列和MPEG系列的优秀研究成果,修改或重新制定了其中不合理的部分,使其有很好的压缩性能。H.264能够比H.263和MPEG-4大约省去50%的码率。[7]H.264的高效的视频压缩能力和优异的网络适应性,为视频数据传输的可靠性提供了保障,其可广泛应用于数字摄像、英特网、数字视频录像、DVD及电视广播等领域的图像压缩。

5 结束语

网络视频监控系统要达到良好的监控效果,仅提高摄像头的分辨率是不行的,只有通过改善数字视频的压缩技术,降低视频传输的误码率,提高视频的质量,才能推动网络视频走向智能化。[1]H.264标准的推出是视频编码标准的一次重要的进步,尽管其算法复杂,但是能够大幅度提高编码效率,使得应用范围更加的广泛。

参考文献:

[1]李红京.基于H.264视频压缩技术的网络视频传输系统设计[J].河北工业科技,2011,28(4):236-239.

[2]齐淋淋,向健勇,唐巍.H.264视频压缩关键技术及其应用前景[J].电子科技,2005(10)13-16.

[3]党晓军,尹俊文.基于H264的嵌入式视频监控系统研究[J].计算机技术与应用进展,2008:407-412.

[4]刘继红,孙海龙,屈鹏.TD-MBMS中H.264视频压缩的实现过程[J].信息通信,2008,4:14-16.

[5]牛建民.H.264视频压缩算法应用研究[M].同济大学工程硕士学位论文,2007,5.

[6]蒋文倩.基于H.264视频采集与无线传输系统的设计与实现[M].武汉理工大学硕士学位论文,2013,3.

[7]潘明.基于H.264的网络视频监控系统的研究与实现[M].吉林大学硕士学位论文,2014,5.

压缩技术论文范文第4篇

关键词:数字水印;鲁棒性;分形压缩;IFS

中图分类号:TP309 文献标识码:A 文章编号:1009-3044(2012)36-8763-02

数字水印技术是数字产品版权保护的重要手段。通过将版权信息有效合理地嵌入到数字产品中,在版权认证时又能够及时将其提取出来,从而有力地保证了数字产品的版权。分形压缩[1]着眼于图像的自相似性(或局部自相似性),以IFS(迭代函数系统)和拼贴定理为基础,对原始图像进行分形编码,从而大大减少了表示图像的信息量。该文将数字水印技术与分形压缩技术紧密结合,使得水印的鲁棒性得到了很好的提高。

1 数字水印技术

对于一个静态图像,对其原始信号的频域空间(通过将原始信号进行频域变换),运用某种算法加入一个水印信号,或在一个宽信道上传送一个窄带信号[2] ,都可以看成是数字水印技术的应用体现。

如果用X表示数字产品的集合、W表示水印信号的集合、K 表示水印密钥、G表示水印信号生产算法、E表示水印信号加入算法、D表示水印信号检测算法,整个水印处理系统可用一个六元体(X,W,K,G,E,D)来描述。各个部分之间的关系可以理解成:G 利用K和X生成W,E再将W加入到X中,待到需要时,用D从已加入水印信号的X中提取出W,进而对数字产品的版权进行认证。

2 分形压缩技术

分形压缩技术主要是通过分形图像的自相似性(即图像的局部与整体具有某种相似性),进而对原始图像进行压缩编码与解码的过程。通常可分为图像分割、分割码本、等距变换、编码、参数量化、解码六个子过程(如下):

3 分形压缩在数字水印中的应用

由于分形压缩可将一幅图像大幅压缩,比如一个256*256像素的灰度图像,需要65536B去存储,而经过分形压缩,仅需3954B存储空间即可。在数字图像中嵌入水印信号的时候,通过将原始水印信号分形压缩后,再将水印信号的分形码嵌入数字图像中,而非像原来那样嵌入水印原始信号,就可将水印信息成倍地嵌入。换句话说,原来数字图像中只有一个水印信号,而现在却有多个水印信号备份,即使有局部水印信号被篡改了,也可以通过其他备份信息来加以还原,因此水印的鲁棒性大大提高。

参考文献:

[1] 李水根,吴纪桃.分形与小波[M].北京:科学出版社,2002.

[2] 易开祥,石教英.一种自适应二维数字水印算法[C].中国第二次信息隐藏与数字水印学术论文,2000:108-112.

[3] 黄继武,SHI Yun Q.一种自适应图像水印算法[J].自动化学报,1999,25(4):476-482.

压缩技术论文范文第5篇

关键词:脉冲压缩 雷达 线性调频信号 FPGA

中图分类号:TN957.51 文献标识码:A 文章编号:1007-9416(2015)12-0000-00

近年来,航空航天技术快速发展,各类飞行器的飞行能力不断提升,这就要求现代雷达应具有高精度、远距离、高分辨力的探测性能。传统脉冲雷达存在雷达探测能力与距离分辨力之间的矛盾[1]。为解决这一矛盾,大多数现代雷达采用脉冲压缩技术,调制信号频率或相位,从而产生探测距离较远的大时宽带宽信号,接收端通过具有匹配滤波器的接收机接收,产生窄时脉冲,提高了距离分辨率。

随着大规模集成电路及超大规模集成电路的快速发展,可编程门阵列(FPGA)被广泛应用,以可编程门阵列为硬件基础实现的数字脉冲压缩技术有着可靠性高、灵活性好、可编程、电路集成度高等优势[2],逐渐取代早期的模拟脉压技术,成为现代雷达脉冲压缩系统的发展主流。本文以此为技术背景,对线性调频信号的脉冲压缩进行了深入研究和波形仿真,并给出了一种基于可编程门阵列的数字脉冲压缩实现方法。

1 脉冲压缩技术原理

脉冲压缩技术主要应用于现代雷达上进行距离探测和目标识别。线性调频信号属于大时宽带宽积信号中的一种,它通过非线性相位调制或线性频率调制( LFM)来获得大的时宽带宽积,是研究的最早且应用最广泛的一种脉冲压缩信号[3]。采用匹配滤波器,可将接收机接收到的宽脉冲信号经过处理得到窄脉冲信号,实现脉冲压缩,同时提高信噪比。目前这种技术已经广泛用于各种雷达体制中。一般在时宽带宽积BT>30时,可以近似认为线性调频信号具有矩形振幅频谱,因此其匹配滤波器也应该具有矩形带通振幅特性。线性调频信号的匹配滤波器的近似频率特性可描述为:

(1)

设匹配滤波器输入端作用信号为:

(2)

式中: 为多普勒频率,匹配滤波器输出信号的频谱为:

(3)

对 求傅里叶反变换得到时域表达式 ,即为脉压系统的输出:

(4)

可以看出,经过脉冲压缩处理后的线性调频信号具有sinc函数的特性。

2 数字脉冲压缩系统的实现

在理论上,时域卷积法和频域相乘法均可以实现数字脉冲压缩。在工程上,却要同时考虑匹配滤波器的长度和雷达信号处理的巨大计算量,因此多采用频域相乘法进行脉冲压缩。回波信号首先经过A/D转换模块,再经由FFT运算模块处理后乘以频域匹配滤波系数,然后数据送入IFFT模块经D/A转换后即为脉压输出结果。采用频域相乘法的脉冲压缩处理流程如图1所示。本文的各模块设计也正是遵循这一思想进行的。

2.1 FFT模块设计

脉冲压缩处理速度的关键取决于FFT模块的算法设计,之前由于数字电路发展的限制,FFT处理结构更多的考虑节约硬件资源以获取更低的功耗,近年来随着大规模集成电路的快速发展,FFT模块的设计已经突破硬件瓶颈,看重指标主要集中于数据处理速度及数据处理精度上。以FPGA为硬件基础设计的FFT运算结构有着递归结构、流水线结构和全并行结构三种类型。递归结构在数据控制上占有优势,因其只有一个运算单元,因此占用的资源最少,需要较长时间运算。流水线结构将本级运算结果直接送入下一级运算,运算速度有所提高,但需要消耗较大的存储空间。全并行结构的运算单元数量与运算点数成正比,是计算速度最快的一种,是以牺牲硬件资源为代价[4]。本文以16路并行运算结构为基础,主要通过FPGA芯片内部资源的合理配置大幅度提升了FFT的运算能力,其中单极FFT处理模块处理流程如图2所示。

2.2 系数匹配相乘模块和IFFT模块设计

系数匹配模块根据发射波形是否可变,有两种模式可供选择。如果雷达发射可变波形,就需要在对发射波形采样的同时进行快速傅里叶变换处理,得出频谱序列的幅值即为匹配系数;如果雷达反射固定波形,可先行通过MATLAB计算出匹配系数并存储到 EPROM 中,通过系数调用方式相乘,这种方法实现起来比较简单,适合绝大多数的脉压系统。

IFFT运算模块可以调用FFT运算模块的硬件电路实现,具体处理原理如下:

将 分解为实部与虚部,将实部与虚部互换得到 ,表达式为:

(5)

对 进行傅里叶变换可得 ,即:

(6)

将 的实部与虚部交换后乘以系数因子 可得:

(7)

由(8)、(9)式可知在工程中实现IFFT模块运算对预处理数据的实部与虚部对调,调用FFT模块硬件电路处理后,再次交换数据的实部与虚部并乘以系数因子 ,通过硬件电路的共用不但降低了硬件电路的复杂程度,节省了系统资源,同时也使运算速度大大提升,其数据处理流程同图2相同。

3 实验结果与仿真

采用美国Agilent公司E8627D信号源模拟雷达回波信号,FPGA芯片选取Xilinx公司生产的XC2V1000。线性调频信号具体参数设置如下: 中频、 偏频、 的脉冲宽度, 的周期。FPGA系统输出结果和Matlab仿真结果如图3所示,可以看出二者基本吻合,从而验证了本方案正确性和可行性。

(a) FPGA输出结果 (b) Matlab仿真结果

4 结语

雷达采用线性调频脉冲压缩技术后具有作用距离远、距离分辨力高、抗干扰能力强的特点,本文给出了一种以可编程门阵列(FPGA)为硬件基础进行数字脉冲压缩的设计方法。这种基于FPGA的模块化设计方法非常灵活,电路设计简单,电路集成度高,稳定性好,极大缩短了研发周期,便于工程实现与后期维护。通过理论仿真和试验验证,FPGA芯片的输出结果和MATLAB仿真结果相吻合,满足现代雷达对数据采集与处理实时性和准确性的要求。

参考文献

[1]李方慧,龙腾,毛二可.基于TMS320C6201的并行高速实时数字脉冲压缩系统研究[J].电子学报,2001,29(9):1272-1275.

[2]贺知明,黄巍,向敬成.数字脉冲压缩时域与频域处理方法的对比研究[J].电子科技大学学报,2002(4):31-33.

[3]潘琳.基于FPGA的雷达脉冲压缩系统的研究与实现[D].上海交通大学硕士论文,2008.5.

[4]熊吉,赵刚.基于FPGA的可变点数数字脉冲压缩处理器的实现[J].通信与信息技术,2008(3):110-112.

压缩技术论文范文第6篇

关键词:固态雷达 多普勒效应 脉冲压缩

中图分类号:U675.74 文献标识码:A 文章编号:1007-9416(2014)02-0224-01

1 固态雷达工作原理

调制器发出的调制脉冲被传送进入磁控管,并引发磁控管产生大功率超高频率的脉冲波,这种射频脉冲波经过天线发射,在遇到目标物体后,有目标物体弹回的反射波会再次被天线接收,最后接收机通过反射波的信息,进过处理,将信号以视屏信号的方式显现出来,这就是传统的脉冲磁控管雷达。脉冲磁控管雷达中最主要的部分就是磁控管,而新型的固态雷达却没有磁控管,取而代之的是固态器件。信号的发射和传统的雷达一样,接收后的信号不仅要进过接收器的处理还需要有脉冲压缩器的处理,之后才能将信息呈现在显示屏上。

传统的脉冲磁控管雷达发射的是大功率的脉冲波,而新型的固态雷达发射的确实低功率的射频脉冲,一般情况下固态雷达发射的射频脉冲的最大功率低至200W左右,但是却拥有较高的占空率。发射的信号经过接收机和脉冲压缩器的处理,可以高倍数的压缩信号,这就可以与传统雷达所发射的大功率高频率的射频信号想媲美,而固态雷达还具有较高的占空比,所以固态雷达在远距离的探测中更占有优势地位。

雷达探测的距离可分为近、中、远三种不同的距离,不同的探测距离的要求是不一样的,固态雷达发射出特定的射频脉冲来满足这些要求,这种特定次序的脉冲中包括短脉冲,中脉冲和长脉冲三种不同的脉冲波。同时,为了使脉冲容易被压缩,常常采用脉冲宽度和编码混合的方法,这样可以保证每次发射的脉冲在长度和编码上都是与众不同的。处理和比较就收会的脉冲信号,就可以判断目标的存在状况。而数字脉冲压缩器的作用就是压缩脉冲,这样就可以利用中脉冲和长脉冲来有效地确定距离,按照IMO的规定,雷达性能标准距离可以观察到40m。新体制的固态雷达与传统的脉冲磁控管雷达有巨大的改善,它使用了脉冲多普新勒技术,这项技术的使用时的航海雷达得到了更好地发展。固态雷达可以检测出雷达与目标之间的相对速度,将接受的反射波以特定的方式处理后,能够十分有效的将回波中的杂波剔除出去,这种滤波技术使得雷达能够在海浪和雨雪等恶劣情况下,对移动中的小目标进行精确地探测,这比起传统雷达的效果要好的多。通过对比,可以更加具体的说明两种雷达在有外界干扰的情况下探测性能的高低,新体制的固态雷达在雨雪天气可以清晰的扑捉到移动中的小目标,有效地派出了雨雪杂波的干扰;而传统的雷达对雨雪杂波的过滤效果不尽如意,即使后期通过其他手段抑制雨雪杂波的影响,取得的效果也不如固态雷达的效果好。

2 典型技术介绍

2.1 多普勒效应

声源和接受物体的相对运动而发生声源的频率发生改变(频移)称为多普勒效应。将多普勒效应使用在雷达中,这样可以提高雷达在有外界杂波的干扰下清晰观察到移动中的小目标能力。移动中的小目标与雷达之间沿径向有相对的速度或者是两者之间的距离变化时,这种多普勒雷达发射出的脉冲信号经过目标的反射后,雷达接收的收回波的频率和原来的发射的脉冲的频率有变化,根据这种频率偏移,我们就可以知道小目标的运动情况。雷达发射的脉冲信号和接受会的信号进过的路程是目标和雷达之间路程的两倍。多普勒雷达可以有效地减少杂波的干扰,使得目标情况可以清晰的显示出来。

2.2 脉冲压缩技术

除了多普勒雷达外,还有脉冲压缩雷达,它的主要技术是脉冲压缩。脉冲压缩技术就是通过对脉冲的相位和频率进行编码的长脉冲,将发射机发射的原有脉冲编码成远远大于相同情况下未编码的脉冲宽度。脉冲发射需要有足够的能量,而脉冲压缩技术的最大特点就是能够在较低的峰值功率下,有效地增大脉冲的宽度来确保脉冲顺利发射。脉冲压缩雷达还具有远距离探测能力和距离探测能力高等特点。

3 固态雷达的应用

3.1 固态雷达的运用特点

新体制固态雷达的出现,在航海雷达的发展史上具有跨时代的意义,多普勒技术、脉冲压缩技术等高新技术的使用,使得固态雷达相对于传统雷达具有许多优点。固态雷达不仅在远距离探测、距离分辨、抗杂波干扰、检测移动中的目标等方向的能力大大提高,而且因为新技术的使用,也降低了航海雷达的使用成本,延长了雷达的使用寿命。新的技术也是的固态雷达的工作原理发生了改变,这使得固态雷达获得了许多优点。首先,传统的磁控管雷达的主要工作部位磁控管,在开启雷达后需要长达三分钟的预热时间才能正常工作,而固态雷达却不需要时间来预热。其次,磁控管发射出的是大功率高频率的脉冲,这些脉冲并不稳定,一般情况下为了获得清晰地图像,需要对这些脉冲进行调制,但是固态雷达解决了这一问题,不再需要调制。再次,传统雷达使用的大功率设施需要经常更换,这就增加了雷达的使用成本,而新体制的固态雷达不需要经常更换这些器件,大大减少了成本。

3.2 固态雷达在运用中注意的问题

虽然固态雷达的性能在传统雷达的基础上有了很大的进步,但是在使用过程中,使用者还有一些地方需要注意,以保证安全有效使用航海雷达。首先,固态雷达在观测移动目标时需要目标与雷达间有径向移动,这一确定也会使得没有径向移动的目标别误认为是杂波过滤掉。其次,固态雷达采用的脉冲压缩技术在对杂波干扰进行过滤的时候,也会对小目标的发射波有影响,这样也会减弱对小目标的探测能力。所以使用者在使用固态雷达的时候,必须注意这些细小的问题,以免因为疏忽造成航海事故。

4 结语

航海事业的发展使得人们对于航海雷达的要求越来越高,随着未来科学技术的不断发展,航海雷达也会不断地改善。未来的航海雷达将在抗干扰能力、距离分辨率等方面做出巨大的突破。新体制固态雷达的出现为安全航海提供了有效地技术支持。笔者在这里对目前新体制固态雷达的现状和工作原理进行了简单的介绍,同时提出了现代新体制固态雷达的运用中的特点及其注意的问题,为雷达的使用者提供一份参考。

参考文献

[1]朱凯然.雷达信号检测与实现.西安电子科技大学硕士论文,2009.

[2]斯科尼克(美).雷达手册(第3版 )[M].电子工业出版社,2010.

压缩技术论文范文第7篇

论文摘 要 智能交通系统 (ITS) 是集成于信息技术、传输技术、电子技术、及计算机处理技术等多种类电子工程技术,而建立起的实时、高效、准确的综合运输和管理体系。其中,数据压缩和数据融合技术使得ITS技术更具有现实意义。本文基于智能交通系统中信息的特征,探讨了数据压缩和数据融合技术涉及的关键技术及要求,分析了技术应用及现实突破。

1 ITS信息及特征分析

1.1 智能交通信息(ITS)

交通系统由包括4个基本要素:人(交通出行者、驾驶员和管理者)、物(货物)、各类交通工具和相应的交通设施构成。交通信息是指所有与交通系统的四大要素相关联的信息,是ATMS的关键基础。面向ATMS的基础交通信息主要是指与交通运行状态和交通管理有关的交通信息,是交通信息中最直接、最基础的信息。基础交通信息包括基础交通地理信息、交通实时状态信息、交通控制和管理信息、交通政策法规信息、公共交通信息。

1.2 基础交通信息的属性特征

基础交通信息是一种在大范围内、全方位发挥作用的,实时、准确、高效的综合运输和管理系统,其应具有以下一些基本属性特征:1)准确性;2)及时性;3)共享性;4)信息的采集具有实时性和动态性;5)具有海量信息特征;6)增值性。

2 数据压缩处理技术

交通信息一方面时采集到的信息烦杂多样,要想利用这些不同类别的信息,需采用不同的处理方法;另一方面,交通信息的一个显著特征是它的空间性和随机性,因此对它的研究分析需要建立在广泛统计的基础上,应用各类信息处理技术和统计分析方法来探索它的规律性。

所谓多媒体技术就是能对多种载体(媒体)上的信息和多种存储(媒质)上的信息进行处理的技术,特点主要表现在它的综合性和交互性。交通信息是属于多媒体信息范畴。若要实时的综合处理声音、图像、视频、文字等多媒体信息,其数据量是非常大的。要传输或存储这样大的数据量是非常困难的,必须对其进行压缩编码,在满足实际需要的前提下,尽量减少要传输或存储的数据量。

数据压缩主要依靠信源编码技术。一般的,图像压缩技术可分为两大类:无损压缩和有损压缩技术。在多媒体应用中常用的压缩方法有PCM(脉冲编码调制)、预测编码、变换编码、插值和外推法、统计编码、矢量量化和子带编码等;混合编码是近年来广泛采用的方法。新一代的数据压缩方法,如基于模型的压缩方法、分形压缩和小波变换方法等也已经接近实用化水平。

3 信息融合技术

信息融合技术在单纯数据采集融合(即一次融合)阶段称为数据融合,是研究多种信息的获取、传输与处理的基本方法、技术、手段以及信息的表示、内在联系和运动规律的一门技术。融合是指采集并集成各种信息源、多媒体和多格式信息,从而生成完整、准确、及时和有效的综合信息,它比直接从各信息源得到的信息更简洁、更少冗余、更有用途。

先进的交通管理系统(ATMS)是一个典型的多传感器系统,信息融合技术给交通信息加工和处理提供了一种很好的方法,信息融合技术的最大优势在于它能合理协调多源数据,充分综合有用信息,提高在多变环境中正确决策的能力。

在信息融合领域使用的主要数学工具或方法有概率论、推理网络、模糊理论和神经网络等,其中使用较多的是概率论、模糊理论、推理网络。当然,除了这几种常用的方法之外,还有其他很多解决途径。

3.1 概率论

在融合技术中最早应用的就是概率论。在一个公共空间根据概率或似然函数对输入数据建模,在一定的先验概率情况下,根据贝叶斯规则合并这些概率以获得每个输出假设的概率,这样可以处理不确定性问题。贝叶斯方法的主要难点在于对概率分布的描述,特别是当数据是由低档传感器给出时,就显得更为困难。另外,在进行计算的时候,常常简单地假定信息源是独立的,这个假设在大多数情况下非常受限制。卡尔曼滤波方法则根据早先估计和最新观测,递推地提供对观测特性的估计。另外,概率论和模糊集理论的综合应用给解决多源数据的融合问题提供了工具。

3.2 模糊理论

模糊集理论是基于分类的局部理论,因此,从产生起就有许多模糊分类技术得以发展。隶属函数可以表达词语的意思,这在数字表达和符号表达之间建立了一个便利的交互接口。在信息融合的应用中主要是通过与特征相连的规则对专家知识进行建模。另外,可以采用模糊理论来对数字化信息进行严格地、折衷或是宽松地建模。模糊理论的另一个方面是可以处理非精确描述问题,还能够自适应地归并信息。对估计过程的模糊拓展可以解决信息或决策冲突问题,应用于传感器融合、专家意见综合以及数据库融合,特别是在信息很少,又只是定性信息的情况下效果较好。

3.3 推理网络

推理网络的构建和应用有着很长的历史,可以追溯到1913年由一位名叫John H W ig-more的美国学者所做的研究工作。近来,许多对于分析复杂推理网络的理论往往基于贝叶斯规则的推论,并且都被归类于贝叶斯网络。目前,大多数贝叶斯网络的研究都包括了对于概率有效传播的算法拓展,同时它在整个网络中也充当了新证据的角色。同时贝叶斯网络在许多A1任务里都己作为对于不确定推理的标准化有效方法。贝叶斯网络的优点是简洁、易于处理相关事件。缺点是不能区分不知道和不确定事件,并且要求处理的对象具有相关性。在实际运用中一般不知道先验概率,当假定的先验概率与实际相矛盾时,推理结果很差,特别是在处理多假设和多条件问题时显得相当复杂。

参考文献

[1]杨兆升.基础交通信息融合技术及其应用[M].北京:中国铁道出版社,2005.

[2]史其信,陆化普.中国 ITS 发展战略构想[J].公路交通科技,1998,3.

[3]胡郁葱,等.ITS共用信息平台的信息融合技术[J].交通与计算机,2003,21.

压缩技术论文范文第8篇

关键词:核电站DCS Historian数据压缩 模拟量数据压缩 改进旋转门数据压缩

中图分类号:TM862 文献标识码:A 文章编号:1672-3791(2013)03(b)-0029-02

1 研究背景

核电DCS控制系统中的历史数据库需要具备较高实时性、海量数据吞吐量的特点,因此在长时间系统运行的前提下,会产生巨大的历史数据量,如果将这些数据直接存储,不仅会浪费很多的存储空间,而且还会使得数据查询、传输变得复杂而困难。因此,将数据压缩技术引入到DCS系统的历史数据处理中,可以达到节省存储空间、增加库容量和提升系统运行效率等优势。

2 数据压缩技术简介

历史数据库的数据压缩是传统数据压缩技术在DCS工控领域的特殊应用,一般数据压缩算法可以分为无损压缩和有损压缩两种技术。

有损压缩技术是根据特定的应用领域而发展起来的,它的基本原理是在数据压缩过程中损失一定的信息以获得较高的压缩比,并且压缩过程不可逆,压缩后的数据不能完全地恢复到原始状态,因此需要保证损失的数据对于理解原始数据信息特点的影响不大。具体到工控行业使用较多的压缩算法包括:Hale和Sellars共同提出的矩形波串法(Box Car)和后向斜率发(Back ward Slope),以及在工控领域应用最为广泛的OSIsoft公司提出的“旋转门数据压缩算法(Swing Door)”[1,2]。

无损压缩技术是利用数据的统计冗余进行压缩,可完全回复原始数据而不引起任何失真,但压缩率是受到数据统计冗余度的理论限制,一般为2∶1~5∶1。这类方法广泛用于文本数据,程序和特殊应用场合的图像数据(如指纹图像,医学图像等)的压缩。无论是无损压缩还是有损压缩,都在工控领域的历史数据处理中得到了应用,例如美国的Instep公司开发的实时历史数据库系统eDNA就实现了以Huffman为基本的无损数据压缩程序,它首先对数据集合进行统计分析,将数据添加到Huffman树中进行编码,最后保存生成编码,完成对数据群的压缩;而OSIsoft公司的PI实时历史数据库产品采用了“旋转门数据压缩算法”以及独到的二次过滤技术。

本论文所阐述的历史数据(Historian)压缩模块,我们综合了两种压缩算法的优劣,设计了一套“二次数据压缩”机制,统一无损压缩和有损压缩算法应用,对历史库模拟量数据的压缩。下面我们就具体来看些历史数据(Historian)压缩算法的设计。

3 历史数据(Historian)压缩模块的设计

历史数据(Historian)支持的数据类型包括开关量数据和模拟量数据。由于不同的数据类型所表现的数据特点的不同,需要设计针对性的压缩策略来满足各种数据的压缩要求。

3.1 开关量数据压缩

开关量数据采用“变化压缩算法”,算法基本的设计思路是:当测点的数值发生变化时才会保存,否则丢弃当前数据。这是因为开关量测点的状态一般由特定的0或1来表示,在DCS生产现场,有很多开关量测点的状态在特定甚至是很长的时间内是不会发生变化的,所以“变化压缩算法”非常适合对历史库开关量数据的压缩处理。

如图1所示,设置某开关量测点每1秒进行一个数据值采集,以时刻点t为基准的后8s里,其测点值分别为0、0、0、1、1、0、0、1。根据“变化压缩算法”的计算,剔除其在2 s、3 s、5 s和7 s的数据,只保存1 s、4 s、6 s和8 s的数据值。而当进行数据还原时,空缺时刻的数据值取前一保存时刻的数据,例如,2 s和3 s的数值均等于1 s数值0。这样即完整的保存了测点在时间轴上的数据特征,又起到了节省存储空间的目的。

3.2 模拟量数据压缩

在DCS系统中的模拟量测点数据一般都会遵循一定的渐变规律,例如有的时间段会呈现较为一致的线性变化,有的时间段的数据特征为一条抛物线等。这些数据特征就给定了我们做历史数据逻辑压缩的前提。

在历史数据(Historian)系统中,我们采用双重的历史数据压缩机制,即“二次数据压缩”,实现流行的“旋转门”压缩算法为第一层逻辑压缩,实现无损的Huffman压缩算法为第二层物理压缩。首先来讨论下传统的“旋转门”压缩算法的内容。

3.2.1 传统的“旋转门”压缩算法

如图2所示,基本的“旋转门压缩算法”是这样描述的:在进行数据压缩时,算法将新的实时数据点和前一个被保留的数据点之间做一个平行四边形的偏移覆盖区,如果这一平行四边形可以覆盖保留数据点之后出现的所有数据点时,那么将不会保存新的实时数据点。反之如果有任何一个数据点落在压缩偏移覆盖区外,则新数据点的前一个点将被保留,同时整个压缩偏移覆盖区将被重置,以新的被保留点作为新的起点,进入下一轮的旋转门判断[3]。

传统的“旋转门”压缩算法虽然可以较好的完成对实时历史数据的压缩,但是在算法的实现和执行过程中会出现一些问题,主要体现在以下两点。

(1)算法实现时需要一个临时缓冲区来存储待判定点集,但是在代码实现时,这一缓冲区的大小缺失无法事先确定的。

(2)如果待判定点过多,缓冲区里的数据点数过大,那么在进行覆盖区判定时会耗去系统过多的业务执行时间,造成系统运行的瓶颈。

因此,在以上算法的基础上,我们采用了改进的“旋转门”压缩算法,即“斜率比较旋转门”算法[4,5]。

3.2.2 改进的“斜率比较旋转门”压缩算法

如图3所示,当新点a到来时,系统会比较a与原点o(即上已存储的点)的时间差t_time,如果t_time不小于压缩间隔上限nic_compinterval或者a点质量戳与o点不同,则直接保存lastpoint点,进入下一轮旋转门算法运算;否则以点a和o以及设定好的nic_comprate构建平行四边形Ω,计算最大斜率点maxkpoint和最小斜率点minkpoint是否均在Ω内,计算结果有两种。

(1)都落在了Ω内部,则说明a点通过了旋转门,成为最新的lastpoint,最后再分别比较a点斜率与最大、最小斜率的关系,大于最大斜率值或者小于最小斜率值则替换掉相应的斜率点和斜率值,进入下一轮旋转门算法运算。

(2)如果有一个斜率点落在了Ω外部,则说明a点没有通过旋转门,那么就保存此时的lastpoint,并将lastpoint点设定为下一轮旋转门算法的o点,a点设定为最大和最小斜率点,进入下一轮旋转门算法运算。

改进的“旋转门”算法的具体流程图如图4所示。

以上介绍的“旋转门”压缩算法是系统第一次对历史数据的逻辑压缩,当经过逻辑压缩后的保留数据积累到一定的数量时,例如1k,再对其进行第二次的物理压缩。物理压缩采用的是Huffman无损压缩算法,它的基本原理是,构建一个用于字符编码的Huffman二叉树,根据待压缩数据二进制子串出现的频率对其进行排列,出现频率大的串使用较少的位表示,较小的串使用较多的编码来表示,这样既到达了数据压缩的目的,又完整地保留了逻辑压缩后的数据信息。

4 结语

通过对无损压缩算法和有损压缩算法的对比分析研究,我们充分利用了两种算法的优点,设计了“二层压缩”算法,同时将“二次压缩”算法应用于历史数据(Historian)压缩模块的设计和实现中,形成了一种较为先进的技术实现手段,在工程应用中取得了良好的效果。

参考文献

[1] 高宁波,金宏,王宏安.历史数据实时压缩方法研究[J].计算机功能与应用,2004,28:167-171.

[2] Bristol,E.H.Swing Door Trending: Adaptive Trend Recording,ISA National Conference Proceedings,1990:749-753.

[3] 蒋鹏,黄清波,王智,等.一种新的化工过程历史数据压缩方法研究[J].浙江大学学报,2005,39(6):814-818.

[4] 徐慧.实时数据库中数据压缩算法的研究[D].杭州:浙江大学,2006.

[5] 冯磊,李俊,夏雨人.计算机控制系统中历史数据存储与查询的一种方法[J].计算机工程,2003,29(3):108-110.

压缩技术论文范文第9篇

关键词:MVR 蒸发 增压

1.中药蒸发浓缩技术的现状

近二十年来,我国中药生产企业提取液的浓缩主要采用双效、三效蒸发器,这两种蒸发器为我国中药产业改革原始的提取液蒸发浓缩方式,步入现代化工业生产的轨道,做出了很大贡献,在中药浓缩中得到广泛的应用和发展。然而,这二种蒸发器应用到中药生产,普遍存在由于蒸发过程中大量热量的排出,造成能源消耗较大,热量利用率不高。而随着技术的进步发展,近十年来逐渐发明了采用带热泵的双效蒸发器,实现了低温加热,低温蒸发,采用凝结水串级自蒸发结构,不仅可以回收凝结水的热量,而且各效间由于液封的存在,杜绝了各效间漏气,与传统双效蒸发器比:节约蒸汽36%以上,节水30%以上。而后随着蒸发浓缩技术的发展,逐渐产生了超滤和反渗透膜浓缩,大大降低了能源消耗,但由于超滤膜、反渗透膜等膜由于受中药的腐蚀、中药杂质较多等影响,造成膜寿命的降低,从而使浓缩成本上升,另外,由于对膜的影响,也是适用的范围有所局限。

2.MVR低温降膜蒸发技术的介绍

MVR(mechanicalVaporREcomression)蒸汽浓缩法是指利用涡轮发动机的增压原理、经特殊流体设计而组成的蒸汽机械增压式蒸馏浓缩系统的简称。这种工艺系统,将使密闭容器内经加热生成的二次水蒸汽,在通过蒸汽压缩机时被再压缩增压至107摄氏度的高压气体。这种增压蒸汽即可作为再生热源而循环应用于原水的继续连续蒸发,又在循环传热的过程中使增压蒸汽本身也得以迅速冷却或冷凝,直至成为洁净纯水,同时可以在这种结净冷凝水排放的过程中利用其残热对流入的原水实施热交换。

2.1.MVR低温降膜蒸发设备的组成:

2.1.1.预热器:很多情况待蒸发的原药液在进入蒸发换热器之前的温度较低,为了充分利用系统内的热能,经常采用列管式或板式换热器对原药液进行预加热,使其温度升高。

2.1.2.蒸汽压缩机:它是MVR系统的核心和关键部件,它通过对二次蒸汽进行压缩,提高系统内二次蒸汽的热焓,为系统连续提供热量。根据原药液的流量和沸点升高值等特性,可以选择罗茨或离心压缩机进行蒸汽的压缩,但由于中药具有成分的不确定性和较强的腐蚀性,因此压缩机的材质应采用耐腐蚀、不脱落、不对中药产生污染的材料,一般选用优质的不锈钢材质。

2.1.3.汽液分离器:它是蒸汽和浓缩液体进行分离的装置。对于有结晶的原液,可以将分离器和结晶器设计成一体,再加装强制循环泵,完成汽液分离,浓缩和结晶的功能。

2.1.4.蒸汽换热器:预热后的原药液通过进料泵将其载入蒸汽换热器与由蒸汽压缩机产生的蒸汽进行换热,使其迅速汽化蒸发。根据原液的特性(粘度,是否有结晶和结垢等)选择换热器的形式和面积。

2.1.5.控制中心:采用工控机和PLC构成MVR系列的实时监控中心。通过软件编程,实时采集各种传感器的状态信号,从而自动控制马达的转速、阀门关闭和调节、液体的流速和流量、温度和压力的控制和调节等,使系统工作达到动态平衡的状态。同时该设备还具有自动报警、自动记录参数和提供报表的各种功能。

2.2.MVR低温降膜蒸发设备的节能原理:

MVR低温降膜蒸发设备同原来的双效、三效不同的是,原来的三效、双效采用的二次蒸汽直接加热药液使其在降压状态下蒸发,二次蒸汽热晗较低,热量较低,致使蒸发量较少。而MVR低温降膜蒸发设备主要采用电能转换为机械能时二次蒸汽压缩产生热能,热能被循环利用,热能在系统内几乎无损失,将蒸馏水和浓缩液的输出热能与原液进行交换,使其热能得到高效利用。MVR节能蒸发器,其原理是利用高能效蒸汽压缩机压缩蒸发产生的二次蒸汽,把电能转换成热能,提高二次蒸汽的焓值,被提高热能的二次蒸汽打入蒸发室进行加热,以达到循环利用二次蒸汽已有的热能,从而可以不需要外部新鲜蒸汽,依靠蒸发器自循环来实现蒸发浓缩的目的。通过PLC、单片机、组态等形式来控制系统温度、压力马达转速,保持系统蒸发平衡。

2.3.MVR低温降膜蒸发设备的特点:

2.3.1.MVR低温降膜蒸发设备在浓缩过程中,由于采用物料输送泵进行料液的输送,提高了料液在管内的流速,使料液在物料管道内的停留时间只有数秒钟乃至数十秒钟。这样短的时间内, 而且管内存液量小, 故特别适用于热敏性料液的浓缩, 例如牛奶、橘子汁、医药的青霉素和链霉素、以及农药的春雷霉素和赤霉素等等, 可避免或减少物料的热分解。

2.3.2.MVR低温降膜蒸发设备结构简单主要有蒸发器、加热器和压缩机, 维修方便,可在减压、常压和加压下操作运行。

2.3.3.由于受料液流动方式的影响,该设备针对料液的浓缩比不能太高,如浓缩比过高, 则因料液少, 管壁湿润差, 会造成固体溶质粘附在壁上的“ 干管”现象, 不仅增加热阻, 而且容易堵塞加热管,造成药液的损坏。

2.3.4.只适用于蒸发中等粘度的料液,不适于有晶体析出的物料,不适于易结垢物料。

3.MVR低温降膜蒸发技术的应用及效果分析

随着人类社会的发展,随着科学技术的进步发展,人类对环境的影响越来越严重,温室效应,能源对科学技术的发展越来越重要和不可缺少。为进步节约能源,减少排放,我公司于2011年引进了MVR蒸汽浓缩设备,首先应用到了中药提取液的浓缩过程中,得到了较好的应用收到了良好的效果。

3.1.MVR低温降膜蒸发技术与常规蒸发器比较

3.1.1.MVR低温降膜蒸发技术每蒸发一吨水消耗20-70度电(视液体成分而定),而常规蒸发器消耗1.25-0.3吨鲜蒸汽,两者消耗都随溶液沸点、减水沸点的差值而增加,对同一种溶液,MVR低温降膜蒸发技术能源消耗量和生产成本显著低于常规蒸发器,是一种高新节能蒸发技术。

3.1.2.MVR低温降膜蒸发技术不需要循环冷却水,没有冷却水消耗。不需要建设高污染的燃煤小锅炉或高成本的燃油锅炉。蒸发器比常规蒸发器更节水、更节能环保。

3.1.3.MVR低温降膜蒸发技术应用范围广,所有常规蒸发器应用的领域都适用于该蒸发器,机械式蒸汽再压缩蒸发器蒸发温差小,更适用于热敏性溶液。溶液在蒸发器内流程短、停留时间短,因而溶质不宜变质。

3.1.4.MVR低温降膜蒸发技术采用全自动电脑控制,并且可以在低负荷下稳定运行。

3.1.5.MVR低温降膜蒸发技术属于国家科委颁布的高新技术范围,按高新技术认定分类该高新技术属于高效节能技术和环境保护技术,符合国家节能减排和环保高新技术推广范围。

3.2.MVR低温降膜蒸发设备具有以下特点

3.2.1.节能:该设备采用电能转换为热能,充分利用了二次蒸汽的热能,降低了能源消耗,同时产生的凝结水在充分和原药液进行热交换(预热),使其热能得到高效充分的利用,没有废热蒸汽排放,节能效果十分显著,相当于10效蒸发器的效果,另外产生的凝结水可再次利用,提高了能源的利用率。

3.2.2.设备环保:该设备在使用过程中可以不需要生蒸汽、不要锅炉、不需要烧煤、不需要冷却水,只要有电,就可以用机械压缩式蒸发器。从而降少了CO2,SO2的排放,减少了粉尘和固体废渣的排放,减少污染,改善我们的居住环境。

3.2.3.低运行成本:由于节能效果显著,使整个蒸发器的运行成本也大大降低,运行成本是传统蒸发器的三分之一到二分之一。

3.2.4.自动化程度高:MVR蒸发器配置设计的自动控制系统,技术先进,质量可靠。整个蒸发器实现在从原液加注、预热、蒸发、清洗、保养等步骤的自动化控制。避免了人为失误,降低了人力成本,提高了产品质量。

3.2.5.占地面积小:MVR蒸发器由于采用了压缩机来循环使用二次蒸汽,提高了能效,因此比传统蒸发器紧凑。

针对MVR技术的特点,热敏性强、浓缩比不高的液体均可以采用该技术。该技术最大的特点就是节约能源,经实际应用和对比,该技术相比以往的三效蒸发技术可节能达到57%,吨产品综合耗能成本为73.5元。

4.MVR低温降膜蒸发技术的推广和应用前景展望

由于MVR低温降膜蒸发设备具有较高的节能效果,使其受到各个企业的青睐,但目前由于蒸汽压缩技术国内技术还不够成熟,致使目前该设备的投资成本较高,一次性投资较大,因此目前只有经济实力较强的大公司才有能力得到应用。因此若使该技术能够得到更加广泛的应用,必须首先提高国产蒸汽压缩技术,降低一次投资成本。

另外,MVR低温降膜蒸发设备在实际的使用中,会降低中药浓缩成本50%以上,对于具有中等生产能力的中药生产企业,估计有一年的时间即可收回投资。

对于目前中国生产现状,与世界先进国家相比我们的技术水平还不好,设备技术处于高耗能阶段,面对中国目前能源状况,能源逐渐紧缺,能源消耗成本越来越高,MVR蒸汽压缩设备随着技术的进步完善和蒸汽压缩技术的国产化,我认为在未来的几年将迎来飞速发展,在中药浓缩领域将会得到更加广泛的应用和技术提高。

参考文献:

[1]庞卫科.林文野.戴群特.杨鲁伟.张振涛 机械蒸汽再压缩热泵技术研究进展[期刊论文] -节能技术2012(4)

压缩技术论文范文第10篇

关键词:多媒体通信;IP;视频会议

1前言

随着多媒体计算机技术和通信技术的发展,产生了一种新的技术——多媒体通信技术,它是多媒体、通信、计算机和网络等相互渗透和发展的产物,兼收了计算机的交互性、多媒体的复合性、通信的分布性以及电视的真实性等特点,具有明显的优越性。目前,如何在IP网络中更好、更快地实现视频、音频的传送已成为当今的研究热点之一。

2基于IP网络构建视频会议系统的技术要求

随着IP网络的速率越来越高,从窄带走向宽带,承载业务从非实时走向实时,IP技术已成为实现视频、音频、数据等综合业务的最佳选择。在IP网络上建立视频会议系统需要多种技术支持,是比较复杂、完整的多媒体应用系统。

2.1要有足够高的带宽

要传送视频,必须要有足够的网络带宽,就像大车要有足够宽的马路才能通行一样,否则,视频数据无法通过网络。以一帧1024×768像素的图像为例,如果用12bit表示每个像素,则共需要9.4Mb,如果按照25帧/秒的传输速率,则1秒内需要传输的数据量就是235Mb。在现有的网络条件下,传输这么大的数据是无法接受的。

2.2要有好的压缩技术

只有采用高压缩比的压缩算法,有效地降低数据量,才能使视频、音频数据在IP网上传输成为可能。例如:在H.323会议系统中,图像编码主要采用H.261和H.263标准,支持CIF、QCIF的分辨率,而正在完善之中的H.264是比H.263和MPEG-IV压缩比更高的标准,节约了50%的编码率,而且对网络传输具有更好的支持,可获得HDTV、DVD的图像质量。

2.3要有基于IP网络的多播技术

多播是一种多地址广播,发送与接收是一对多的关系。在传输过程中,发送端只需发送一次数据包,位于多播组内的各个用户就可以共享这一数据包。在视频会议系统应用中,将一个节点信号传送到各个节点时,无论是重复采用点对点通信,还是采用广播的方式,都会严重浪费网络带宽,而多播技术将数据传送分布到网络节点中,减少了网络中的数据总量。

2.4要有相适应的传输协议

TCP、UDP协议均不能很好地支持视频会议系统,这就需要与之相适应的协议,如RTP、RTCP、RSVP等。RTP运行在UDP之上,音频、视频等数据被封装在RTP数据包中,每个RTP数据包被封装在UDP包中,然后再封装到IP包中进行传输。在底层网络支持多播的情况下,RTP还可以使用多播向多个目的端点发送数据。RTCP是RTP的控制协议,负责反馈控制、检测QoS和传递相关信息,对RTP的数据收发做相应调整,使之最大限度地利用网络资源。

2.5要提供服务质量保证

网络服务质量是网络与用户之间以及网络上互相通信的用户之间关于信息传输与共享的质量约定。第一,在任何网络中,时延总是存在的。视频会议系统具有较高的实时性和可靠性要求,为了获得各会场的真实的现场感,音频、视频的时延都要小于0.25s,最大时延抖动应小于10ms。其次,在视频会议系统中,还要求唇音同步,只有达到时间上的同步,才能自然有效地表达关于会场的完整信息。第三,允许一定的丢包率。因为人的感知能力有限,在一个视频会议系统中,个别分组丢失,人眼是感觉不到的,因此可以允许一定的传输误码,丢包率应控制在人能接受的范围内。

3基于IP网络构建视频会议系统的协议

基于IP网络构建视频会议系统的标准主要有:H.323和SIP。

H.323沿用了传统的电话信令模式,比较成熟,已经出现了很多产品,形成了比较成熟的应用体系和市场体系。SIP协议将音、视频传输作为Internet上的一个应用,增加了信令和QoS要求,借鉴了其它Internet标准和协议的设计思想,遵循简练、开放、兼容和可扩展等原则,比较简单,但其推出时间不长,协议并不是很成熟,应用也不是很多。

4结束语

随着网络、多媒体、通信技术的飞速发展和性能的提升,基于IP网络构建视频会议系统技术会不断被发展和完善,必将以其独特的优势广泛应用到Internet、Extranet、Intranet上,为政府机关、商业集团、科研院所、医疗机构及普通个人等进行异地交流提供方便条件,成为工作、学习、生活中不可或缺的工具。

参考文献

[1]张智江,张云勇,刘韵洁.SIP协议及其应用[M].北京:电子工业出版社,2006.

[2]沈鑫剡,等.多媒体传输网络与VoIP系统设计[M].北京:人民邮电出版社,2005.

[3]er.InternetworkingWithTCP/IPVolI:Principles,Protocols,andArchitecturesFourthEdition[M].北京:电子工业出版社,2004.02.

[4]王军.多媒体网络传输的研究与实现〔D〕.长沙:国防科技大学硕士论文,2002.

上一篇:防雷技术论文范文 下一篇:数据采集论文范文