一、人工智能机器人
随着信息技术以及人工智能技术的迅猛发展,机器人无论是在技术上还是在外形上都显著提高,并且,不断的进行功能延伸。将具有感觉、思考、决策和动作能力的系统称为智能机器人,这是一个概括的、含义广泛的概念。这一划时代的概念产生,为机器人技术的发展,也为信息技术的发展,拓开了巨大的想象空间和新的创造天地。智能机器人是信息技术发展的前沿领域,是一门具有高度综合渗透性、前瞻未来性、创新实践性的学科,蕴涵着极其丰富的教育资源。
二、机器人教学的教学现状
2000年,机器人教学处于起步阶段,第一届“广茂达杯”中国智能机器人大赛在长沙举行。其目的是刺激机器人新技术的发展;鼓励年轻学生投身机器人技术。2002年,机器人竞赛得到了进一步的发展。2003年,机器人竞赛达到热潮。2004到2009年,机器人竞赛成为了主流,第四届至第九届中国青少年机器人竞赛分别在河南、广西、陕西、云南、重庆、湖南、青海举行,竞赛规模不断扩大,规格不断提高,经验不断丰富,成绩不断攀升。同时,第五届至第十届“广茂达杯”中国智能机器人大赛也取得了丰厚的成绩。2011年广东省的虚拟机器人竞赛,全省共有12个地市和顺德区报名参赛,参赛队伍106支,参赛学生148人。比赛形式新颖,要求学生现场编写虚拟足球比赛和虚拟灭火比赛的程序,然后进行投影演示,所有的同学都可以观看和学习。2012年的“乐博杯”青少年机器人世界杯中国竞赛在西安举行,汇聚了众多的参赛者。同学们秉着重在参与、学习交流的态度,经过两天紧张激烈的比赛,比赛成绩优异,涌现了一大批优秀的编程人员。其中最为突出的是兴围小学代表队,他们突出重围赢得了冠军,即将代表中国队去墨西哥参加世界级机器人大赛。
机器人竞赛已成为国内科技、教育界一致认同的一项青少年科技创新的重要赛事,作为一项富有时代性、创新性、参与性和普及性,适应当代青少年需求,深受当代青少年欢迎的智力开发活动,在全国各地产生了广泛的社会影响。
三、存在的问题
(一)教学方面
1、智能机器人缺少科学、可行、实效的教学目标。按照学制的阶段性划分不明确,存在重复学校相同知识的现象,从而导致机器人教材特色不明显。
2、智能机器人教育往往没有固定的教学设计和规划。导致许多教学只能按照产品使用说明书进行教学,不能按照学生接受能力有秩序的开展知识体系教学。
3、目前学校教育使用的机器人很纷杂,缺少规范。并且绝大部分并不兼容,开放度低。还有就是教学用机器人单机价格偏高原因是销售数量上不去,导致厂商只能太高价格。
(二)教育资源方面。由于我国各省市之间的贫富差距不断加大,从而导致在教育资源投入方面也是参差不齐,很多欠发达地区软硬件教学设备都严重不足,智能机器人的教学活动很难正常开展。
四、改进措施
(一)资源环境建设方面。积极探索信息技术条件下人工智能机器人进课堂教育环境的构建策略。建立完善系统的小学教育人工智能机器人进课堂资源的开发、应用的管理运行机制。同时,应该加大对中小学智能机器人教学资源投入力度,以确保所有孩子都能够享受到同等级的教学资源。
(二)学科教学方面。对于小学的人工智能机器人教学工作来讲,教师的培训工作应该是非常重要的。由于目前该门学科在小学教学当中仍属于一种新型的学科,相关教师之前并没有进行系统的学习过相关理论,同时,实践经验也是严重不足。因此,这就无形中增加了教师的教学难度,因此,对教师进行适当的教学培训是十分必要的。
目前,我国开展的“校校通”工程已经在全国的中小学基本完成,各地区小学已经具备了计算机房,而开展机器人教学工作还需要进一步购置教学使用的机器人,从而建立起以信息技术为核心的现代化教学环境,即“机器人”实验室。另外,教学资源的进一步开发与收集也是一项关键任务。学校可以统一添置一批有关机器人的教学信息资源,例如:教学光盘、教学软件等等。同时,还可以充分利用网络资源收集相关的机器人教学课件,教案等。丰富教师教学参考资料。
开展以“人工智能机器人进课堂”为主题的课堂教学实践,使学生了解人工智能的基本概念和特点,知道人工智能对人类学习、生活的重要作用,获得对信息技术前沿应用的初步了解,感受人工智能的丰富魅力,激发对技术发展与未来生活的向往和追求根据课堂教学配备的机器人。开展搭建、程序设计、任务挑战等综合性的机器人竞赛,通过竞赛培养学生的动手能力、思维能力、合作能力、创新和进取精神,激发学生的兴趣,促进机器人课堂教学。
然而,新东方在线COO潘欣对此却大泼冷水。在他看来,成本结构是最大问题,在线一对一是“典型的规模不经济”。在这种模式下,教师成本、营销成本都不会随着规模增大而被摊薄,甚至会造成营收越大而亏损越大。而近几年颇受关注的51Talk,用了三年时间,也仅仅把毛利率提高了四个点。
如何破解在线一对一难题?
教育行业专家指出:技术的发力是线上一对一破竹的关键因素。只有通过技术提高教学效率,才能避免重蹈传统一对一的老路。
而通过人工智能服务于学生个性化学习的学吧课堂,相继获得联想之星、晨兴资本、创新工场等Per-A、A轮等数千万元人民币投资,其在“在线一对一”教学领域的尝试和探路,也许能为行业提供参考和借鉴。
警惕看似完美但链条长的模式
毕业于清华大学计算机系的李行武,创办学吧课堂之初,希望通过人工智能打造一位“虚拟教师”,帮助学生获得个性化的引导和教学,真正做到“因材施教”。这个想法在当初还仅仅停留在概念阶段,虚拟教师的表现形式,具体的应用领域,以及最后的商业化路径都不清晰。
李行武的第一次尝试,是习题讲解视频课程,这些录制的视频时长大约5-10分钟。一个独立的视频,由很多段几秒到十几秒不等的短视频和问题实时拼接而成。在视频播放过程中,学生会根据弹出对话框作出相应选择,系统会根据学生的不同解题思路,给予不同的反馈。“我跟你讲的每句话不是我事先背好的,而是根据你的反应一句一句拼出来,这就是一个模拟人说话的过程。”李行武说道。他希望通过系统来模拟人脑的思考,生成最符合学生实际情况的解题视频。
2015年1月,学吧课堂在北京试点学校完成第一期点,班级成绩从年级中游上升到第一名。此前,凭借这款产品在“决胜新东方教育创业大赛”上,学吧课堂从350多支队伍中脱颖而出,获得最高奖项。
但看似简单的视频,背后实则需要做大量工作。首先是对教材中的知识点进行拆解和组合,大大小小的知识点就有上千个,同时还要把每道题进一步拆解为多个片段,并且使它们之间相互关联,工作量可想而知。一个小时的视频,需要耗费大约100个工时。
与此同时,李行武用机器做个性化辅导的思路,也遭到了投资人的质疑。有人认为,如果没有足够的资金来支撑这种模式,最后一定会死在路上。在移动医疗界,春雨医生创始人张锐曾反思过:创业一定要警惕那些逻辑上正确但是链条太长的模式。
于是,李行武被迫放弃了这种“重模式”。
顺人性,解决学习动力问题
2015年6月,李行武开始转型尝试做题库。他找到了市面上已有的题库产品,它们虽然数量不少,但并没有真正被学生用起来。他琢磨:当整个品类都呈现这种局面时,只可能存在两种情况,一是这件事情本身错了,二是大家都没有找对路。
而他认为,原因一定是后者。
题库产品本身是不科学的,因为学生很少有喜欢做题的。“任何伟大的产品都是顺应人性的。”李行武说。
但是,这并不是在线一对一领域才出现的问题。如何让学生们爱上学习,这是传统教育历来讨论的问题,甚至已经有结论:通过增强学习动力、改善学习方法来提高他们的积极性。而解决动力问题是首要任务。
学吧课堂设计了一套激励体系,让学生“边学习边赚零花钱”,做题可赢得金币并且能兑换实物。当然,这种形式很容易被模仿,并不构成独特竞争力。
李行武进一步解释,学生缺乏动力,很大原因在于不断累计的挫败感。如果让一个差生做一些难度系数高的题目,那他会有什么感受?如果让学生做自己能力范围内的题目,是不是会更有成就感,从而愿意做更多的题?
沿着这个思路,学吧课堂努力构建一个题库,为学生推送适合自己的题目。
所以,在学吧课堂的用户排行榜上,有一个有趣的现象,排名前十的不都是“学霸”,还有“学渣”“学沫”“学民”(根据学生水平划分的戏称),李行武以此来鼓励每一个学生在学吧课堂找到成就感。
先用户,还是先技术?
然而,技术上如何做到呢?
这里涉及一个关键概念――颗粒度,即打标签的密度。在李行武看来,粗颗粒度的个性化是伪个性化。例如:一道题的知识点、解题方法、所需能力值等维度,都必须打上相应的标签。拿中学数学来说,其知识点大概几百个,学吧课堂的知识点可以细化至几千个。
以二次函数的解析式为例,其中有三个知识点:一般式、顶点式、两根式。如果知识点标签打的是“二次函数的解析式”,学生抽取到的题目可能随机性较大,就不能进行针对性训练。所以,必须细化到一般式、顶点式、两根式。
目前,这个环节仍然主要通过人工来完成。如何保证这些人的输出是稳定的?
具体做法是:一道数学题的打标过程被拆解为多个步骤,然后由多人进行打标,系统会根据每个人的情况采用类似“派单”的形式自动分配任务给打标老师,然后再根据每个任务的完成情况自动组合得到结果。随后,再把这些题目小范围地推送给认真做题的同学,根据他们的反馈,不合格的题目会被自动打回。
所以,对于学吧课堂而言,一个相当重要的命题是:考察创业者对教育行业的理解程度。在这样的背景下,李行武邀请了有着十几年数学教学经验、同时有过创业经验的齐明鑫加盟。另一方面,这也预示着,学吧课堂只能从单一学科切入,再逐步实现扩展。
现在学吧课堂的查错成本已经是同行的1/50以下,平均日活数约10万,次月留存约40%。
在李行武看来,标签被打得越细,给学生推送的题目越精确,学生做题的正确率就越高,数据更有价值,从而推送更适合的题目,逐步实现正循环。
很多创业公司会陷入先做产品,还是先积累用户的迷茫,学吧课堂也不例外。不过,经过一番探索之后,李行武得出结论:“用钱解决用户的问题。”学吧课堂CEO齐明鑫也表达了同样的观点:没有数据,再牛的技术也不能发挥作用。
从“练”到“教”,开启商业化之门
积累了大量的用户和学习数据后,摆在学吧课堂面前的下一个问题是:商业化。
2016年10月,学吧课堂正式启动教师辅助系统的研发。这不仅是打造虚拟教师的必经阶段,同时,也只有从“练”跨越到“教”,才能真正开启商业化之门。
仍然切入一对一市场吗?
在李行武看来,课外辅导本身是和学生的需求相悖的,很少有学生能够在缺少父母监督的情况下,在线听大班课。但是在一对一场景下,学生却无法偷懒,且双方的课程录音都已经被储存,只有耐着性子克服惰性。所以,在线一对一是切入点。
于是,W吧课堂将聚焦点放在了打造教师导航系统上。齐明鑫说:“学吧课堂所做的工作,只有被老师认可甚至被大量使用,才有深入的价值。所以导航系统是虚拟教师的必经阶段。”
没有辅助系统之前,在线授课的老师通常依据自身经验判断,给学生讲解的知识点基本上是临时到题库里找出相应的例题。但是,这一过程受老师个体状况的影响而差异较大,从而影响教学质量。这套辅助系统会根据学生的历史学习数据、所在学校的课程规划,形成整体学习计划,以及每一课时涵盖的知识点。对于单一课时而言,系统则会生成详细讲义,同时会对老师整体授课的时间流程有一个把控。
李行武认为,在线一对一面临两个主要的问题:流量成本高企、服务质量无法把控。最大的坑在于无法做到规模化的品控。而这一导航系统不仅解决了师资等成本问题,同时实现了规模化的教学质量的把控。回过头来看,当题库产品累积了高活跃度后,反而会成为导航系统的天然流量池,不断摊薄获客成本。目前,学吧的题库产品已经积累了200万用户、7亿条学习数据。
“当你有了用户量,开始考虑后端上课服务时,会发现获客问题的本源还是在服务端。”李行武总结。
目前,学吧课堂第一代教师导航系统已经上线并在内部测试。在李行武看来,人工智能为学生提供高个性化学习的同时,也能提高教师的人效比,降低对名师的依赖。只有为教与学提供了真正的价值,商业化变现才成为可能。
管理点评
学吧课堂通过技术手段,让大数据在教育中的应用有效落地,进一步提升了一对一的学习效率,提高了线上教学质量,以此促进用户的快速积累,为商业化变现打下了基础。但是,依靠大数据给出的学习建议,与老师实际的丰富教学经验,两者如何更好融合,发挥“1+1>2”的优势,仍是面临的重要挑战。技术与老师,如何看待两者在教育中的角色与位置,成为学吧课堂未来需要重点思考的问题。
关键词:航天类专业 人工智能 教学探索
中图分类号:G64 文献标识码:A 文章编号:1674-098X(2014)10(b)-0155-02
面对航天科技迅猛发展,现代军备技术快速提升,培养具有专业性的高素质航天类人才,是我国航天科技发展的战略选择,也是航天重点高校面向并有效服务航天事业的历史责任。航天类本科生的教育形式也需要突破传统的方式,着重多样性、前沿性、工程性,因此,该专业的各门课程教育都应该结合专业特点,探索新的教学模式。
人工智能自1956年诞生50多年以来,引起众多科研机构、政府和企业的空前关注,已成为一门具有日臻完善的理论基础、日益广泛的应用领域和广泛交叉的前沿学科。由于航天领域的特殊要求,人工智能在其发展中发挥着不可替代的重要作用,各发达国家都相继开展了人工智能与航天技术相结合的研究,致力于实现可重构的、具有容错能力的、智能的飞行系统和管理系统。因此,“人工智能”作为航天类专业的一门特色选修课,应结合专业特点展开更具有实用性和创新性的教学。
1 人工智能课程特点
一方面,“人工智能”是一门多学科交叉的综合学科,它涉及计算机科学、数学、心理学、认知科学等众多领域,具有知识点多、涉及面广、内容抽象、不易理解、理论性强等特点,使得该课程的教学具有较大的灵活度和较高的难度。另一方面,“人工智能”是一门正在发展中的学科,具有较强的前沿性,计算机科学、信息科学、生物科学等相关学科的发展不断的提出了许多新的研究目标和研究课题,使得人工智能的技术和算法也需要不断更新,这在很大程度上增加了“人工智能”课程的教学难度。
2 航天类专业特点
首先,航天类专业具有较强的工程性。在专业的教学改革中有统一的特点,即强调要体现航天工程技术的综合性、系统性, 注重培养复合型人才。其次,航天类专业具有一定的前沿性。因为航天飞行器作为现代高科技和多种学科技术综合应用的结晶,应及时把现代先进科技融入到了专业基础和专业类的课程教学中, 专业知识更新快成为又一特点;另外,航天类专业应注重实践性教育。尊重个性和兴趣,强调动手能力,实验室对学生开放,要求学生自主地设计完成实验,强调对学生设计理念和创造能力的培养。最后,航天类专业应重视产学合作。产学合作的目的在于推动学校与航天产业的持续全面合作,造就一支科学技术研究和工程实践兼备的教师队伍。
3 教学模式的探索
3.1 教材的选择
人工智能作为一门新兴的学科,其理论与方法都还在不断的发展与完善中。就目前来看,关于人工智能的定义和范围都没有一个统一的标准,不同的教材所介绍的内容也不尽相同。在教材选用方面,需要综合考虑专业特点和学生的知识背景。本课程主要针对航天类专业高年级本科生,该类学生具有一定的数学、计算机、信息论、通信理论等基础知识,对航天应用的基本需求有初步的了解,因此,“人工智能”课程难度应该控制在中级,可以较深入的介绍人工智能的基础算法和应用案例。
中南大学蔡自兴教授积累了多年的教学与科研经验,借鉴了国内外其他专家和作者的最新研究成果,吸取了国内和国外人工智能领域学术书籍的长处,于1987年编写了“人工智能及其应用”一书,该书根据人工智能学科的新发展不断修订,推出四个版本。本课程采用“人工智能及其应用(第4版)”,其中大部分内容适合本科生学习。另外,本课程还给学生提供其他一些参考书目,如N.J.Nilsson 的“Artificial Intelligence:A New Synthesis.Morgan Kanfmann”等经典教材。
3.2 课堂教学形式的探索
“人工智能”课程内容较抽象,概念较为繁多,若采用单一的课堂讲授的方式,学生容易概念混淆、理解不透,逐渐产生厌倦情绪,导致教学效果差。本文探索不同的课堂教学手段,根据不同内容采用不同的教学手段,有利于学生对课程内容的理解与吸收。另外,考虑到航天类的专业特点,突出课程内容的工程应用,增加研究性质的教学内容与形式,有利于培养学生的创新能力和实践能力。
(1)课件采用图文并茂的PPT。综合利用文字、图像、声音、视频等多种媒体表示方法,在介绍原理和概念时采用精辟的文字,介绍算法流程时采用图像,介绍算法应用时采用视频。在PPT中适当利用不同的字体、颜色或动画来突出重点,细化流程,引导学生的思路,便于集中注意力接受重点内容。
(2)适当增加课堂讨论与练习。对于人工智能的一些基本问题,可以引导学生进行调研和讨论,来深化课程内容的了解,并提高学生的学习兴趣;对于重要的算法和理论,可以增加课堂练习,让学生实际动手进行公式的推导或演算,并在练习中分析学生对问题的理解程度,有针对性的增加讲解或指导。
(3)适当采用类比的讲解方式。对人工智能的不同学派,不同方方法,以及方法的不同应用,广泛的采用类比的形式进行讲解,不仅可以复习已学习的内容,也利于对新内容的理解。并且,通过对不同内容的比较总结相似点、区分不同点,可以避免概念的混淆,清晰的掌握课程内容。
(4)增加研究性教学。研究性教学强调通过问题来进行学习,有必要将实际应用案例或者授课教师的科研项目融入日常的教学工作中去,用“启发式”、“案例式”教学激发学生“自主学习”能力。
3.3 课程内容的探索
一方面,鉴于本科生知识结构还不够完善,“人工智能”课程的内容要控制在适应本科生学科基础的中等难度;另一方面,鉴于航天类专业的特点,课程内容应更注重与航天应用相结合的内容,并且在课程中增加具体应用的介绍。具体的课程内容如表1所示。
3.4 考核形式的改革
“人工智能”课程注重学生创新能力和实践能力的培养,传统的试卷形式不能全面的反应学生的学习效果,因此,应采用课堂表现和课程报告相结合的方式进行综合考核。
一方面,重视学生提出问题、分析问题和解决问题的能力,对学生课堂讨论与练习的表现进行考核评分,作为总成绩的参考;另一方面,注重学生课题调研和实践的能力,采取提交课程论文的形式进行考核。正确引导学生根据个人兴趣、课程内容、可行性、实践难度进行合理选题,并根据所选题目进行文献查阅和总结,完成调研报告或算法实现报告。结合者两个方面进行最终成绩的评定,综合衡量学生问题分析能力、论文写作能力和创新实践能力。
4 结语
航天类专业的本科生教学需针对专业特点有的放矢,该专业的课程教育都应该趋向于前沿性、专业性和实用性。本文的“人工智能”课程教学改革方案不仅考虑到该课程属于前沿叉学科的特点,也综合考虑了航天类专业的特点。为了使课程教学更好地服务于学生,本文提出的改革方案打破传统的教学模式,将课堂理论讲解、课堂讨论、课后调研、项目实践等相结合,充分调动学生的学习兴趣和积极性,提高学生的创新能力,有利于培养真正符合航天领域所需要的综合型高级人才。
参考文献
[1] 王甲海,印鉴,凌应标.创新型人工智能教学改革与实践[J].计算机教育,2010(15):136-138,148.
[2] 刘兴林.大学本科人工智能教学改革与实践[J].福建电脑,2010(8):198-199.
[3] 怀丽波.32课时《人工智能基础》课程教学的几点思考[J].华章,2013(34):193-194.
[4] 纪霞,李龙澍.本科人工智能教学研究[J].科教文汇(上旬刊),2013(6):91-92.
[5] 肖春景,李建伏,杨慧.《人工智能》课程教学方法改革的探索与实践[J].现代计算机(专业版),2013(26):32-34.
[6] 熊德兰,李梅莲,鄢靖丰.人工智能中实践教学的探讨[J].宿州学院学报,2008(1):146-148.
[7] 张伟峰.本科高年级人工智能教学的几点思考[J].计算机教育,2009(11):139-141.
[8] 冀俊忠.落实科学发展观,深化“人工智能”课程的教学改革[J].计算机教育,2009(24):105-107.
关键词: 游戏开发 人工智能 教学方法
1.背景
随着互联网时代的到来,人们的生活方式发生了许多重大的变革,其中之一便是网络游戏的盛行。如同雨后春笋般冒出来的网吧,以及快速增长的PC,使得人们接触到互联网的机会越来越多,这就为网络游戏的传播与发展创造了可能。一方面,数量庞大的网民群体中,年轻人占了绝大部分,网络游戏丰富了社会公众的文化娱乐生活,深受广大年轻人喜爱,这更促进了游戏产业的蓬勃发展。另一方面,现代社会生活节奏加快,人们压力日益增大,许多人倾向于在网游中寻求安慰,释放压力,因而全球市场对于网游的需求有增无减。同时,随着科技的发展和人们对游戏越来越高的要求,游戏逐渐向真实体验、感觉、触觉等人性化发展,让玩家有身临其境的感觉,在整个游戏过程中得到享受游戏的一种特别的快乐和放松。[1]
近年来3D影像和仿真科技的不断发展,让游戏开发人员得以创建出更吸引人、更令人沉迷其中的游戏环境。然而要做出更能令人流连忘返的游戏就得应用人工智能(AI)。AI的应用使游戏角色能够任意走动、角色可以走进障碍物、能够控制非玩家角色是否按照团队运动等,同时,AI还能延长游戏的生命周期,让游戏更加有趣和更具有挑战性。
AI能够处理游戏角色的追赶、躲避、聚集、避障和寻径问题;AI给游戏角色赋予模糊逻辑和有限状态机等基于基本规则的推理能力;AI脚本可以扩充AI引擎,让设计者和玩家更好地设计和玩游戏,等等。因此,将AI应用在游戏开发中以设计实现游戏角色的各种行为势在必行,有着重要的现实意义。
2.教学内容及其特点
本系人工智能课程的教学内容主要是处理追赶、躲避、聚集、拦截和避障等问题,使用经典A*算法及其改进算法解决寻路问题,以及有限状态机,等等。本文主要针对游戏中游戏角色的寻路问题进行探讨。游戏设计中游戏角色的寻路问题是设计的关键,传统的方法是应用A*算法及其改进算法等来实现游戏角色的寻路问题,目前逐渐有学者应用神经网络、遗传算法、粒子群算法等智能算法来实现游戏角色的寻路问题。如:迷宫寻路游戏中《帮助Bob找到回家的路》应用遗传算法,《智能采矿》游戏中应用神经网络,用粒子群实现坦克大战游戏,等等。尝试应用鱼群算法、萤火虫算法等智能算法求解游戏角色的寻路问题中,以实现游戏的更加智能化、人性化,同时,新的仿生算法的学习和应用能吸引学生的学习注意力、增强学生的学习兴趣。
智能算法是解决智能计算问题的方法,已成为人工智能界一个研究的热点领域,研究的最终目标就是为了让计算机和集成有计算功能的各种工具及设备更加独立、更加聪明,能够自主思考和行动,最终成为我们工作和生活中必不可少的一部分。智能算法主要包括:人工神经网络、进化算法、人工免疫算法、模拟退火算法、蚁群算法、粒子群算法、蜂群算法、人工鱼群算法、人口迁移算法、人工萤火虫算法等。[2]智能算法是一类仿生算法,就是向自然界学习,采用类比的方法,通过模仿自然界中动物飞行、觅食、求偶等行为以得到解决问题的一般方法,如蚁群、粒子群、蜂群、鱼群、萤火虫算法等。此外,还有很多智能算法通过模仿一些自然或物理现象和规律,如模拟退火算法通过模拟液体的结晶过程设计,免疫算法是模拟生物、植物或动物免疫系统自适应调节功能设计的,人工神经网络是模拟人的大脑结构及信号处理过程而设计的,进化算法是基于达尔文的“优胜劣汰、适者生存”原理设计的。[3]
针对本系人工智能课程的教学内容,建议补充人工智能中几种简单的智能算法的知识点,选取相关人工智能教材的一些内容结合智能算法进行教学。
3.教学方法
针对人工智能课程内容,根据高校教育规律、高校学生学习的特点,采用教学、实践相结合的教学方法,大小课结合,大课讲授理论知识,小课进行课堂实验,小课的课堂实验中严格要求学生亲手编写代码,应用大课所学理论知识完成简单小游戏以实现理论和实践知识的掌握。同时,借助游戏系的优势,制作动漫,采用动漫技术来实现人工智能中各种算法的仿生机制,让学生深刻体会每一种算法的原理和仿生机制,这样能增强学生学习人工智能课程的兴趣,可以取得更好的教学效果。
4.教学效果评价方法
人工智能这门课,最重要的是注重学生对人工智能理论及在游戏中应用的知识和能力的培养。因此,本课程学习结束后主要采用以下方式进行考查:(1)闭卷考试。主要考查对人工智能理论的理解、掌握和综合运用能力。(2)课堂练习。要求对课堂上介绍过的算法理解、分析、应用,编程实现游戏中的某个功能,最终课程结束时能完成一个功能完整的小游戏。(3)大作业。检查学生的动手编程能力,要求从介绍过的算法中找一种算法实现一个小游戏中游戏角色的移动、寻路等行为,形成一个演示游戏。该门课成绩分配如下:成绩=闭卷考试(70%)+课堂练习(10%)+大作业(20%)。
5.结语
人工智能是随着计算机技术的飞速发展和人们对自然界的深入理解而发展起来的,人工智能的应用逐渐广泛。游戏开发中人工智能的应用实现了游戏逐渐向真实体验、感觉、触觉等人性化发展,让玩家有身临其境的感觉。因此,在网络游戏相关专业开设人工智能课程势在必行,有着重要的现实意义。
参考文献:
[1]周乐.韩国游戏产业概况..
[2]周永权.“智能计算”研究生课程教学方法与实践[J].计算机教育,No.3,Feb.10,2011:95-96.
关键词:人工智能 优选教材 考核方式内容 手段 实践
人工智能(Aritificial Intelligence,英文缩写为AI)是一门综合了应用数学、自动控制、模式识别、系统工程、计算机科学和心理学等多种学科交叉融合而发展起来的的一门新型学科,是21世纪三大尖端技术(基因工程、纳米科学、人工智能)之一。它是研究智能机器所执行的通常与人类智能有关的职能行为,如推理、证明、感知、规划和问题求解等思维活动,来解决人类处理的复杂问题。人工智能紧跟世界社会进步和科技发展的步伐,与时俱进,有关人工智能的许多研究成果已经广泛应用到国防建设、工业生产、国民生活中的各个领域。在信息网络和知识经济时代,人工智能现已成为一个广受重视且有着广阔应用潜能的前沿学科,必将为推动科学技术的进步和产业的发展发挥更大的作用。因此在我国的大中专院校中开展人工智能这门课的教学与科研工作显得十分紧迫。迄今为止,全国绝大多数工科院校中的自动控制、计算机/软件工程、电气工程、机械工程、应用数学等相关专业都开设了人工智能这门课程。南京邮电大学自动化学院自2005年成立至今,一直将“人工智能”列为自动化专业本科生的选修课程,到目前为止已经有八年的历史了。由于南京邮电大学是一所以邮电、通信、电子、计算机、自动化为特色的工科院校,因此,学校所开设的许多专业都迫切需要用人工智能理论和方法解决科研中的实际问题。在问题需求的推动下,南邮人经过多年的努力工作,在人工智能科研方面取得了丰硕的成果,如物联网学院所开发的现代智能物流系统、自动化学院所开发的城市交通流量控制与决策系统,为本课程的开设提供了典型的教学案例。我们结合近几年的实际教学经验,从优选教材、考核方式、教学内容调整、教学手段的改进和实践教学等方面对人工智能课程教学方法进行了总结归纳。
一、优选教材
目前,国内有关人工智能课程的中英版教材种类非常多,遵循实用、简单、够用的原则,再经过授课老师和学生们的共同调研,我们选用由中南大学蔡自兴教授主编的《人工智能及其应用》第三版作为南邮本课程的授课教材。本书覆盖的人工智能知识体系比较全面,包含知识表示、搜索推理、模糊计算、专家系统等。本书主要针对计算机、自动化、电气工程等本科专业的学生所编写,内容基础,难度适中。蔡教授所编写的这本教材全面地介绍了人工智能的研究内容与应用领域,做到了内容新颖、简单易懂、兼顾基础和应用,受到了全国广大师生们的一致好评,多年的教学实践证明我们所选择的教材是恰当的、正确的。
二、考核方式
在全国大部分高等院校,“人工智能”这门课大都选择开卷考试的方式来进行考核。为了强化学生对人工智能这门课基础知识的掌握,南京邮电大学自动化学院选用闭卷考试的方式来进行考核。为了打消部分学生想在期末闭卷考试中通过作弊手段来完成人工智能这门课考核的侥幸心理,我们加强了对学生平时考勤成绩、课下作业成绩和实验成绩的考核,从而杜绝了“一纸定成绩”的现象。我们对人工智能这门课的最后期末成绩是按如下权重来划分的:平时考勤成绩占10%、课下作业成绩占10%、实验成绩占20%、最后的期末考试卷面成绩只占60%。为了克服国家现行教育体制的弊端,避免学生“机械式”地的应对教学和考试,我们对考试题型进行了调整,不再是以往的填空、选择、简答等题型,而是改为以解决实际问题为导向的应用题型为主,这样学生只需要在理解授课内容的基础上利用自己的思维来解题就可以了,这也体现了国家目前正在提倡的应用型教学导向。
三、教学内容调整
对于本科生而言,人工智能这门课程所需要讲授的内容实在太多,由于课时所限,我们必须精简教学内容,让学生在掌握基础知识的同时,也能够了解它的具体应用。因此,我们将人工智能这门课程的教学内容分为两个部分:第一部分是基本理论和方法,包括人工智能的概述、知识表示方法、确定性推理方法等;第二部分为人工智能研究成果的具体应用,包括神经元网络计算、模糊智能计算、专家知识库系统、机器语言学习等。通过对教材内容的合理调整和安排,使得授课计划能够比较全面地覆盖了人工智能这门课程的基本知识点,从而满足了学生们的求知需求。
四、教学手段的改进
(一) 激发学生的学习兴趣
经过长时间的教学我们发现,在选修“人工智能”这门课程时,每个学生的心中所想各有不同,这些学生在刚开始学习时兴趣还比较强烈,但随着教学内容变得越来越抽象,学生逐渐对这本课的学习失去了信心,甚至上课时间不去听课,使授课教师对教学也渐渐失去了信心,导致恶性循环,严重影响了教学质量。针对这种现象,我们认为,在开课前充分激发学生的学习兴趣是很有必要的。我们要结合学校的实验条件,开课前给学生演示“机器人医疗服务”实验,通过该实验的演示,让学生们看到机器人能够给病人提供多项人性化的服务,理解人工智能技术在开发医疗服务机器人多项关键技术中的应用,让学生在开课前能够对本课程的学习产生极大的兴趣,实践证明这种方法是有效的。
(二) 借助多媒体教学
多媒体教学是现代教学过程中一种非常重要的形式,它往往根据教学目的和学生们的特点,通过合理的设计、选择教材内容,应用公式、图形、文字、视频等多种媒体信息进行有机组合并通过电脑和投影机显示出来,与传统教学手段相结合,形成合理的教学过程结构,达到最优化的教学效果。人工智能这门课具有针对性强、内容抽象、公式繁琐等特点,学生学习起来比较困难,为了让学生生动、形象地学习该课程,我们在教学过程中充分利用了多媒体技术来组织教学。例如在课堂教学过程中播放南邮自动化学院梁志伟博士带领学生所开发的“智能足球机器人”比赛片段;让学生在线观看北京大学工学院谢广明博士带领学生所开发的“自主视觉机器鱼”录像片段等。在讲解某些重要的求解算法时,借助Matlab软件和投影机,直接展现该算法的求解过程,从而改善了课程教学的形式,提高了教学质量。
(三)提倡课堂辩论
我们在教学过程中打破了传统的“老师讲课学生听课”的教学模式,多次组织课堂辩论,辩论的主题包括人工智能研究过程中出现的技术困惑、人工智能研究成果转化中的市场前景等。如组织了“电脑PK人脑”“电脑是否让电视消失”“电脑的未来发展方向在哪里”等一系列辩论会。经过激烈的辩论,无论正方还是反方都感觉自己收获很大,增长了知识,开阔了眼界。在教学过程中通过将学生由“被动听课”角色变换为“主动参与”角色,大大地调动了学生的学习积极性,从而提高了课堂教学质量。
五、实践教学
实践教学是课堂教学不可缺少的重要组成部分,通过让学生亲自动手实验来对理论知识进行检验和应用是目前国内外各个大学提高学生综合素质、增强学生市场竞争力的重要手段。人工智能实验教学的目的是让学生通过亲自动手体会授课中的各种智能控制算法,从而使学生能够更加形象地掌握课本知识。人工智能教学计划安排了4学时实验课,设置了“传教士和野人过河”“机器人路径规划”这两个人工智能问题,要求学生独立完成这2个实验题目的编程,并书写实验报告。通过实验,学生动手实践了课堂上所掌握的理论知识,加深了对智能算法的理解。
人工智能是一门实用性较强的课程,我们总结了近几年来的教学经验,从优选教材、考核方式、教学内容调整、教学手段的改进和实践教学五个方面对人工智能课程教学进行了总结。从学生的反馈来看,我们所总结的教学经验对于指导新教师讲授“人工智能”这门课程具有积极的作用,需要指出的是,我们仍有很多不足之处,需要在以后的教学过程中不断努力完善,提高自己的教学能力,争取更好的教学效果。
参考文献
[1]蔡自兴,徐光佑.人工智能及其应用[M].北京:清华大学出版社,2003.
[2]路小英,周桂红,赵艳等.高等农业院校《人工智能》课程的教学研究与实践[J].河北农业大学学报:农林教育版,2007,9(4):66-68.
[3]马建斌,李阅历,高媛. 人工智能课程教学的探索与实践[J].河北农业大学学报:农林教育版,2011,13(3):330-332.
[4]赵海波.人工智能课程教学方法的探讨[J].科技信息,2011,(7):541.
[5]张廷,杨国胜.“人工智能”课程教学的实践与探索[J].课程与教学,2009(11):133-134.
>> 研究生人工智能系列课程教学改革 研究生人工智能课程教学探索 研究生“人工智能”课程教学改革探索 人工智能实验课教学改革研究 人工智能课程全英文教学改革 创新型人工智能教学改革与实践 《人工智能》硕士课程教学改革的研究与实践 落实科学发展观,深化“人工智能”课程的教学改革 面向人工智能的信息管理与信息系统专业教学改革 人工智能课程教学方法研究 人工智能的应用研究 日本巨资扶持人工智能研究 人工智能系列课程研究 高中人工智能教学初探 《人工智能》双语教学初索 人工智能双语教学建设 人工智能实验教学探讨 “人工智能”之父 人工智能 AI人工智能 常见问题解答 当前所在位置:l(美国人工智能协会)、caiac.ca/(加拿大人工智能协会)等,它们包括了学科前沿动态、讨论交流及大量的代码资源等。通过使用这些资源,学员可及时了解人工智能最新发展动态,进行人工智能程序设计的交流及对一些问题进行较为深入的探讨。
2教学方法研究
研究生教学应更突出学生的主体地位,注重发挥其学习的主动性和自觉性,为此,课程组结合课程特点,在教学方法进行了如下探索。
2.1加强教学设计
教学设计就是对教学活动进行系统计划的过程, 是教什么(课程内容)及怎么教(组织、方法、策略、手段及其他传媒工具的使用等)的过程[2]。在教学过程中,每节课授课前,坚持集体备课的原则,由课程组集体讨论选定授课内容,补充阅读文献,根据授课对象与课程内容特点,确定课堂组织方式,采用的授课方式以研讨式教学为主,给合讲授、实验、自学等。
2.2抓好课堂教学环节
教学方法与教学手段是保证课堂教学效果的关键。本课程授课对象主要为硕士研究生,他们的接受能力较强,有一定的求知欲。由于学员人数较少,授课方式可灵活组织。教室有完备的多媒体设备,基本的软件实验环境,教学过程可采用灵活教学方法、多种教学手段,提高教学效率,保证授课质量。
1) 以研讨式为主的教学方式。研究生教学应坚持学术研究为导向,发挥学员在学习过程中的主动性和自觉性。由于研究生学员有一定的学习基础与自学能力,教员可以在课前给学员布置预习内容,学员通过查阅资料、分析整理进而形成自己的观点,使在课堂教学中师生互动交流成为可能,改变传统的教员讲,学员听的灌输式教学方式。研讨式教学也有力于培养学员积极思考、创新思维的习惯与能力。
2) 教学手段的信息化。人工智能原理教学一个突出矛盾是知识点多、内容抽象、理论性强,但学时较少,因此,必须发挥现代教学手段的作用,提高教学效率。为此,课程组对每节课都精心设计了教学课件,课堂教学中以课件为主,辅以板书,充分利用多媒体信息量大、直观等优点,改善教学效果;引入教学声像资料,便于学员课下学习;设计演示程序,使部分比较抽象、不易于理解的内容,如子句归结、搜索策略更形象直观,易于学习和掌握。
3注重培养学员学术研究能力
学术能力是指专门对某一学问进行系统的哲理或理论研究的能力,它不仅包括思辨的方面,还包括实践及感性的敏感力等方面。研究生阶段学习的一个突出特点是要求学习的主体――研究生必须具备研究的能力[3]。论文写作是培养、锻炼、提高研究生的学术能力的重要途径,在教学实施过程中,要求每个专题学习结束后,都要提交一份格式符合期刊发表要求的总结报告,题目可自行选定,也可由教员指定;内容既可以是人工智能该专题某一算法的实现,也可以是对某一问题的进一步研究,或者是对该专题最新研究进展的综述。教员重点在以下几个方面予以指导。
1) 选题准确。要求选题不能过于宏大,应以小题目反映大问题,具有一定的可研究性为宜。
2) 研究内容。研究目标明确,方法恰当,能够提出自己的见解,所提观点正确。
3) 论文结构。结构清晰、完整,论述严谨,表达规范。
4) 占有文献丰富。撰写过程中要有意识培养学员查阅科技文献的能力,要求查阅反映最新研究成果的权威文献。
4加强实验环节教学
人工智能教学在进行各种理论知识讲授的同时,还应重视实践教学,把抽象的知识转化为形象、直观的实验,让学员真正理解人工智能的概念、本质、研究目标,从而提高学员多角度思维的能力和逻辑推理能力,进一步了解信息技术、计算机技术发展的前沿,培养他们对人工智能研究的兴趣,激发对人工智能技术未来的追求。为此,课程组借鉴国内外知名大学人工智能实验教学经验,编写了《人工智能原理实验指导书》,围绕问题表示、经典逻辑推理、不确定推理、搜索策略及简单专家系统实现等教学内容提供了7组实验供学员选择。
例如,在状态空间搜索一节教学过程中,先完成理论部分的教学,使学员对状态空间基本概念、问题表示及求解方法有一个准确的认识,然后进行实验教学。由学员自主完成重排九宫问题求解的程序,初始状态和目标状态如图1所示,调整的规则是,每次只能将与空格(左、上、下、右)相邻的一个数字平移到空格中[4]。实验过程重点指导学员掌握状态空间进行问题求解的关键步骤:问题表示和搜索策略。问题表示就是要确定该问题的基本信息及程序实现的数据结构,基本信息有初始状态集合、操作符集合、目标检测及路径费用函数,数据结构可采用向量、链表等形式;搜索策略可分为盲目式搜索和启发式搜索,可按照先易后难的原则,先实现盲目搜索中的广度优先及深度优先搜索,在此基础上再定义估价函数实现启发式搜索。而在启发式搜索实现过程中,又可以通过定义不同的启发函数:如某状态格局与目标节点格局不相同的牌数、不在目标位置的牌距目标位置的距离之和等加以比较,准确理解启发函数的意义。通过实验,学员加深了对课堂讲授的理论知识的理解,能够熟练地将状态空间法运用于实际问题的求解,提高了工程实践能力。
实验教学组织方式可根据具体的实验内容特点,采用上机编程实验、演示程序验证、模拟平台开发、分组讨论等多种形式进行。
5适度开展双语教学
研究生的英语基础普遍较好,基本都通过了国家公共英语四级考试,部分学员通过了六级考试,加之在本科阶段还开设了专业英语课程,因此,在培养研究生人工智能知识的同时,我们要提高学员阅读原版英文资料、用英语进行简单科技写作及对外学术交流的能力,适度开展双语教学,对此,我们可采取以下基本方式。
1) 专业术语全部用英语表示。
在教学过程中用英语表达人工智能原理中的专业术语和主要概念,如Knowledge Representation(知识表示)、Depth-First Search(深度优先搜索)、Breadth- First Search(广度优先搜索)等。
2) 以英文原版教材为教学参考书。
选定机械工业出版社出版的《Artificial Intelligence Structures and Strategies for Complex Problem Solving》为参考书,该书“是人工智能课程的完美补充。它既能给读者以历史的观点,又给出所有技术的实用指南[5]。”
3) 加强英文文献的阅读。
在课程论文撰写时,要求阅读一定数量的外文文献;在讨论课中,鼓励学员使用英语进行讨论。
经过课程学习,学员都能准确掌握人工智能学科专业词汇,英文运用能力得到一定提高,能较自如地阅读原版英文专业资料,为进一步用英文进行学术交流及学术论文写作打下基础。
6考试与成绩评定改革
考核方式采用传统的试卷与课程论文、实践环节等三部分组成,全面考查学员对基础理论知识掌握情况以及理论联系实际的能力,其中试卷占70%,课程论文占10%,实践环节占20%。课程论文题目不作限制,由学员在课程学习阶段结合某一专题选定题目,课程论文以选题意义、研究内容、论文结构、参考文献及撰写规范等指标为评价依据;实验成绩采用实验过程考查、实验结果验收和实验报告评阅相结合的考核方法,综合评定。这样做不但考核了学员人工智能基本理论掌握情况,也反映了学员的学术研究能力和工程实践能力。同时,考核结合实际教学进程,改变了单一课终总结性考核的弊端。
7结语
经过课程组近两年的教学方法研究与教学实践,研究生人工智能原理课程教学收到较好的效果,但仍存在一些问题,如在课堂讨论环节,个别学员准备不充分、讨论不够深入;课程论文撰写选题随意,文献综述不够全面、准确,论文格式不够规范等。在今后的授课中,课程组将根据授课研究生人数较少的特点,采取明确每名学员预习重点、加强课程论文交流等方式予以改进,力求取得更好的教学效果。同时,进一步充分利用便利的校园网平台,开展“人工智能原理”网络课程建设,购买或自主开发网络教学资源,引导学员利用网络资源进行个性化自主学习,增强教学过程的信息化程度。
参考文献:
[1] 王永庆. 人工智能原理与方法[M]. 西安:西安交通大学出版社,2002:1.
[2] 李志厚. 国外教学设计研究现状与发展趋势[J]. 外国教育研究,1998(1):6-10.
[3] 肖川,胡乐乐. 论研究生学术能力的培养[J]. 学位与研究生教育,2006(9):1-5.
[4] 周金海. 人工智能学习辅导与实验指导[M]. 北京:清华大学出版社,2008:204.
[5] George F.Luger.Artificial Intelligence Structures and Strategies for Complex Problem Solving[M].北京:机械工业出版社,2009:754.
Reform on Postgradrates Artificial Intelligence Course Teaching
TAN Yuehui, QI Jianfeng, WANG Hongsheng, LI Xiongwei
(Department of Computer Engineering, Ordnance Engineering College, Shijiazhuang 050003, China)
Abstract: According to the existing problems of our university Artificial Intelligence course teaching, this paper analyzes the features of the course, research on the all aspects of practice teaching, put forward a series of teaching reformation. The practice proves that the education reform can improve the teaching level of the course and ensure the quality of talents training.
关键词: 人工智能 教学目标 教学方法 教学观念
1.引言
人工智能,作为时展所必须具备的一项核心技术,发展日新月异,惊人地改变了社会面貌,促进了社会的发展。探讨人工智能的发展对人类社会的进步有着重要意义。
人工智能(artificial intelligence)简称AI,它是一门涉及数学、计算机科学、控制论、逻辑学、信息学、脑科学、神经生理学、心理学、语言学、哲学等学科的交叉和综合学科,是当前科学技术发展中的一门应用性很强的前沿学科。人工智能学科是研究、开发用于模拟、延伸和扩展的智能的理论、方法、技术及应用系统的一门新的技术科学。主要目标在于研究用机器来模仿和执行人脑的某些智力功能,并开发相关理论和技术,从而实现机器智能[1],使得机器更好地为人类服务。
随着人工智能的迅速发展,它在我们的生活中也扮演着越来越重要的角色。当前,几乎所有的科学与技术的分支都在共享着人工智能领域所提供的理论和技术。目前广泛应用于机器人技术、专家系统、语义Web、自然语言理解、智能控制、数据挖掘、模式识别、智能计算等方面,已经成为计算机技术发展及许多高新技术产品中的核心技术。
为了适应人工智能技术日益广泛的需要,国内外高校普遍开设了“人工智能”方面的课程。特别是作为本科阶段计算机专业的课程之一,其为培养创新型专业人才奠定了坚实的基础。因此,展开人工智能课程教学探讨具有重要的意义。
为了适应形势的发展,培养应用型人才,我校开设了“人工智能与机器人课程”,并成立了“智能机器人实验室”,为培训学生的动手实践能力奠定了坚实的基础。
2.人工智能教学目标
人工智能是计算机科学的重要分支,是计算机科学与技术专业本科阶段的重要专业课之一。本课程介绍如何用计算机来模拟人类智能,即如何用计算机实现诸如问题求解、规划推理、模式识别、知识工程、自然语言处理、机器学习等只有人类才具备的“智能”,使得计算机更好地为人类服务。
本科阶段开设人工智能课程的目的是使学生了解人工智能的基本概念和基本原理,了解国内人工智能研究的基本情况,了解国际人工智能的主要流派和路线,熟悉人工智能的研究领域,重点掌握人工智能的基础知识和基本技能,以及人工智能的一般应用。通过初步学习和掌握人工智能的基本技术和前沿内容,拓宽知识面,启发思路,提高学生的应用能力和水平。为培养应用型人才奠定坚实的基础。通过对学生适时适度地进行科研引导,激发学生的学习及研究兴趣,树立目标意识,找准研究方向,为科研事业培养后备力量。
3.人工智能教学现状
人工智能作为计算机专业的前沿课程之一,具有知识点多、涉及面广、多学科相互交叉和渗透、内容抽象且更新快的特点[2],需要学习者具有较好的数学基础和较强的逻辑思维能力,使得教学有一定的难度。因此,在实际教学中存在很多不足之处[3]:教师教学手段、教学方法单一,由于其知识的抽象性,又加之其应用实例较少,学生的积极性不容易调动;实践教学模式单调、内容单薄,需要不断充实;人工智能教学资源短缺。现有适用性教材较少,学校硬软件设备有限等问题,直接影响到高校人工智能课程的有效开展。
4.人工智能教学方法探索
4.1理论联系实际。
通过理论与实践研究,改革人工智能课堂教学,探索本科阶段人工智能课堂教学的本质规律,处理好继承与创新的关系。从教学理念到教学方式进行全新的变革,使人工智能教学焕发生命的活力,真正促进学生的发展。
在人工智能的教学过程中,学生比较困惑的是理论不能或不容易和实践很好地结合,不知道学习人工智能能做什么。所以在课程讲授的过程中,除了要很好地讲解理论内容以外,更重要的是要结合实际生活中关于人工智能的一些应用实例,如:智能机器人、车牌识别、防火喷头根据烟雾浓度自动灭火、无人驾驶汽车等[4]。在生活中有很多可以结合的实例,人工智能的应用范围还是非常广的,让同学们开动脑筋,积极地理论联系实际。如果能组织学生参加一些国内国际举行的智能机器人、智能小车等智能学科的比赛,发挥同学们动手、动脑和团队合作的精神就更难能可贵了。
我校智能机器人实验室成立于2009年9月,总占地面积400多平方米。实验室拥有价值超过百万元的机器人设备、仪器和工具,可以满足机器人教学、科研和竞赛的要求。目前,我校除了人工智能理论教学之外,还开设了机器人创新实验课,使理论和实验能够更好地结合起来。图1为学生在上机器人(机器鱼)实验课。
图1 机器人创新实验课
4.2更新教学观念。
更新教学观念是一项长期且艰巨的工作,但只要我们从小处入手,从一点一滴抓起,必将很好地促进教学观念的更新。先进的教学观念对教学方法的改革发挥着重要的导向作用。针对目前人工智能教学的现状,人工智能教学应该确立以下四个基本教学观念。
第一,让学生“学会求知”比教学生掌握知识本身更重要。
第二,在教育教学过程中应着重发挥学生的自主性、独立性和创造性。教师的教要为学生的学服务,积极地引导学生从模仿再现到探究发现,重视动手操作和亲历探究的过程,让学生不但知其然更知其所以然。
第三,培养学生提出并解决人工智能问题的能力,人工智能教学要注重学生思维能力的培养,充分发挥学生的创造力和想象力。
第四,人工智能教学应着力培养学生的计算思维能力,进而培养学生的专业素质和创新能力,提高学生将人工智能应用到实际生活中的意识和解决问题的能力。
我校智能机器人实验室以重视学生综合素质和创新实践能力的培养为己任,坚持“以学生为主体,以教师为主导”的培养理念,采用“因材施教、分类培养”的人才培养模式,着重发挥学生的自主性、独立性和创造性,对学生进行全面、持续、有效的教育和培训,取得了良好的效果。
4.3促进教学进程的有序发展。
任何事物的发展和演变都遵循其内在的发展规律,在一定的时间和空间,按一定的顺序展开。人工智能教学内容无论有何不同,所选用的教学方法都要保证课堂教学进程紧凑有序,这是为了保证学生学习过程的完整性。一个完整的学习过程包括明确学习目标、提取材料信息、探索(猜测)方案、尝试实践、理解强化、实际运用等。在一节课里有时也可能是几个学习过程的循环提升。因此,一定要将实验所涉及的理论都讲解完才能进行实验课,才能更好地做到理论联系实践,把课堂上学到的理论知识真正运用到实践中去,做到教学进程的有序发展。
4.4注重激发学生的学习兴趣。
科学家爱因斯坦曾说:“兴趣是最好的老师。”如何在教学工作中激发和培养学生的学习兴趣,提高他们学习的主动性和积极性是当前教学改革中迫切需要解决的重要问题。
在实际的课堂教学中发现,刚开始听课由于有兴趣学生整体学习的积极性很高,但是一段时间过后发现部分学生由于教学内容抽象,难点比较多,不便于理解,兴趣逐渐减弱。针对此种情况,可以采用任务驱动式教学或案例教学。例如:我校通过积极参加国际水中机器人公开赛、中国机器人大赛暨RoboCup公开赛等多项比赛,让学生观摩、参与比赛,既激发了学生的学习兴趣又提高了实践能力。
我校智能机器人实验室对教学方法进行了改革与创新,将大学生创新实践能力的培养作为教学与实践体系改革的重要组成部分。根据产、学、研合作模式,以项目带动学习,建立了以学生科技竞赛促进学生自主学习能力、理论学习与动手能力协调发展的实验实践训练体系,即由机器人社团作为基础培训的全方位开放式的四级创新实践训练体系,具体包括低年级学生兴趣的培养、初级动手训练、高年级学生系统动手训练和综合创新设计。使大部分学生达到了“加强理论基础,扩大知识范围、突出专业特色,提高创新实践能力”的培养目标。图2为水中机器人比赛现场。
图2 水中机器人比赛现场
4.5加强合作教学,促进个性发展。
合作教学,不仅能快速有效地提高教学质量,同时对提升学生的整体能力和综合素质也有很好的促进作用。小组学习活动是合作教学的最基本的形式。在教学中,充分利用学生之间的互动交流,在合作中共同达到教学目标,培养合作能力[5]。小组合作学习的步骤安排:
①合作探索,独立思考。
每次实验课之前都分好小组,明确实验目的,明确每个人的分工安排,做到统筹协作。
②组内交流,统一思考成果。
实验当中会遇到各种各样的实际问题,这就需要同学们相互之间交流协作,共同找到解决问题的办法。最后,统一思考实验的成果,并作出书面实验报告。
③小组代表实行轮流制(有利于每个个体的锻炼),进行全班交流,相互补充,相互启迪,互通有无。
④开展讨论和辨析,加深理解。
⑤总结回顾,构建认知结构,每个活动环节中教师都应积极地做学生的合作者,当学生遇到困难时给他们以点拨和引导。
5.结语
人工智能课程教学探讨,目的是更新教学观念,提高认识,解决教学观念滞后的问题,努力探索出一条扎实、有效、利于学生发展的人工智能教学新路。人工智能是处在不断发展中的学科,因此,教学和实践方法还需根据实际情况具体展开。另外,精心选编适合时展和教学需求的教材也是我们要努力的目标。
参考文献:
[1]蔡自兴,肖晓明,蒙祖强,等.树立精品意识搞好人工智能课程建设[J].中国大学教学,2004,1:28-29.
[2]徐新黎,王万良,杨旭华.“人工智能导论”课程的教学与实践改革探索计算机教育,2009,1:129-132.
[3]冯爱祥,罗雄麟.本科“人工智能”课程的教学改革探索中国电力教育2011.10:111,118.
[4]王万森.人工智能原理及其应用[M].电子工业出版社,2006.
【关键词】人工智能;诊断学教学;智能教学系统;智能组卷系统;智能阅卷系统;智能仿真教学系统
人工智能(artificialintelligence,AI)的概念最早是在1956年的Dartmouth学会上提出的,随着计算机核心算法的突破、计算能力的迅速提高以及海量互联网数据的支撑,目前已被广泛地应用于各个领域[1-2]。近年来,人工智能也给教育教学领域带来了机遇,人工智能+教育正如火如荼地开展和推进,改变着传统的教育形式及生态[3-4]。2018年教育部《高等学校人工智能创新行动计划》,各大高校在人工智能及其教育发展上有了纲领性的指导[5]。医学教育作为教育教学诸多领域的一隅,乘着人工智能发展的东风,各大高校在推进医学教学改革方面进行了大量积极的探索与尝试[6-8]。诊断学是由基础医学过度到临床医学的桥梁课,其教学质量的良莠直接影响到医学生的培养质量,传统的教学方法难以满足现代医学教学的要求,如何发挥人工智能的应用优势,让其更好地应用于诊断学的教学工作,也是诊断学课程教改的重要研究方向。
1传统的诊断学教学方法存在的问题
诊断学是学习临床基本技能最重要的一门课程,其内容包括症状学、体检检查、实验室检查及辅助检查等四大块,分为理论课和见习课,目前大多数医学院理论课采用的是以大班的形式在多媒体教室讲授,而见习课则采取分小组的模式进行,多年的教学实践发现该教学模式取得的教学效果不尽人意,尤其是近年来随着全国各大医学院校的扩招,出现了师资及教学资源配套的相对不足,上述教学模式的问题逐渐凸显。理论知识以老师讲授为主,采取的是“满堂灌”的教学模式,然而该部分教学内容知识点繁多,知识串联度不高,课堂灵活度、生动度较为薄弱,学生听完课以后对课程内容印象不深,知识掌握度差,同时由于学生的学习主观能动性差异大,不能进行课前充分预习的学生在课堂上更加难以跟上老师讲授的节奏。见习课是对理论知识进行实践,培养学生的实践操作能力,前期理论知识掌握度差又会影响见习的教学质量,导致教学过程形成恶性循环[9]。见习课主要采取老师讲授要领及演示操作流程,之后学生们互相练习的教学方法,该部分内容需反复加强练习,同样的动作要领反复锤炼才能熟练掌握,因课堂见习时间有限,而老师讲授及演示需占用大部分时间,学生动手实践机会不多,老师对学生的操作手法、操作内容、操作顺序等重要内容进行指导和勘误的时间少,学生操作的规范性难以保证,在以后的临床实践中,往往存在实践操作能力的缺陷。上述教学模式教师与学生们之间除了课堂时间,其余时间是脱节的,不能很好地沟通,学生们有疑问的知识点难以得到老师的及时解答,教学活动中没有充分反馈,各个教学环节难以进行教学反思,形成教学相长的良性循环。课后复习及阶段性总结复习是课堂知识内化及升华的重要方面,传统的教学模式通常是给学生布置课后作业,学生完成后上交由老师批改留档,这个环节学生与老师缺乏有效的沟通,且由于学生们学习主观能动性差异,课后没有老师的监督及针对性地辅导,课后作业的质量良莠不齐,教学质量欠佳是显而易见的。随着现代医学的发展及研究的开展,涌现了一大批新的诊断方法与手段,譬如关于肿瘤诊断的分子marker,评估预测疾病活动度及预后相关的指标,在临床上已经常规应用,但由于教材更新需要周期,很难跟新进展同步介绍,另外由于课时有限,难以全面地就学科前沿及新进展进行讲授[10]。
2人工智能应用于诊断学教学的重要意义
2.1教师方面
将人工智能应用于诊断学教学实践,削弱了教师的知识权威而强化了教师的价值引导,对教师的个人能力提出了更高的要求,促使教师踏实践行终身学习并持续更新自身知识结构。互联网高速发展的时代,知识呈几何指数更新并出现大爆炸,基于各种互联网即时通讯平台及手机APP,诊断学体格检查、理论知识讲授相关的小视频及研究进展不胜枚举,这就要求教师及时获取、更新知识并进行相应的知识储备。人工智能的应用促使教师从单人施教发展为团队施教,为开发更具个性化的课程教学注入团队的力量。基于大数据的人工智能可以减少诊断学教学过程中的机械性、重复性工作,如平时作业的批改、考勤统计等,减轻了教师的工作负担,教师可以将更多的精力投入到医德医风、医患沟通能力以及体格检查手法的规范化培养上,更多的心思放在丰富课程内容及教学形式上。同时大数据可以及时反应学生的学习动态,教师可以根据学生的反馈及课程评价有针对性地对学生进行相应的辅导。
2.2学生方面
将人工智能应用于诊断学教学实践,可以实时动态记录学生的学习情况及暴露的问题,如是否按时完成课程任务、测试中哪些知识点容易出错等,人工智能系统能够对这些数据进行关联分析和深度挖掘,并且可视化呈现相应的数据,有利于教师及时掌握学生的学习进度、参与度以及学习效果,并根据具体的学情分析数据来调整辅导和教学方案。基于人工智能强大的算法和分析,可以为学生定制个性化的教学内容及进度,提供更有针对性的课堂内容和随堂测试,并对测试及平时作业进行智能批改,真正做到查漏补缺。诊断学课程内容相对枯燥,学生们的学习兴趣有限,基于人工智能的教学方式可以寓教于乐,在课程中将一些比较零散的知识点可以设置成互动小游戏,营造出良好的课堂氛围,提高学生们的学习兴趣及学习效率。
2.3教学过程
针对教学过程,人工智能亦发挥着至关重要的作用。第一,诊断学作为桥梁课程,是一门必修课,包括临床医学五年制、八年制、法医学、基础医学等相应专业的学生均需要学习,人工智能拥有超强的计算能力和强大的“记忆力”,面对众多不同专业的学生,可以根据大数据进行分析,制定出适合不同专业学生的完备教学目标。教学活动开展过程中,人工智能还可以根据学生的课堂及课后测试表现,依据分层教学的要求自动设置梯次教学目标,帮助学生们逐步提升学习能力和知识掌握度。第二,人工智能可以凭借自身信息化的特点,对各种教学资源进行分析,为教师和学生选择更优质更合适的资源提供依据,促进个性化的教与学。第三,传统的教学方式、教学内容相对有限,人工智能基于大数据能够启发新的教学思路,创新教学方法,为诊断学教学提供更多的可能性。
3人工智能在诊断学教学中的应用
3.1智能教学系统
智能教学系统是教育技术学中重要的研究领域,其根本宗旨是使得学生的学习环境更加优良和谐,智能教学系统能够及时有效地调用最新最全的网络资源并充分优化后供学生学习,使得学生能够更加全方位、多角度地学习专业知识,提高学习效果[11]。智能教学系统大致由领域知识部分、教师部分及学生部分3个部分构成[12],其中领域知识部分又称为专家部分,这一部分既包含了需要讲授的内容及掌握的技能,又可以添加专家的学术成果,既能够保证学生对于基本概念、基本理论及基本技能的掌握,又能够拓宽知识面,增加知识的广度。智能教学系统的教师及学生部分主要是为设计和制定教学方案及策略服务,基于大数据基础上,根据课程的特点、历年教学情况、学生身心发展特点及学习实际情况,制定更加个性化、高效的教学方案,促成教师因材施教,取得更加理想的教学效果。
3.2智能网络组卷阅卷系统
诊断学教学内容包括理论和见习两大块,教学过程中教师的大量时间用于出题、阅卷、批改平时作业等与考核相关的工作,并且在出题过程中需要围绕相对固定的重难点内容不断创新题型,消耗教师大量的精力。智能网络组卷阅卷系统能够充分发挥其优势,将教师从繁冗的考核相关工作中解脱出来,使得教师的教学更高效,教师能够把更多的时间。智能网络组卷系统能够有效收集和分析知名高校教学团队编写的在线题库,实现教学资源的共享,通过随机抽题组卷、答案随机排序、题型随机排序以及设置避免与历年考卷重复等,显著提升试卷的质量,亦能改善考试作弊的顽疾,客观地考核学生对知识的掌握度。智能网络阅卷系统有简明的阅卷流程,能够更有效地识别试卷及答案,能够明显降低传统人工阅卷方式因疲劳带来的出错率,使得工作效率更高、考核结果更公正。
3.3智能仿真教学系统
诊断学教学的见习部分是学生提高技能的重要环节,常常采用分小组在病房完成的方式进行,在课程的开展过程也凸显出了各种各样的问题,譬如因学生分组进行询问病史、体格检查,重复次数多,患者难以多次配合;在教学时间段内病房缺相应的病种,无法对所学的症状进行直观的学习;传染病流行期间出于对学生健康安全的保护,无法进入病房见习等等,此时智能仿真教学系统能够发挥重要的补充作用[13]。人工智能可以根据提供的海量真实临床病例,由医学专家整合其临床特征,联合计算机专家,根据相应的教学要求,形成虚拟病人学习系统,学生在仿真诊疗环境中,进行问诊、体格检查、诊断以及给出治疗方案,同时系统能够自动发现学生在问诊及诊断过程中的错误,通过实践、纠错再实践,提高学生采集病史、体格检查的能力,同时能够加强学生的临床思维的训练,夯实临床基本功[14-16]。
4总结及展望
人工智能应用于诊断学教学有诸多的优势,对于学生和教师的发展均有利。人工智能能够促进学生的个性化学习,制订科学、适宜的学习方案;便于学生反复练习问诊技巧及体格检查手法,培养正确的临床思维能力;促进教师不断丰富自身的知识储备,促成因材施教;能够成为教师的有力助手,帮助教师适时了解学生的学习情况,及时解决困难;还可以替代教师的重复性、程序化的劳动,使教师有更多时间用于医德医风等医学人文素养的培养上。当下人工智能与诊断学教学的融合有一些普遍存在的问题,首先是学科需要具备将人工智能融合进教学过程的软硬件,完善教育人工智能的基础设施,加大学科专业人才与人工智能专家的合作,促成人工智能教育工程的真正开展实施,同时可以加大计算机基础教学与医学教学的交叉研究力度,完善相应的课程体系,提高课程质量;其次教师的认识问题,教师要充分认识人工智能应用于诊断学教学过程中的优势及风险,改变自身的观念,在教学设计过程中思考如何将人工智能融合进课程教学中。综上所述,人工智能应用于诊断学教学过程完全符合“新医科”建设的要求,为培养复合型医学人才注入新的动力。
关键词:人工智能;全英文教学;教学内容改革;教学模式改革
1 实施全英文教学的必要性
随着国际学术交流的日益活跃以及国际化办学的趋势发展,借鉴国外著名大学的办学理念和管理模式,利用世界优质教育资源,提升教育教学水平,造就具有国际竞争能力的复合型创新人才,正成为我国教育改革与发展的新方向。
智能化是人类社会技术发展的必然趋势。作为计算机科学与技术专业课程体系中的核心课程之一,人工智能的地位正随着该学科的不断发展和其技术的广泛应用迅速提高,而且在非计算机领域,具有不同专业背景的学者也通过这个年轻的领域发现新思想和新方法。由于人工智能课程内容涉及计算机科学以及边缘学科的新理论、新方法与新技术,因此在该课程中开展全英文教学不仅可以让学生充分了解人工智能日新月异的发展,还可以促进本科教学与国际接轨,在培养国际化创新人才方面具有十分积极的现实意义。
2 当前国内全英文教学存在的主要问题
笔者对当前国内高校人工智能课程全英文教学的现状进行调查分析,调查对象为软件工程专业本科三年级学生,调研问卷共58份。调查项目、内容及结果见表1。
从项目1和2的调查结果看,大部分学生认为开展全英文教学有必要,其在提高英语应用能力、增强自己的就业竞争力以及了解国际前沿等方面有很大帮助。然而,由于全英语教学在我国尚处于起步阶段,进行全英语教学的效果并不十分理想,其教学试点与实践尚存在一些亟待解决的问题,主要表现在如下几个方面。
(1)对全英文教学的理解存在偏差。从项目3~5的调查结果看,教师不能正确处理好全英文教学与专业英语课教学的关系,使全英文教学变为纯英语课教学或专业英语课的翻版。大部分学生还是希望教学授课语言以双语为主或以中文为主、英文为辅,多媒体课件形式为中英文相结合。
(2)全英文教学达不到预期的教学效果。从项目6和7的调查结果看,虽然一些大学花了很大代价邀请国外一流教授专家讲授课程,但由于人工智能课程理论性强、难度大,学生很难适应全英文课程教学。
(3)缺乏内容全面和难度适中的教材。从项目8和9的调查结果看,一些大学在实施人工智能课程全英语教学时直接引进原版英文教材,但这对本科生来说,原版英文教材内容偏多、难度较大,学生学习时不免有诸多畏难情绪。
(4)师资匮乏。从项目10的调查结果看,学生对承担全英文教学教师的满意程度普遍不高。实际上,全英文教学对承担课程教学的教师要求很高,他们不仅需要具备专业知识,而且还要掌握英语应用技能,而现阶段国内高校中能承担全英语教学的师资仍然十分匮乏。
综上所述,如何改革全英文教学模式,讲授哪些教学内容,采用何种科学的教学方法与手段,是值得我们思考和关注的教学改革重点和难点。
针对以上这些问题,我们深入研究人工智能课程的特点,对现有教学模式、内容及方法进行全方位探索和改革,制订全英文教学计划,对促进教学工作、提高教学质量、培养国际创新型人才起重要作用,其重要意义具体体现在以下3个方面。
(1)探索如何将理论知识传授、综合能力培养与英语交流运用三者有机结合,建立全英文教学的新型模式,这将对更新教学理念和探索适合于计算机软件人才培养的教学方法产生深远影响。
(2)全英文课程教学能够让学生掌握最先进的人工智能国际前沿技术,开阔国际视野,有利于培养复合型、实用型、具有国际竞争力的高层次创新人才。
(3)全英文教学改革的探索与实践能够促进国内教育向国际教育迈进。
3 全英文教学内容改革
建立完善的全英语教学体系,需要有系统而完整的教学内容。我国计算机科学与技术本科专业人工智能课程课时一般只有36学时,因此我们需要考虑从什么角度组织教学内容,才能让学生比较容易地理解、熟悉和掌握人工智能的原理、方法与技术,从而显著提高教学效果。
与国内教学内容相比,国外教学更注重分析问题的思维方法和解决问题的应用能力,对提高学生的学习兴趣以及培养学生的创新能力十分有益,但是原版内容过多,且大多以国外政治、经济、文化、社会和生活为背景,对于我国学生来说,理解某些内容和背景比较困难。因此直接套用原版教学内容往往存在一定问题,我们需要在引进、消化和吸收国外经典教材内容的基础上,有选择性地挑选合适内容。国外经典教材编写思路不尽相同,一些经典人工智能教材及主要内容见表2。
人工智能的基本思想和主要内容是研究人类智能活动规律和用于模拟人类某些智能行为的基本理论、方法和技术。从表2中可以看出它们的共同点,即人工智能应围绕“智能”这个核心,但由于智能本身非常复杂,难以用单一的理论与方法描述,需要从不同的抽象层次刻画智能这个主题。我们认为,人工智能的主要内容可按图1所示划分为不同层次并确定讲授顺序。
在最底层,神经网络与演化计算(适应性原理与仿生机制等)辅助感知以及与物理世界的交互;抽象层反映知识在智能中的角色和创建以及围绕问题求解的知识的抽象、表示和理解;更高层则提出学习、规划、推理的模型和方式;应用层构造智能化智能体以及具有一定智能的人工系统,让计算机实现以往需要人的智力才能完成的工作。除了将人工智能课程的教学内容划分为这4个层次,为保证教学内容的循序渐进性,还可按照抽象层更高层最底层应用层顺序安排教学内容。
4 全英文教学模式改革的实施关键
针对以上国内全英文教学中存在的主要问题,我们提出人工智能课程全英文教学模式改革的实施关键,包括全英文课堂教学模式的重定位,“二三二”模式教学方法的改革,集先进性、前沿性和实用性为一体的教学内容创新以及全专业英语教学团队的打造。
4.1 全英文课堂教学模式的重定位
人工智能课程教学以培养学生掌握专业基础知识、培养实践动手与应用能力以及提高英语交流水平三者相结合为主要目标,分两个阶段进行,国内教师与国外教师共同授课。首先,国内主讲教师讲授人工智能课程的基础原理、模型和方法,可采用集中授课、案例教学和课堂实践等教学方式,使学生掌握人工智能的一般基础知识;在此基础上,再邀请国际知名外籍教师为学生讲授人工智能国际前沿技术,包括集中授课和专题研讨。经过基础学习,学生一般已掌握人工智能基础知识,因此对于外籍教师所讲授的学科前沿等内容能够准确理解和把握。与单纯采用全英文教学或单纯邀请外籍教师授课相比,该模式能收到较好的预期效果。“1+1”全英文双课堂教学模式如图2所示。
4.2 “二三二”模式教学方法的改革
实行全英语教学后,由于使用英文教材及中外教育背景存在差异等因素,我们在教学过程中对教学方法进行一定程度的调整和改进,包括全英文授课形式、案例教学、教学内容以及教学手段等方面;配合“1+1”全英文双课堂教学模式,提出图3所示的“二三二”模式教学方法,培养学生成为具有综合能力、创新能力、国际视野和英语技能的复合型人才。
该教学方法模式包括:(1)过渡式全英文与沉浸式全英语两大英语教学方式;(2)激励自主式、启发互动式、体验学习式三大学习法,激发学生学习兴趣,使学生牢固掌握人工智能基础理论与方法;(3)参与学习式和自我展示式两大学习法,培养学生综合运用知识的能力和创新能力。
在全英文课堂授课过程中,我们需要注重把握英语与专业的比例。首先,不能一味地追求全英文授课的形式而忽视教学效果;其次,还需要为学生提供一个良好的语言学习环境,在实际教学中注重培养学生良好的英语思维习惯,从根本上提高学生的英语水平。
人工智能课程包含大量概念,内容抽象,算法复杂,学生往往难以理解与掌握。将案例教学方法引入课程教学能有效提高学生的学习兴趣,获得较好的预期教学效果,但要达到理想的教学目标,仅仅靠课堂教学远远不够,还需要拓展第二课堂。有计划地邀请国外人工智能专家和教授到大学进行专题讲座,鼓励学生参加相关的课外科研/科技活动,使得学生能够体验式地、自主地学习,更好地了解人工智能新技术,从而进一步激发学生的学习热情。构建案例教学和课堂实践的双课堂教学模式,不仅能够丰富教学内涵,而且可以充实学科前沿知识并拓宽学生的国际视野。
4.3 集先进性、前沿性和实用性为一体的教学内容创新
除了引进、消化和吸收国外经典教材内容以外,我们还需要逐步建立起具有自身特色的教学内容,以保证教学内容集先进性、前沿性和实用性为一体。
(1)先进性。我们提出教学与科研相结合,以科研带动教学发展的新思路。教师可结合自己的人工智能及其相关领域的科研项目,将科研最新研究成果以及学科前沿知识进行梳理与优化并有机融入课程教学中,确保教学内容的先进性,有效提高教学改革的质量。
(2)前沿性。对人工智能发展较快的领域,如智能计算、数据挖掘等,还需更新和补充全英文教学内容,同时可以邀请国际知名大学教授共同研究与探讨教学内容,保证课程内容具有一定的前沿性,通过实现全英语教学保证课程与国际接轨。
(3)实用性。在讲授基础理论知识的基础上,还应注重实践的应用,增强学生的动手操作能力,以符合素质教育必须注重实践的要求。教师可结合教学中的基本理论知识,适当补充案例与实例,使得教学内容与实际相联系,丰富课程内涵并提高教学效果。
4.4 全专业英语教学团队的打造
师资力量直接影响教学效果。师资的匮乏是现阶段全英语教学面临的主要问题之一。虽然一些教师具有较扎实的人工智能学科功底,但不能熟练地运用英语进行授课,而有些教师则知识结构单一,缺少人工智能及其相关学科间的交叉与融合,因此我们需要多渠道、多层次地打造既具备专业知识,又具有学科交叉与融合能力,同时掌握英语技能的全英语教师队伍。将科研与教学相结合,利用与国外人工智能及相关领域学术带头人建立的合作关系优势加强交流与合作,争取申请国际合作科研项目,利用科研提高教师的教学质量、专业水平和英语技能。
5 全英文教学的具体实施
我们在软件工程专业本科三年级学生的人工智能课堂上实施全英文教学,具体实施过程如下。
(1)国际软件学院成立教学主管部门领导小组、从事教学研究的骨干教师组成的全英文教学工作小组以及由教学督导组成的监管小组,三者之间相互配合并共同促进,保障全英文教学工作的顺利推进与落实。领导小组对全英文教学的师资培训、人才引进、多媒体网络资源开发、实验室建设、教材编写等予以政策支持;教学工作小组制订全英文教学工作规划和年度计划;监管小组定期对工作小组的教学完成情况进行评估。
(2)在课程教学中,打破国内常规教学方式,建立开放式全英文教学模式,教学形式多种多样。教学方式以“1+1”双课堂教学模式为核心,以讲授与专题讨论相结合的方式,围绕基本原理、方法与技术展开教学,激发学生自主学习与创新学习的热情。
(3)国际软件学院在人工智能相关领域承担并完成了一批国家与省部级科研课题,而且取得了一些有影响的研究成果,形成了自己的学科特色和优势。2006年,国际软件学院聘请被誉为世界“人工大脑”领域先驱的美国犹他州州立大学计算机系Hugo de Gaffs教授担任武汉大学全职教授和学院国际人工智能研究室主任。
(4)聘请与国际软件学院有合作协议的国立首尔大学计算机科学与工程学院Bob McKay教授专职来校为本科生讲授人工智能技术前沿。同时,利用国外学者来武汉大学顺访的机会,请其为学生作学术报告,使学生了解国际最新人工智能技术,如邀请曾经在麻省理工学院从事过7年博士后研究的宋森研究员进行“理解大脑与仿制大脑”的讲座等。
(5)国际软件学院在遴选教师到与学院有教学和科研合作的国外大学进修时,优先考虑给本科生授课的全英文教师,并将全英文教学能力作为选拔条件,以教师的学术进修带动全英文教学建设,使学科和专业建设与全英语教学队伍打造相结合,全面推进全英语教学工作的开展。
6 结语
人工智能是计算机科学与技术专业的重要课程,目前正面临着知识更新和教学改革的紧迫任务。笔者以实施全英文教学为契机,针对目前国内全英文教学中存在的亟待解决的主要问题,提出人工智能全英文教学内容与教学模式改革的新思路。
(1)以智能为核心,从不同抽象层次刻画智能主题,构造人工智能最底层、抽象层、更高层以及应用层4大模块内容。
(2)突破传统教学模式,对全英文教学模式进行重定位,提出“1+1”全英文双课堂教学模式。
(3)提出“二三二”模式教学方法的改革方案,培养具有综合能力、创新能力、国际视野、英语技能的复合型人才。
(4)提出教学与科研相结合,以科研带动教学发展的新思路,进行集先进性、前沿性和实用性为一体的教学内容创新。
(5)提出利用与国外大学建立合作关系的优势,争取国际合作科研项目,通过交流与合作多渠道、多层次地培养既具备专业知识,又具有学科交叉与融合能力,同时掌握英语技能的全英文教学教师队伍。
关键词:人工智能;学习兴趣;教学方法
1956年,在美国Dartmouth大学,由数学家J.McCarthy和他的三位朋友M.Minsky、N.Lochester和C.Shannon共同发起一个历时两个月的夏季学术讨论班,他们在此讨论班上第一次正式使用了人工智能(Artificial Intelligence)这一术语。人工智能是一门多学科交叉的课程,涉及计算机科学、数学、控制论、信息论、神经生理学、心理学、哲学及语言学等多个学科,是新理论和新技术不断出现的综合性学科。当前,人工智能领域加强了从人类智能与生命现象中汲取养分的趋势,加快了向分布式系统与复杂系统靠拢的步伐,智能化的应用更为深入,影响更为广泛,其发展已对人类的经济、社会、文化等方面产生了深远影响[1]。
1人工智能导论课程特点
人工智能导论是人工智能领域的引导性课程,介绍人工智能的基本理论、方法和技术,目的是使学生了解和掌握人工智能的基本概念和方法,为进一步学习奠定基础。人工智能是计算机科学与技术学科一门重要的基础课程,需要相关课程作支撑。离散数学、概率论与数理统计等课程是其数学基础,数据结构、程序设计基础、算法分析与设计等课程则为人工智能中知识表示、逻辑推理和问题求解提供了设计与实现手段。与其他软件课程相比,人工智能课程有鲜明的特点,主要表现在思想方法上强调启发性、算法上强调不确定性。同时,由于人工智能是一个新思想和新技术层出不穷的开拓性领域,因此其对学生的训练是鼓励创新的,具有其他课程不可替代的作用。
人工智能导论是计算机相关专业的必修课,在许多信息类相关的本科教学中也有开设,一般开设在第六或者第七学期。我国目前本科教育的定位是专才教育,培养某方面的专业人才。完成公共基础课程和部分专业基础课程的学习之后,本科高年级学生应该了解本专业的应用领域和发展前景,因此在教学过程中要注意内容的专业性和应用性。由于本科阶段学生缺乏科研意识,初步的科研训练设置在第八学期,即所有课程学习完毕之后的毕业设计,而人工智能课程强调科研性,因此教学难度较大,由此带来的最直接后果就是学生学习兴趣不高。同时,对有志于读研的学生而言,本科阶段的学业也是研究生教育的起点,在教学过程中要适时的进行科研引导,提升学生对科学研究的兴趣,为研究生阶段打下基础。可见,圆满完成人工智能导论课程这一教学任务是重要且极具挑战性的。
2教学内容安排
人工智能的研究和应用领域非常广泛,包括问题求解、机器学习、自然语言理解、专家系统、模式识别、计算机视觉、机器人学、搏弈、计算智能、人工生命自动定理证明、自动程序设计、智能控制、智能检索、智能调度与指挥、智能决策支持系统、人工神经网络、数据挖掘和知识发现等。人工智能导论旨在为这些具体领域的研究提供引导和基础保障。
人工智能导论课程涵盖内容较多,因此需要明确“精讲”和“泛讲”的内容,以使教师和学生在教学活动中都有所侧重。当然,首先应和学生说明,泛讲并不代表内容不重要,只是由于课程性质和课时的关系,暂时不作深入探讨。日后如有需要,可在此基础上进一步学习和研究。结合当前人工智能学科的发展状况,根据教学大纲和作者的教学经验,对人工智能导论课程教学内容的精讲和泛讲安排如表1所示。
3提升学生学习兴趣的教学方法
3.1穿插背景故事
为激发学习积极性,针对学生喜欢听奇闻轶事、想象力丰富的心理特点,通过讲述一些与教学内容有关的故事或者趣事来吸引其注意力,辅助思维并丰富联想,使学生在愉悦中完成学习[2]。下面列举几个我们在课程教学中用到的背景故事,通过这些故事,不但传授了知识,也活跃了课堂气氛。
1) 人类智能的计算机模拟与人机大战。
讲授人类智能的计算机模拟时,可以给学生简述一下IBM公司的超级电脑和国际象棋世界冠军卡斯帕罗夫之间的人机大战,以促进学生对人类智能和人工智能的进一步思考。北京时间1997年5月12日凌晨4点50分,在美国纽约公平大厦,当IBM公司的“深蓝”超级电脑将棋盘上的一个兵走到C4的位置上时,国际象棋世界冠军卡斯帕罗夫对“深蓝”的人机大战落下帷幕,“深蓝” 以3.5U2.5的总比分战胜卡斯帕罗夫。2003年1月26日至2月7日,卡斯帕罗夫与深蓝的升级版“小深”又进行了一场人机大战,先后进行了6局比赛,最终卡斯帕罗夫以1胜1负4平的结果和“小深”握手言和。这也表明了人工智能和人类智能之间的较量还将持续下去。
2) 问题规约法与老和尚说教。
问题规约法是从要解决的问题出发逆向推理,建立子问题以及子问题的子问题,直到最后把初始问题归约为一个本原问题集合。本原问题指不能再分解或变换且直接可解的子问题。可见,问题规约的本质是递归的思想。此时,可以给学生简述我们小时候就听说过的老和尚说教的故事,即“从前有座山,山上有座庙,庙里有个老和尚,老和尚对小和尚说,从前有座山……”。
3) 模糊理论与秃头悖论。
模糊推理是一种重要的不确定性推理方式,是指基于模糊理论进行的推理。讲授模糊理论时,可以先讲一下秃头悖论让学生讨论。一个人有10万根头发,肯定不能算秃头,不是秃头的人,掉了一头发,仍然不是秃头,按照这个道理,让一个不是秃头的人一根一根地减少头发,就得出一条结论,即没有一根头发的光头也不是秃头!秃头悖论的出现源于在严格的逻辑推理中使用了“秃头”这一模糊概念,因此需要以模糊逻辑代替传统的二值逻辑解决该问题。
3.2课堂辩论和多媒体教学
人工智能从其诞生之日起就充满争议,各种学派的争论使得人工智能的发展更趋完善,加快了其纵深发展。目前,人工智能的争论主要有两方面,即研究方法的争论和技术路线的争论。前者争论的主要问题有人工智能是否得模拟人的智能;对结构模拟和行为模拟是否可以分离研究;对感知、思维和行为是否可分离研究;对认知与学习以及逻辑思维和形象思维等问题是否可以分离研究;是否有必要建立人工智能的统一理论体系。后者争论的主要问题是沿着什么样的技术路线和策略来发展人工智能。
在课堂教学中,可以充分利用人工智能中存在的争论较多这一特点,针对相关议题组织课堂辩论,如可用议题“机器的反叛――机器的智能会超越人类吗?”。让学生在图书馆或者从网上查阅相关资料,明确自己的论点并准备证据材料,并在课堂上进行辩论。这类辩论无所谓输赢,旨在通过这种活动,增进学生思考[3]。教学中,还可以充分利用多媒体教学的特点,如让学生观摩电影《终结者》系列、《人工智能》、《黑客帝国》等,增强学生对人工智能的直观感受,提高课堂教学效果[4]。
3.3应用实例分析
普遍而言,本科学生对单纯的理论讲解不太感兴趣,因此在教学过程中,适当增加一些实验和设计,提高学生分析问题的能力和实际动手能力。比如,讲解知识的产生式表示法时,给出产生式的概念和基本表示形式之后,可以通过“野人与传教士过河”问题来说明产生式表示法的具体应用过程;讲解计算智能的进化计算部分时,给出进化算法的几种具体形式和算法流程之后,可以通过中国旅行商问题(CTSP)来说明算法求解问题的过程。教师在教学过程中,可以根据需要,选择一些合适的应用实例进行分析。通过这些实例,既能加深学生对知识的理解,又能增加学习的兴趣。下面给出两个实例的简单描述。
1) 产生式表示法求解“野人与传教士过河”问题。
问题:传教士和野人各N人过河,现只有一条船,传教士和野人都会划船,船一次只能载k人,船上野人多于传教士时野人就会吃掉传教士,问如何安全过河?(不失一般性,以N=3,k=2为例求解)。
求解简述:设综合数据库中状态用三元组(m, c, b)表示,其中m、c、b分别表示传教士、野人和船的数目,则有:
0≤m, c≤3, b ∈{0, 1}
以左岸为参照点,则初始状态和目标状态分别为(3,3,1)和(0,0,0)。据此,可以给出一条产生式规则如下:
IF (m, c, 1) THEN (m-1, c, 0)
以此类推,把所有可行的规则都求出之后,就可按照规则集和控制策略得到问题的解。
2) 遗传算法求解31个城市的CTSP问题[5]。
问题:给定有限个城市的集合C={c1,c2, …,cm}及每两个城市之间的距离矩阵D=[dij]m×m,其中m∈N,dij=d(ci, cj)∈Z+,ci、 cj∈C,1≤i、j≤m,求出满足的城市序列cπ(1)、cπ(2)、…、cπ(m),其中π(1),π(2),…,π(m)是1、2、…、m的一个全排列。我们以CTSP问题为例,即求解中国31个城市之间最短巡回路线的问题。
求解简述:路径表示直接使用城市在路径中的相对位置,如有编号分别为1、2、3、4、5的5个城市的一条路径4-1-2-5-3,用路径表示方法直接可写为(4 1 2 5 3)。适应度函数值用路径的实际长度表示。交叉算子采用次序杂交,即选择父体的两杂交点,交换相应的段,其它城市则保持在父体中的相应次序。变异算子采用倒位算子,即随机选择两个位置,然后将它们之间的城市反序。通过运用遗传算法求解,可得最优解为15 404 km,对应的巡回路线为“北京―呼和浩特―太原―石家庄―郑州―西安―银川―兰州―西宁―乌鲁木齐―拉萨―成都―昆明―贵阳―南宁―海口―广州―长沙―武汉―南昌―福州―台北―杭州―上海―南京―合肥―济南―天津―沈阳―长春―哈尔滨―北京”。实例讲解完成后,可要求学生采用相同或者不同的方案自己去实现一下问题的求解过程。
4结语
人工智能是计算机科学与技术专业的一门核心课程,同时也是一门交叉学科,涉及面广,理论性强,教学难度较大,学生的学习兴趣有待提高。本文作者根据自己在人工智能导论课程中的教学实践和课程特点,明确了教学中的精讲内容和泛讲内容,总结了三种提高学生学习兴趣的教学方法,并给出相应的实例说明,旨在为本门课程的教师提供教学参考。
参考文献:
[1] 蔡自兴,徐光v. 人工智能及其应用(本科生用书)[M]. 北京:清华大学出版社,2003:288-296.
[2] 薛占熬,齐歌,杜浩翠,等. 离散数学的课堂导入法研究[J]. 计算机教育,2010(8):95-99.
[3] 徐新黎,王万良,杨旭华. “人工智能导论”课程的教学与实践改革探索[J]. 计算机教育,2009(11):129-132.
[4] 李春贵,王萌,何春华. 基于案例教学的“人工智能”教学的实践与探索[J]. 计算机教育,2008(9):53-54.
[5] 杨利英,覃征,贺升平,等. 改进的演化近似算法求解TSP问题[J]. 微电子学与计算机,2004,21(6):126-128.
Teaching Methods for Promoting Learning Interests in Introduction to Artificial Intelligence
YANG Liying
(School of Computer Science, Xidian University, Xi’An 710071, China)
Abstract: This paper presents three teaching methods for promoting learning interests based on the characteristics of Introduction to Artificial Intelligence and our teaching experience. These methods have been used in practice. The teaching practice shows that the methods proposed in this paper can promote learning interests effectively.
Key words: Artificial Intelligence; learning interest; teaching method
发表评论 快捷匿名评论,或 登录 后评论