扩频技术论文范文

时间:2023-02-26 05:49:16

扩频技术论文

扩频技术论文范文第1篇

本文重点研究现阶段应用较为广泛的直接序列扩频通信系统。从理论上来说,我们通常将构建方式以直频扩频方式为主所形成的扩频通信系统称之为直接序列扩频通信系统(DS)。在研究直接序列扩频通信系统工作原理的过程当中,需要特别关注的两个基本结构分别为发射机结构与接收机结构。从直接序列扩频通信系统发射机的工作原理角度上来说,作为输入端口信息数据的A在经过信息调制环节处理之后能够形成B1宽度的调频信号,在此基础之上借助于伪随机扩顺序列的调制作用形成B2宽度的调频信号,进而转入信号发射作业,与之相对应的直接序列扩频通信系统发射机工作原理示意图基本如图1所示。

与此同时,从直接序列扩频通信系统接收机的工作原理角度上来说,在接收机接收到来自于发射机所发出的B2带宽调频信号之后,会针对与之相对应的伪随机扩频序列进行精确相位处理,在此过程当中通过扩频解调处理能够形成B1带宽的调频信号。特别值得注意的一点在于:在同步电路与扩频序列相互作用的过程当中,直接序列扩频通信系统接收机能够产生与所接受伪随机扩频序列相位属性保持一致状态的PN代码,这一代码能够在发挥本地信号功能的基础之上将B1带宽的调频信号恢复成为A窄带信号。而在这一过程当中所产生的A窄带信号能够为原始信息数据A的估计提供必要保障,与之相对应的直接序列扩频通信系统接收机工作原理示意图基本如图2所示。以上即为整个直接序列扩频通信系统的工作原理。

可以明确一点是:建立在整个直接序列扩频通信系统之上的应用优势有如下几个方面:首先,编码信号的产生几率较大,传输可行性较高;其次,整个数据扩频通信传输过程当中仅涉及到一个固定的载波频率,对于载波发生器的运行要求较低;再次,接收机装置在整个数据的扩频通信操作过程当中能够实现相干解调,从而达到提高扩频通信质量的关键目的;最后,在扩频通信的作业过程当中,对于用户之间的同步性没有要求,适应性较强。

然而不容忽视的一点在于:直接序列扩频通信系统的应用仍然存在着一些方面的问题:首先,在扩频通信作业过程当中对于本地生成编码以及接收信号之间同步性的获取与保持难度比较大,致使扩频通信可能出现明显误差问题;其次,在扩频通信过程当中,现阶段还无法针对基站与用户距离之间的远近效应予以有效消除,导致系统可能存在误差问题,这一问题也需要引起相关人员的特别关注与重视。

2结束语

通过本文以上分析需要认识到一个方面的问题:在当前技术条件支持下,扩频通信技术及其应用系统以其优越的抗干扰特性、抗衰落特性以及抗多径特性成为了第三代通信领域研究的重点与热点所在,有着极为深远的发展潜力。

扩频技术论文范文第2篇

关键词:无线扩频通信技术带宽

扩频技术就是将所传输信息的带宽扩展很多倍,然后发送出去,这时发送信号所占据的信道带宽远大于信息本身的带宽,例如,传输一个9600bps的数据流,其基带带宽不到10kHZ,但用扩频技术传送时,它所占据的信道带宽可以被扩展到300kHZ或更宽,与此同时,调制到高频的信号发射功率谱也将大大降低。下面简要介绍一下无线扩频系统:

1扩频系统的基本设备组成

(1)扩频电台:

扩频系统的核心设备是扩频电台。PN码扩频以及调制到2.4GHz的高频载波上都是由它来完成的。目前国内经常使用的电台主要是美国的Pcomcylink电台、Utilicom电台、加拿大DTS电台和Comlink电台等。

(2)复用器:

有时在一个地方不仅要传输一路数据,可能还要传输几路数据甚至话音、图象,而电台却只有一部,这时就要用到复用器。它能将几路数据或话音等有机地合成为一路,并将其传送给本地的电台,最后由电台象发射一路数据时那样将其发送出去。而在遥远的接收端则执行与上述相反的过程,同时按发射时的规律便可以将几路话音和数据分开。目前国内经常使用的复用器主要是美国Motorola复用器、以色列RAD公司复用器等。

(3)天线及馈线:

天线和馈线是将高频信号从电台辐射到空间或从空间接收并传输到电台的设备。目前国内经常使用的天、馈线主要是与电台配套的原厂产品。

2扩频系统的组成

(1)点对点方式:

点对点方式实际上是一种一一对应的工作方式,这种方式简便、易行,同时也可以组成多个点对点的系统,其各点之间通过适当的设置可以互不影响。示意图见图1。

(2)点对多点方式:

点对多点方式是一种被称为“一对多”或“多对一”的经济型扩频方式,也有人称之为“一点多址”。它使用轮询的原理,由一台主机对所有从机进行轮询并指定其中的一台从机与通信。这种方式与点对点方式比起来可以节省很多电台,但其传递的数据量比较少,且相对速度较慢。其示意图见图2。

(3)中继方式:

中继方式一般用在通信距离过长(超过50km)或两通信点之间有阻挡(如高山或建筑物等)的较特殊情况下,是一种“接力”或“迂回”的通信方式。其示意图见图3。

图3中继方式无线扩频示意图

3扩频设备性能

其基本配置有1话1数,2话1数,2话2数或更高的配置,最多可以配置到几十路话音或数据。在维修方面,一直困扰着国内同行的复用器维修问题,现已有较大的突破,已能做到芯片级维修。这一突破使用户设备维修周期从原来的5到6个月缩短到7至10天。

扩频网监控管理软件的开发利用,能实地反映和记录扩频网的运行状况,同时能对有故障的链路进行报警。

扩频技术论文范文第3篇

关键词:扩频通信原理特点发展应用

一、扩频通信的工作原理

在发端输人的信息先调制形成数字信号,然后由扩频码发生器产生的扩频码序列去调制数字信号以展宽信号的频谱,展宽后的信号再调制到射频发送出去。在接收端收到的宽带射频信号,变频至中频,然后由本地产生的与发端相同的扩频码序列去相关解扩,再经信息解调,恢复成原始信息输出。可见,一般的扩频通信系统都要进行3次调制和相应的解调。一次调制为信息调制,二次调制为扩频调制,三次调制为射频调制,以及相应的信息解调、解扩和射频解调。与一般通信系统比较,多了扩频调制和解扩部分。扩频通信应具备如下特征:(1)数字传输方式;(2)传输信号的带宽远大于被传信息带宽;(3)带宽的展宽,是利用与被传信息无关的函数(扩频函数)对被传信息的信元重新进行调制实现的;(4)接收端用相同的扩频函数进行相关解调(解扩),求解出被传信息的数据。用扩频函数(也称伪随机码)调制和对信号相关处理是扩频通信有别于其他通信的两大特点。

二、扩频通信技术的特点

扩频信号是不可预测的、伪随机的宽带信号,其带宽远大于要传输的数据(信息)带宽,同时接收机中必须有与宽带载波同步的副本。扩频系统具有以下特点。

1.抗干扰性强

扩频信号的不可预测性,使扩频系统具有很强的抗干扰能力。干扰者很难通过观察进行干扰,干扰起不了太大作用。扩频通信系统在传输过程中扩展了信号带宽,所以即使信噪比很低,甚至在有用信号功率低于干扰信号功率的情况下,仍能不受干扰、高质量地进行通信,扩展的频谱越宽,其抗干扰性越强。

2.低截获性

扩频信号的功率均匀分布在很宽的频带上,传输信号的功率密度很低,侦察接收机很难监测到,因此扩频通信系统截获概率很低。

3.抗多路径干扰性能好

多路径干扰是电波传播过程中因遇到各种非期望反射体(如电离层、高山、建筑物等)引起的反射或散射,在接收端的这些反射或散射信号与直达路径信号相互干涉而造成的干扰。多路径干扰会严重影响通信。扩频通信系统中增加了扩频调制和解扩过程,利用扩频码序列间的相关特性,在接收端解扩时,从多径信号中分离出最强的有用信号,或将多径信号中的相同码序列信号叠加,这样就可有效消除无线通信中因多径干扰造成的信号衰落现象,使扩频通信系统具有良好的抗多径衰落特性。

4.保密性好

在一定的发射功率下,扩频信号分布在很宽的频带内,无线信道中有用信号功率谱密度极低,这样信号可以在强噪声背景下,甚至在有用信号被噪声淹没的情况下进行可靠通信,使外界很难截获传送的信息,要想进一步检测出信号的特征参数就更难了.所以扩频系统可实现隐蔽通信。同时,对不同用户使用不同码,旁人无法窃听通信,因而扩频系统具有高保密性。

5.易于实现码分多址

在通信系统中,可充分利用在扩频调制中使用的扩频码序列之间良好的自相关特性和互相关特性,接收端利用相关检测技术进行解扩,在分配给不同用户不同码型的情况下,系统可以区分不同用户的信号,这样同一频带上许多用户可以同时通话而互不干扰。

三、扩频技术的发展与应用

在过去由于技术的限制,人们一直在走增加信号功率,减少噪声,提高信噪比的道路。即使到了70年代,伪码技术已经出现,但作为相关器的“码环”的钟频只能做到几千赫兹也无助于事.近几年,由于大规模集成电路的发展,几十兆赫兹,甚至几百兆赫兹的伪码发生器及其相关部件都已成为现实,扩频通信获得极其迅速的发展.通信的发展史又到了一个转折点,由用信噪比换带宽的年代进入了用宽带换信噪比的年代.从最佳通信系统的角度看扩频通信.最佳通信系统一最佳发射机+最佳接收机.几十年来,最佳接收理论已经很成熟,但最佳发射问题一直没有很好解决,伪码扩频是一种最佳的信号形式和调制制度,构成了最佳发射机.因此,有了最佳通信系统一伪码扩频+相关接收这种认识,人们就不难预测扩频通信的未来前景.从9O年代无线通信开始步人扩频通信和自适应通信的年代.扩频通信的热浪已经波及短波、超微波、微波通信和卫星通信,码分多址(CDMA)已开始广泛用于未来的峰窝通信、无绳通信和个人通信以及各种无线本地环路,发挥越来越大的作用.接入网是由传统的用户线、用户环路和用户接入系统,逐步发展、演变和升级而形成的.现代电信网络分为3部分:传输网、交换网和接入网.由于接入网发展较晚,往往成为电信发展的“瓶颈”,各国都很重视接入网的发展,因此各类接人技术和系统应运而生.由于ISM(IndustryScientificMedica1)频段的开放性,经营者和用户不需申请授权就可以自由地使用这些频段,而无线扩频技术所使用的频段(2.400~2.483)正是全世界通用的ISM频段,包括IEEE802.11协议架构的无线局域网也大部分选用此频段.在无线接人系统中,扩频微波与常规微波相比有着3个显着的优点:抗干扰性强、频点问题容易处理、价格比较便宜.而且,扩频微波接入技术相对有线接入技术来说,有成本低、使用灵活、建设快捷的优势,在接入网中起着不可替代的作用。扩频微波主要应用在以下几个方面.语音接入(点对点);数据接入;视频接入;多媒体接入;因特网(Internet)接入。

四、结语

扩频通信是通信的一个重要分支和发展方向,是扩频技术与通信相结合的产物。本文主要论述了扩频通信的特点、理论可行性及典型的工作方式。扩频通信的强抗干扰性、低截获性、良好的抗多路径干扰性和安全性等特点,使它的应用迅速从军用扩展到民用通信中,它的易于实现码分多址的特点,使它能与第三代移动通信系统完美结合,发展前景极为广阔。

参考文献:

曾兴雯等.扩展频谱通信及其多址技术[M].西安:西安电子科技大学出版社,2004.

查光明,熊贤祚.扩频通信[M].西安:西安电子科技大学出版社,2004.

扩频技术论文范文第4篇

论文关键词:扩频通信原理特点发展应用

论文摘要:扩频通信是现代通信系统中新的通信方式,它具有较强的抗干扰、抗衰落和抗多径性能,频谱利用率高。本文介绍了扩频通信的工作原理、特点、及其发展应用。

一、扩频通信的工作原理

在发端输人的信息先调制形成数字信号,然后由扩频码发生器产生的扩频码序列去调制数字信号以展宽信号的频谱,展宽后的信号再调制到射频发送出去。在接收端收到的宽带射频信号,变频至中频,然后由本地产生的与发端相同的扩频码序列去相关解扩,再经信息解调,恢复成原始信息输出。可见,一般的扩频通信系统都要进行3次调制和相应的解调。一次调制为信息调制,二次调制为扩频调制,三次调制为射频调制,以及相应的信息解调、解扩和射频解调。与一般通信系统比较,多了扩频调制和解扩部分。扩频通信应具备如下特征:(1)数字传输方式;(2)传输信号的带宽远大于被传信息带宽;(3)带宽的展宽,是利用与被传信息无关的函数(扩频函数)对被传信息的信元重新进行调制实现的;(4)接收端用相同的扩频函数进行相关解调(解扩),求解出被传信息的数据。用扩频函数(也称伪随机码)调制和对信号相关处理是扩频通信有别于其他通信的两大特点。

二、扩频通信技术的特点

扩频信号是不可预测的、伪随机的宽带信号,其带宽远大于要传输的数据(信息)带宽,同时接收机中必须有与宽带载波同步的副本。扩频系统具有以下特点。

1.抗干扰性强

扩频信号的不可预测性,使扩频系统具有很强的抗干扰能力。干扰者很难通过观察进行干扰,干扰起不了太大作用。扩频通信系统在传输过程中扩展了信号带宽,所以即使信噪比很低,甚至在有用信号功率低于干扰信号功率的情况下,仍能不受干扰、高质量地进行通信,扩展的频谱越宽,其抗干扰性越强。

2.低截获性

扩频信号的功率均匀分布在很宽的频带上,传输信号的功率密度很低,侦察接收机很难监测到,因此扩频通信系统截获概率很低。

3.抗多路径干扰性能好

多路径干扰是电波传播过程中因遇到各种非期望反射体(如电离层、高山、建筑物等)引起的反射或散射,在接收端的这些反射或散射信号与直达路径信号相互干涉而造成的干扰。多路径干扰会严重影响通信。扩频通信系统中增加了扩频调制和解扩过程,利用扩频码序列间的相关特性,在接收端解扩时,从多径信号中分离出最强的有用信号,或将多径信号中的相同码序列信号叠加,这样就可有效消除无线通信中因多径干扰造成的信号衰落现象,使扩频通信系统具有良好的抗多径衰落特性。

4.保密性好

在一定的发射功率下,扩频信号分布在很宽的频带内,无线信道中有用信号功率谱密度极低,这样信号可以在强噪声背景下,甚至在有用信号被噪声淹没的情况下进行可靠通信,使外界很难截获传送的信息,要想进一步检测出信号的特征参数就更难了.所以扩频系统可实现隐蔽通信。同时,对不同用户使用不同码,旁人无法窃听通信,因而扩频系统具有高保密性。

5.易于实现码分多址

在通信系统中,可充分利用在扩频调制中使用的扩频码序列之间良好的自相关特性和互相关特性,接收端利用相关检测技术进行解扩,在分配给不同用户不同码型的情况下,系统可以区分不同用户的信号,这样同一频带上许多用户可以同时通话而互不干扰。

三、扩频技术的发展与应用

在过去由于技术的限制,人们一直在走增加信号功率,减少噪声,提高信噪比的道路。即使到了70年代,伪码技术已经出现,但作为相关器的“码环”的钟频只能做到几千赫兹也无助于事.近几年,由于大规模集成电路的发展,几十兆赫兹,甚至几百兆赫兹的伪码发生器及其相关部件都已成为现实,扩频通信获得极其迅速的发展.通信的发展史又到了一个转折点,由用信噪比换带宽的年代进入了用宽带换信噪比的年代.从最佳通信系统的角度看扩频通信.最佳通信系统一最佳发射机+最佳接收机.几十年来,最佳接收理论已经很成熟,但最佳发射问题一直没有很好解决,伪码扩频是一种最佳的信号形式和调制制度,构成了最佳发射机.因此,有了最佳通信系统一伪码扩频+相关接收这种认识,人们就不难预测扩频通信的未来前景.从9O年代无线通信开始步人扩频通信和自适应通信的年代.扩频通信的热浪已经波及短波、超微波、微波通信和卫星通信,码分多址(CDMA)已开始广泛用于未来的峰窝通信、无绳通信和个人通信以及各种无线本地环路,发挥越来越大的作用.接入网是由传统的用户线、用户环路和用户接入系统,逐步发展、演变和升级而形成的.现代电信网络分为3部分:传输网、交换网和接入网.由于接入网发展较晚,往往成为电信发展的“瓶颈”,各国都很重视接入网的发展,因此各类接人技术和系统应运而生.由于ISM(IndustryScientificMedica1)频段的开放性,经营者和用户不需申请授权就可以自由地使用这些频段,而无线扩频技术所使用的频段(2.400~2.483)正是全世界通用的ISM频段,包括IEEE802.11协议架构的无线局域网也大部分选用此频段.在无线接人系统中,扩频微波与常规微波相比有着3个显著的优点:抗干扰性强、频点问题容易处理、价格比较便宜.而且,扩频微波接入技术相对有线接入技术来说,有成本低、使用灵活、建设快捷的优势,在接入网中起着不可替代的作用.

扩频微波主要应用在以下几个方面.语音接入(点对点);数据接入;视频接入;多媒体接入;因特网(Internet)接入。

四、结语

扩频技术论文范文第5篇

无线射频识别技术[1](radio frequency identification,RFID)是一种非接触的自动识别技术, 它通过射频信号自动识别目标对象并获取相关数据。在RFID系统工作时,数据碰撞将导致读写器的接收机不能正确而及时地读出数据,从而降低RFID系统的工作性能及其效率。标签防碰撞算法可以实现多个标签与读写器之间的正确通信,其性能决定了标签的识别速度和效率。因此, 标签防碰撞算法是RFID系统中的关键技术之一,其优劣性在很大程度上决定了射频识别过程的时间性能以及识别成功率。

传统的标签防碰撞算法可分为ALOHA算法[2-3]和树形算法[4-5]2类。ALOHA算法是1种完全随机接入的多址接入协议算法,比如:PALOHA算法(随机推迟算法)、时隙ALOHA算法(SA算法)、帧时隙ALOHA算法(FSA算法)、动态帧时隙ALOHA算法(DFSA算法)和分组ALOHA算法等。该类算法在标签试图发送数据时,并不考虑信道当前的忙闲状态,一旦产生数据,就立刻决定将其发送至信道,这种发送控制策略有严重的盲目性。随着用户数量或发送信息量的增加,这种完全随机接入的算法将使信道重叠现象加剧,碰撞概率增大,传输性能下降。

近几年,有学者提出了采用CDMA技术进行防碰撞的方法,其性能有明显改善。文献[6]提出在标签识别过程中,使用码分多址技术,实现一个时隙可以同时传输多个标签。文献[7]提出了一种基于码分多址思想的时隙ALOHA算法,来解决射频识别中的防碰撞问题,此算法的系统稳定范围要大于时隙ALOHA系统,并且当选用的扩频码组阶数为N时,此算法的最大吞吐量可达原时隙ALOHA的N倍。上述2个文献所提到的算法,当标签数量很多时,数据碰撞的概率明显增加,使系统的吞吐量急剧下降,影响了系统的整体性能。基于以上原因,本论文提出了1种改进的基于CDMA技术的防碰撞算法,能够适应大量标签的识别应用,减少了识别碰撞的发生,使系统吞吐量得到明显改善。

1基于CDMA技术的新型防碰撞算法

n×1-1Nn-1(2)由于传统的基于ALOHA的防碰撞算法中一个时隙最多只能正确识别一个标签的信息,所以当标签数目过大时,系统的吞吐率,即正确识别标签数目所占的百分比将会大幅度的降低,所以对于过量的标签,本算法将会采取对所有标签进行分组识别,当标签需要分成2组时(系统识别帧最大时隙数N为256):nN×1-1Nn-1=n2N×1-1Nn2-1 (3)用上述公式可知n=354,所以当标签数量大于354时,系统将会对标签分组识别。

本文提出的新型算法如下:依据分组帧时隙ALOHA算法,通过此算法的分组规则,完成识别的所有标签的分组。分组帧时隙ALOHA算法的分组规则如下:当标签数量≤354时,无论帧长选择8个时隙还是256个时隙,标签都不分组,按照一个大组来进行识别;当标签数量>354时,帧长选择256个时隙比较适合读写器的识别;当标签数量在355707时,标签分为2组;当标签数量在708~1 416时,标签分成4组更适合信息的传输识别。当标签数量更多时,按照这个规律分成合适的组数再进行识别,详细过程如图1所示。标签分组工作完成后,在每个分组中分别采用码分多址技术,利用其技术的保密性、抗干扰性和多址通信能力,对标签中的数据进行扩频处理并传输。然后读写器端利用码组的自相关特性对不同标签所发的数据进行解调,从而达到防碰撞的目的,进而完成对全部标签的识别,也实现了同一时隙可以传输多个信息的情况。本论文中提到的新型防碰撞算法需要预先在待识别的标签中植入扩频性良好的正交码组,以防止接收端没有办法正确解扩接收,本文选用Walsh序列。该算法可以有效减少图1算法执行过程示意图标签识别过程中的碰撞次数,从而减少了识别时间并且降低了功耗。本论文将分组帧时隙ALOHA算法和码分多址技术相结合,实现在每个分组内可以有多个标签同时进行扩频传输,并且在接收端采用并行接收技术进行多个标签的同时接收。本发明在识别标签过程中,每个组内均为一个独立的识别过程,在分组帧长不改变的前提下,提高了标签数量庞大时的系统性能。有效地减小标签之间的碰撞概率,缩短读写器操作时间,提高吞吐率, 很适合应用于具有较大数量标签的RFID系统中。

2仿真结果

本论文提出了采用码分多址技术的新型防碰撞算法,并仿真了固定时隙数下ALOHA算法的系统吞吐率和本文所提出的算法改进后的系统吞吐量。

RFID系统中时隙ALOHA算法的帧长取值从16个时隙到256个时隙变化,根据公式2,系统吞吐率如图2所示。其中,系统仿真设定的信息帧长F即时隙数设定按2的幂次方递增,即F取值从16个时隙变化到256个时隙,横坐标为标签数N从1变化到500,纵坐标为吞吐率。当帧长设定为256个时隙,标签数量少于256个时,系统吞吐量随着标签数量的增加而增加,直到标签数量达到256时系统的吞吐量达到最大值。随着标签数量的逐渐增多,系统的吞吐量又呈现下降趋势。从图2可以得出2点结论:一、当标签个数接近信息帧长时,系统的吞吐率比较高;二、随着帧长取值的增加,系统对标签的识别性能有明显改善。

本论文提出的基于码分多址技术的新型防碰撞算法选用Walsh序列码,其在对标签的ID号进行扩频处理后,即可实现在同一时刻有2个以上的标签同时进入读写器的识别区域,它们同时发送各自的ID号后,读写器在接收到这些在空间叠加后的信号时也能完整地分离出不同标签的ID号,突破了时隙ALOHA算法在同一时刻不能有2个以上标签到达的限制。此时,系统的吞吐量为(Walsh序列的阶数为r)esucc=∑t=2rt=1N×P(N,n,t)(4)固定时隙数的ALOHA算法的系统吞吐量仿真图和其与基于码分多址技术的新型防碰撞算法的比较仿真结果如图3所示。仿真条件为标签的到达情况符合泊松过程。仿真图3给出了RFID系统的读写器阅读100个标签的识别结果,其中新型算法选用的是Walsh序列,其阶数r取值从2变化到3,固定时隙数的ALOHA算法的信息帧长F取值从32变化到64,横坐标为标签数N从1变化到100,纵坐标为吞吐量。从仿真结果看,在同样的到达率的条件下,阶数越大,算法的吞吐量越高,系统的识别性能有明显改善。并且随着到达率的增加,新型算法的吞吐量也随着增加,当标签到达量与阶数相等时,系统吞吐量达到最大,但到达量大于阶数时,吞吐量随着到达率的增加而呈下降趋势。这是由于当在同一时隙内到达的标签数量增加到一定程度后,基于Walsh序列阶数r的有限性,选用相同的Walsh序列作为扩频码的标签数量将会增加,此时必然导致碰撞的增加。当选用的Walsh序列阶数为3时,基于码分多址技术的新型防碰撞算法的系统吞吐量可高达3.2,远高于时隙ALOHA的0.368。而且随着Walsh序列阶数的提高,吞吐量的最大值还可以提高,但这会以增加读写器和标签的硬件复杂度为代价,在实际使用中必须根据需求在吞吐量和Walsh序列阶数中作出折中选择。

3结束语

扩频技术论文范文第6篇

论文摘要:扩频通信是 现代 通信系统中新的通信方式,它具有较强的抗干扰、抗衰落和抗多径性能,频谱利用率高。本文介绍了扩频通信的工作原理、特点、及其发展应用。

一、扩频通信的工作原理

在发端输人的信息先调制形成数字信号,然后由扩频码发生器产生的扩频码序列去调制数字信号以展宽信号的频谱,展宽后的信号再调制到射频发送出去。在接收端收到的宽带射频信号,变频至中频,然后由本地产生的与发端相同的扩频码序列去相关解扩,再经信息解调,恢复成原始信息输出。可见,一般的扩频通信系统都要进行3次调制和相应的解调。一次调制为信息调制,二次调制为扩频调制,三次调制为射频调制,以及相应的信息解调、解扩和射频解调。与一般通信系统比较,多了扩频调制和解扩部分。扩频通信应具备如下特征:(1)数字传输方式;(2)传输信号的带宽远大于被传信息带宽;(3)带宽的展宽,是利用与被传信息无关的函数(扩频函数)对被传信息的信元重新进行调制实现的;(4)接收端用相同的扩频函数进行相关解调(解扩),求解出被传信息的数据。用扩频函数(也称伪随机码)调制和对信号相关处理是扩频通信有别于其他通信的两大特点。

二、扩频通信技术的特点

扩频信号是不可预测的、伪随机的宽带信号,其带宽远大于要传输的数据(信息)带宽,同时接收机中必须有与宽带载波同步的副本。扩频系统具有以下特点。

1.抗干扰性强

扩频信号的不可预测性,使扩频系统具有很强的抗干扰能力。干扰者很难通过观察进行干扰,干扰起不了太大作用。扩频通信系统在传输过程中扩展了信号带宽,所以即使信噪比很低,甚至在有用信号功率低于干扰信号功率的情况下,仍能不受干扰、高质量地进行通信,扩展的频谱越宽,其抗干扰性越强。

2.低截获性

扩频信号的功率均匀分布在很宽的频带上,传输信号的功率密度很低,侦察接收机很难监测到,因此扩频通信系统截获概率很低。

3.抗多路径干扰性能好

多路径干扰是电波传播过程中因遇到各种非期望反射体(如电离层、高山、建筑物等)引起的反射或散射,在接收端的这些反射或散射信号与直达路径信号相互干涉而造成的干扰。多路径干扰会严重影响通信。扩频通信系统中增加了扩频调制和解扩过程,利用扩频码序列间的相关特性,在接收端解扩时,从多径信号中分离出最强的有用信号,或将多径信号中的相同码序列信号叠加,这样就可有效消除无线通信中因多径干扰造成的信号衰落现象,使扩频通信系统具有良好的抗多径衰落特性。

4.保密性好

在一定的发射功率下,扩频信号分布在很宽的频带内,无线信道中有用信号功率谱密度极低,这样信号可以在强噪声背景下,甚至在有用信号被噪声淹没的情况下进行可靠通信,使外界很难截获传送的信息,要想进一步检测出信号的特征参数就更难了.所以扩频系统可实现隐蔽通信。同时,对不同用户使用不同码,旁人无法窃听通信,因而扩频系统具有高保密性。

5.易于实现码分多址

在通信系统中,可充分利用在扩频调制中使用的扩频码序列之间良好的自相关特性和互相关特性,接收端利用相关检测技术进行解扩,在分配给不同用户不同码型的情况下,系统可以区分不同用户的信号,这样同一频带上许多用户可以同时通话而互不干扰。

三、扩频技术的 发展 与应用

在过去由于技术的限制,人们一直在走增加信号功率,减少噪声,提高信噪比的道路。即使到了70年代,伪码技术已经出现,但作为相关器的“码环”的钟频只能做到几千赫兹也无助于事.近几年,由于大规模集成电路的发展,几十兆赫兹,甚至几百兆赫兹的伪码发生器及其相关部件都已成为现实,扩频通信获得极其迅速的发展.通信的发展史又到了一个转折点,由用信噪比换带宽的年代进入了用宽带换信噪比的年代.从最佳通信系统的角度看扩频通信.最佳通信系统一最佳发射机+最佳接收机.几十年来,最佳接收理论已经很成熟,但最佳发射问题一直没有很好解决,伪码扩频是一种最佳的信号形式和调制制度,构成了最佳发射机.因此,有了最佳通信系统一伪码扩频+相关接收这种认识,人们就不难预测扩频通信的未来前景.从9o年代无线通信开始步人扩频通信和自适应通信的年代.扩频通信的热浪已经波及短波、超微波、微波通信和卫星通信,码分多址(cdma)已开始广泛用于未来的峰窝通信、无绳通信和个人通信以及各种无线本地环路,发挥越来越大的作用.接入网是由传统的用户线、用户环路和用户接入系统,逐步发展、演变和升级而形成的. 现代 电信 网络 分为3部分:传输网、交换网和接入网.由于接入网发展较晚,往往成为电信发展的“瓶颈”,各国都很重视接入网的发展,因此各类接人技术和系统应运而生.由于ism(industry scientific medica1)频段的开放性,经营者和用户不需申请授权就可以自由地使用这些频段,而无线扩频技术所使用的频段(2.400~2.483)正是全世界通用的ism 频段,包括ieee802.11协议架构的无线局域网也大部分选用此频段.在无线接人系统中,扩频微波与常规微波相比有着3个显著的优点:抗干扰性强、频点问题容易处理、价格比较便宜.而且,扩频微波接入技术相对有线接入技术来说,有成本低、使用灵活、建设快捷的优势,在接入网中起着不可替代的作用 .

扩频微波主要应用在以下几个方面.语音接入(点对点);数据接入;视频接入;多媒体接入;因特网(internet)接入。

四、结语

扩频通信是通信的一个重要分支和发展方向,是扩频技术与通信相结合的产物。本文主要论述了扩频通信的特点、理论可行性及典型的工作方式。扩频通信的强抗干扰性、低截获性、良好的抗多路径干扰性和安全性等特点,使它的应用迅速从军用扩展到民用通信中,它的易于实现码分多址的特点,使它能与第三代移动通信系统完美结合,发展前景极为广阔。

参考 文献 :

[1]曾兴雯等.扩展频谱通信及其多址技术[m].西安:西安 电子 科技大学出版社, 2004.

[2]查光明,熊贤祚.扩频通信[m].西安:西安电子科技大学出版社,2004.

扩频技术论文范文第7篇

论文摘要:扩频通信是现代通信系统中新的通信方式,它具有较强的抗干扰、抗衰落和抗多径性能,频谱利用率高。本文介绍了扩频通信的工作原理、特点、及其发展应用。

一、扩频通信的工作原理

在发端输人的信息先调制形成数字信号,然后由扩频码发生器产生的扩频码序列去调制数字信号以展宽信号的频谱,展宽后的信号再调制到射频发送出去。在接收端收到的宽带射频信号,变频至中频,然后由本地产生的与发端相同的扩频码序列去相关解扩,再经信息解调,恢复成原始信息输出。可见,一般的扩频通信系统都要进行3次调制和相应的解调。一次调制为信息调制,二次调制为扩频调制,三次调制为射频调制,以及相应的信息解调、解扩和射频解调。与一般通信系统比较,多了扩频调制和解扩部分。扩频通信应具备如下特征:(1)数字传输方式;(2)传输信号的带宽远大于被传信息带宽;(3)带宽的展宽,是利用与被传信息无关的函数(扩频函数)对被传信息的信元重新进行调制实现的;(4)接收端用相同的扩频函数进行相关解调(解扩),求解出被传信息的数据。用扩频函数(也称伪随机码)调制和对信号相关处理是扩频通信有别于其他通信的两大特点。

二、扩频通信技术的特点

扩频信号是不可预测的、伪随机的宽带信号,其带宽远大于要传输的数据(信息)带宽,同时接收机中必须有与宽带载波同步的副本。扩频系统具有以下特点。

1.抗干扰性强

扩频信号的不可预测性,使扩频系统具有很强的抗干扰能力。干扰者很难通过观察进行干扰,干扰起不了太大作用。扩频通信系统在传输过程中扩展了信号带宽,所以即使信噪比很低,甚至在有用信号功率低于干扰信号功率的情况下,仍能不受干扰、高质量地进行通信,扩展的频谱越宽,其抗干扰性越强。

2.低截获性

扩频信号的功率均匀分布在很宽的频带上,传输信号的功率密度很低,侦察接收机很难监测到,因此扩频通信系统截获概率很低。

3.抗多路径干扰性能好

多路径干扰是电波传播过程中因遇到各种非期望反射体(如电离层、高山、建筑物等)引起的反射或散射,在接收端的这些反射或散射信号与直达路径信号相互干涉而造成的干扰。多路径干扰会严重影响通信。扩频通信系统中增加了扩频调制和解扩过程,利用扩频码序列间的相关特性,在接收端解扩时,从多径信号中分离出最强的有用信号,或将多径信号中的相同码序列信号叠加,这样就可有效消除无线通信中因多径干扰造成的信号衰落现象,使扩频通信系统具有良好的抗多径衰落特性。

4.保密性好

在一定的发射功率下,扩频信号分布在很宽的频带内,无线信道中有用信号功率谱密度极低,这样信号可以在强噪声背景下,甚至在有用信号被噪声淹没的情况下进行可靠通信,使外界很难截获传送的信息,要想进一步检测出信号的特征参数就更难了.所以扩频系统可实现隐蔽通信。同时,对不同用户使用不同码,旁人无法窃听通信,因而扩频系统具有高保密性。

5.易于实现码分多址

在通信系统中,可充分利用在扩频调制中使用的扩频码序列之间良好的自相关特性和互相关特性,接收端利用相关检测技术进行解扩,在分配给不同用户不同码型的情况下,系统可以区分不同用户的信号,这样同一频带上许多用户可以同时通话而互不干扰。三、扩频技术的发展与应用

在过去由于技术的限制,人们一直在走增加信号功率,减少噪声,提高信噪比的道路。即使到了70年代,伪码技术已经出现,但作为相关器的“码环”的钟频只能做到几千赫兹也无助于事.近几年,由于大规模集成电路的发展,几十兆赫兹,甚至几百兆赫兹的伪码发生器及其相关部件都已成为现实,扩频通信获得极其迅速的发展.通信的发展史又到了一个转折点,由用信噪比换带宽的年代进入了用宽带换信噪比的年代.从最佳通信系统的角度看扩频通信.最佳通信系统一最佳发射机+最佳接收机.几十年来,最佳接收理论已经很成熟,但最佳发射问题一直没有很好解决,伪码扩频是一种最佳的信号形式和调制制度,构成了最佳发射机.因此,有了最佳通信系统一伪码扩频+相关接收这种认识,人们就不难预测扩频通信的未来前景.从9O年代无线通信开始步人扩频通信和自适应通信的年代.扩频通信的热浪已经波及短波、超微波、微波通信和卫星通信,码分多址(CDMA)已开始广泛用于未来的峰窝通信、无绳通信和个人通信以及各种无线本地环路,发挥越来越大的作用.接入网是由传统的用户线、用户环路和用户接入系统,逐步发展、演变和升级而形成的.现代电信网络分为3部分:传输网、交换网和接入网.由于接入网发展较晚,往往成为电信发展的“瓶颈”,各国都很重视接入网的发展,因此各类接人技术和系统应运而生.由于ISM(IndustryScientificMedica1)频段的开放性,经营者和用户不需申请授权就可以自由地使用这些频段,而无线扩频技术所使用的频段(2.400~2.483)正是全世界通用的ISM频段,包括IEEE802.11协议架构的无线局域网也大部分选用此频段.在无线接人系统中,扩频微波与常规微波相比有着3个显著的优点:抗干扰性强、频点问题容易处理、价格比较便宜.而且,扩频微波接入技术相对有线接入技术来说,有成本低、使用灵活、建设快捷的优势,在接入网中起着不可替代的作用.

扩频微波主要应用在以下几个方面.语音接入(点对点);数据接入;视频接入;多媒体接入;因特网(Internet)接入。

四、结语

扩频通信是通信的一个重要分支和发展方向,是扩频技术与通信相结合的产物。本文主要论述了扩频通信的特点、理论可行性及典型的工作方式。扩频通信的强抗干扰性、低截获性、良好的抗多路径干扰性和安全性等特点,使它的应用迅速从军用扩展到民用通信中,它的易于实现码分多址的特点,使它能与第三代移动通信系统完美结合,发展前景极为广阔。

参考文献:

[1]曾兴雯等.扩展频谱通信及其多址技术[M].西安:西安电子科技大学出版社,2004.

[2]查光明,熊贤祚.扩频通信[M].西安:西安电子科技大学出版社,2004.

扩频技术论文范文第8篇

摘要:为了获得性能良好,适于扩频通信及加密领域的伪噪声(PN)序列,提出了一种PN序列量化产生及硬件实现方

>> Logistic映射与Henon映射的算法实现及其序列分析 基于m序列同步的FPGA实现 基于Logistic映射PN序列的FPGA实现 Logistic满映射混沌序列性能分析 直扩系统PN码捕获和跟踪的FPGA实现 一种基于PN序列的OFDM同步算法研究 基于区域重组的异构FPGA工艺映射算法 三种高斯随机序列的FPGA实现分析 基于Logistic映射的排列图软件水印方案分析 一种基于LWT和Logistic混沌映射的自适应音频水印算法 基于FPGA的混沌序列发生器的设计 基于FPGA的简易m序列信号发生器 基于Logistic序列的UWB系统Rake接收机性能分析 基于FPGA的DDS设计与实现 基于FPGA的LPDC译码实现 基于FPGA实现DDS的设计 基于FPGA的Sobel边缘检测实现 基于FPGA的UART设计与实现 基于FPGA的DDS设计及实现 基于Arnold变换和混沌序列映射的数字图像信息隐藏技术 常见问题解答 当前所在位置:中国论文网 > 科技 > 基于Logistic映射PN序列的FPGA实现 基于Logistic映射PN序列的FPGA实现 杂志之家、写作服务和杂志订阅支持对公帐户付款!安全又可靠! document.write("作者:未知 如您是作者,请告知我们")

申明:本网站内容仅用于学术交流,如有侵犯您的权益,请及时告知我们,本站将立即删除有关内容。 `

摘要:为了获得性能良好,适于扩频通信及加密领域的伪噪声(PN)序列,提出了一种PN序列量化产生及硬件实现方法。该方法基于FPGA技术并以Logistic离散映射作为随机信号源,提取Logistic映射时间序列二进制数中的某一位构成了一个新的混沌PN序列,并在硬件上获得了实现。通过对序列的频率测试、串列测试、Poker测试、游程测试、自相关测试表明,这种PN序列的硬件实现技术可为扩频通信和信息加密提供一个良好的伪噪声序列。

关键词:混沌PN序列;Logistic映射;FPGA;扩频通信

扩频技术论文范文第9篇

论文摘要:介绍变电站内存在的各种干扰和无线传感器网络使用的直接序列扩频技术,并对无线传感器网络应用于变电站中这种高电磁干扰环境中可行性进行论证。

0引言

目前,变电站系统自动化正成为一种不可改变的趋势,其监控和通信系统的重要性日益凸显。变电站现有测控系统多采用有线通信方式,但是,有线通信的弊端是显而易见的,例如传输线铺设复杂、不易检修和维护,长距离传输线易受电磁千扰的影响等等。而无线通信则具有运行可靠、安装灵活。成本低廉等优点,尤其是在需要实时监控变电站信息的情况下,无线通信更是具有极大的优势。

现有无线通信方式主要有ieee802.11b/g、蓝牙、zigbee. gprs/gsm等。而zigbee技术更是以安全性高、响应时间快、占用系统资源低、成本低以及能耗低等诸多优点成为变电站实时监控系统中首选的无线通信技术。zigbee技术是专门针对无线传感器开发的,无线传感器网络在变电站中的应用研究尚处于起步阶段,其研究重点主要放在配电网自动化以及温度、电能在线监测方面,然而,变电站高强电磁环境对无线传感器网络通信的影响的研究还相对缺失。因此本文对变电站的干扰和无线传感器网络的调制技术进行研究,对无线传感器网络在变电站中的应用的可行性进行论证。

1变电站中的电盛千扰

变电站内部具有复杂的电磁环境,因此必须对各种典型的电磁干扰源进行详细的分析。变电站存在的典型的电磁干扰源有:50hz工频电磁场;设备出口短路引起的脉冲磁场;电晕放电;静电放电;局部放电;空气击穿燃弧;sf6间隙击穿燃弧;真空间隙击穿燃弧等。其中工频电磁场和脉冲磁场对无线信号基本不会产影响。

1. 1静电放电和局部放电

两个具有不同静定电位的物体,由于直接接触或静电场感应引起两物体间的静电电荷的转移。静电电场的能量达到一定程度后,击穿其间介质而进行放电的现象就是静电放电。当外加电压在电气设备中产生的场强,足以使绝缘区域发生放电,但在放电区域内未形成固定放电通道的这种放电现象,称为局部放电。两者都是小绝缘间隙、小能量放电的击穿。

这两种放电产生辐射干扰在几百khz以内,且能量低,衰减快,因此对无线通信不会造成影响。

1.2电晕放电和空气击穿放电

电力导线在高压强电场作用下,可能对周围空间产生游离放电的电晕。导线表面的机械损伤、污染微粒或者导线附近的水滴、灰尘等,都会引起导线表面曲率变化,从而使得点位梯度达到空气介质的击穿介质。因此,在电力系统的实际运行中电晕的产生几乎是不可避免的。

由图1可见电晕放电的辐射信号主要集中在78mhz和180mhz附近的两个包络内,并且最大信号强度仅为一40dbmw。

由图2可知空气间隙击穿产生的电磁场带宽较宽,主要集中在600mhz以下,并且干扰信号的强度很小,即使在580:mhz频率附近也只有-35dbmw。

1.3开关操作干扰

变电站内断路器、隔离开关等一次设备在投切操作或开关故障电流时,由于感性负载的存在,开关触头开断时,产生的电弧的熄灭和重燃可能在母线或线路上引起含有多个频率分量的衰减振荡波,通过母线或设备间的连线将暂态电磁场的能量向周围空间辐射,形成辐射脉冲电磁场。设备操作干扰主要有sf6间隙击穿和真空间隙击穿所产生的辐射信号。

图3. 4可知sf6间隙击穿放电和真空间隙击穿放电所产生的干扰信号覆盖频段很宽,且在整个频带范围内电磁信号的强度比较强,在2. 4ghz频段,电磁信号的强度约为一40dbmw。

2无线传感网网络的扩频技术

2.1 zigbee协议

无线传感器网络应用的zigbee协议的框架是建立在ieee802. 15. 4标准之上,ieee802. 15. 4定义}zigbee的物理层和媒体访问层。ieee802. 15. 4定义了两个物理层标准,分别是2. 4ghz物理层和868月i5mhz物理层。两个物理层都基于直接序列扩频(dsss)技术,主要完成能量检测、链路质量指示、信道选择以及数据发送和接收等功能。无线传感器网络输出2.4ghzism频段直接序列扩频信号,输出功率大于一17dbm,工作频段2. 405^2. 480ghz 。

2. 2直接序列扩频技术

扩频是利用与信息无关的为随机码,通过调制的方法将己调制的频谱宽度扩展到比原调制信号的带宽宽得多的过程。常用的扩频技术有调频、混合扩频和直接序列扩频等。无线传感器网络采用直接序列扩频技术。

直接序列扩频系统就是用具有高码率的伪随机(pn)序列,在发送端扩展信号的频谱,在接受端用相同的pn序列对信号进行解扩,还原出原始信号。

3变电站干扰对传感器网络的形晌

变电站的电磁干扰主要分为两部分:0~300mhz低频部分、2. 4~2. 5ghz同频带宽。

1)电晕放电和空气击穿所产生的低频干扰的频带离无线传感器网络的工作频段2. 4ghz很远,并且强度小于一40dbmw,可以通过低通滤波器进行处理,因此对无线传感器网络的无线通信基本没有影响。

2) sf6间隙击穿放电和真空间隙击穿放电所产生的电磁干扰在2. 405ghz~2. 485ghz频带内也有较强的信号存在,在间隙击穿电压为i5kv左右时电磁强度达到一40dbmv。变电站现场的击穿电压可能会更高,电磁强度也就更高,因此对无线通信会有一定的影响。但是同频干扰对于无线传感器网络通信的影响是很小的,这可以通过两方面说明:

①无线传感器网络应用的直接序列扩频技术,直接序列扩频技术的抗干扰能力是由于接收机将扩频后的信号再次与扩频码相乘还原出原始信号,同时干扰信号也在接收端与扩频码相乘从而将其频带展宽,干扰信号能量也就分散到很宽的频带上,这样2. 405ghz~2. 485ghz频带内只有很小部分干扰信号能量,因此同频噪声对于无线传感器网络通信干扰是微乎其微的。

②sf6间隙击穿放电和真空间隙击穿放电产生瞬态电磁千扰,这种干扰只能持续很短的时间,因此对无线传感器网络的干扰也是瞬间的,瞬态电磁干扰结束,无线传感器网络也恢复正常。

除电磁干扰外,变电站内还存在不可忽略的多径干扰.由于变电站中大量的金属设备和柱状物容易反射射频信号,使得接收端接收到的信号包括了多个不同传输路径的折射或反射信号,从而造成多径干扰。多径会导致信号的衰落、相移和分解,这对以信号能量为判断标准的无线系统必将产生很大的影响。但是直接序列扩频技术对于抗多径干扰有很大的优势,其中很大程度上取决于扩频通信中所采用的伪随机序列的周期相关特性,因为随机序列具有类似白噪声一般的尖锐自相关性,在接收端解扩是可以有效地抑制多径信号的干扰,达到提高信噪比和通信质量的目的。标准dsss接收机通过较佳的相关器自动选择幅度最大的波形信号,比与之锁定同步,从而降低多径干扰。因此无线传感器网络应用的直接序列扩频技术可以很好的抑制多径干扰。

4结论

扩频技术论文范文第10篇

关键词:数字水印;Arnold变换;Waston视觉模型;Gold序列;CDMA;DCT

中图分类号:TP301文献标识码:A文章编号:1009-3044(2010)08-1963-03

DCT-Domain Image Watermarking Algorithm Based On CDMA

WANG Sheng-lei1, YANG Shi-ping1,2

(1.School of Computer Science and Information, Guizhou University, Guiyang 550025, China;2.Mingde College, Guizhou University, Guiyang 550004, China)

Abstract: Putting forward a new image watermarking algorithm which is robust many attacks,this paper applies Arnold places disorderly technique and CDMA spread spectrum technique, equilibrium Gold code is selected as spread spectrum sequence, make use ofWaston sense of vision model certains imbed strength,the imbed position is certained by the adaptting algorithm, a binary image is embedded to some DCT coefficients; taking advantage of correlation property of Gold code,watermark is extracted quickly on the precondition on which host image exists. The analysis of the algorithm and carry out process are given , the attack of Matlab experiments expressed the usefulness of algorithm. Compared with the former watermark algorithm,the safety of watermarking is greatly improved, and it is robust to standard JPEG compression, noising, filtering and cropping attacks.

Key words: digital watermarking; arnold places disorderly technique; waston sense of vision model; gold sequence; code division multiple acces(CDMA); discrete cosine transform(DCT)

数字水印技术是信息隐藏技术的一个分支,其基本思想是在数字媒体中嵌入版权保护信息,以防止对宿主媒体信息进行篡改和未经授权的拷贝和分发[1-2]。从本质上讲,数字水印处理可以看作一种通信过程[3],即在满足不可见性的前提下在水印的嵌入者与接收者之间传递一条信息。因此许多数字通信的理论和方法都可以应用到数字水印系统中[4]。

CDMA无线通信系统具有抗干扰性强、保密性好、截获率低等优点,因此把CDMA技术应用到数字水印系统中是一种安全有效的方法。Ruanaidh[5]等于1998年首先提出采用DS-CDMA技术实现CDMA扩频水印,首先将分组后的水印信息以字符序列的形式扩频到m序列上,然后进行CDMA扩频编码,最后对原始载体图像进行128×128分块DCT变换,将编码以后的水印信息嵌入到DCT系数上。但由于受到m序列地址个数的限制,作者只在DCT域上嵌入了19个字符,嵌入容量较小且安全性低。

由于数字图像的JPEG压缩标准建立在DCT变换的基础上,所以基于JPEG压缩标准模型的水印嵌入算法可以更好地抵抗JPEG压缩处理,本文的水印算法便基于DCT域。本文针对文献[5]中嵌入容量和安全性受限的不足并结合DCT域嵌入水印的优点,提出了一种采用CDMA技术在图像DCT域的中低频分量嵌入水印信息的改进算法。

1 算法

算法分为水印生成、水印嵌入和水印提取三个步骤。

1.1 水印的生成

为增强水印的安全性和抗攻击能力,原始水印在被嵌入之前需经过Arnold置乱和CDMA扩频两个步骤,其生成框图如图1所示。

1)原始二值水印生成

本文所使用的水印图像为40×40的gzu.bmp,为增强水印的抗剪切能力,先利用Arnold置乱算法对原始水印图像进行最佳置乱(置乱次数为3),置乱后的水印图像见图4。然后将原始水印图像信息转换成二进制流,为使其能被9整除在二进制码流后加上2位变为m,长度为N(N=1602)即:

m={mi | mi={0,1},0≤i≤1601}

将m序列以9比特为一组(作为一个字符),共生成178个字符,其产生的字符串可表示为:

s={si | 0≤si≤511,0≤i≤177}

2)生成Gold序列集

采用Gold序列作为扩频序列。通过对两组m序列优选对移项相加得到Gold序列集。选用的两组m序列的生成多项式为1021和1131(八进制)。一共生成了29+1=513个长度为29-1=511的Gold序列集:

pi={pij | pij∈{1,-1},0≤j≤510,0≤i≤512}

3)CDMA编码

为每一个字符si从Gold序列集中找到下标为si的伪随机序列:

ri=psi,0≤i≤177

最后把所有的选出的伪随机序列串联起来就可构成最终的扩频序列:

1.2 水印嵌入

水印嵌入分为利用自适应位置算法确定嵌入位置、利用自适应强度算法确定嵌入强度和DCT域嵌入水印三个步骤。

1)位置自适应算法

本论文为实现嵌入位置的自适应性,提出了以下位置自适应算法:分块DCT变换中低频系数的首位置M1是随着块的均值不同而改变的,对于各8×8块,其计算方法为:先计算该快64个像素和,然后取余16,得到余数加6,即

该算法的安全性和鲁棒性比较高,但是水印提取时需要原始水印的参与,即不可实现盲提取。

本算法采用的载体水印图像为一608×608的Lena.bmp灰度图像。根据每一个图像块的平均亮度大小,利用上式确定第i(1≤i≤5776)块DCT中低频系数的起始位置Mi,所有的起始位置组合起来便形成了起始位置序列{P(k),1≤k≤5776}。

2)强度自适应算法

本论文利用Waston视觉模型对不同的块进行分类,从而可以实现对水印嵌入强度进行自适应调节,在确保水印不可见的同时有效地增强水印的强度。

本文根据Watson模型,综合考虑频率掩蔽、亮度掩蔽和对比度掩蔽3种效应,得出DCT频率分量的最佳嵌入强度序列{Tc(k,i,j),1≤k≤5776,1≤i,j≤8},其中Tc(k,i,j)表示第k块第i行第j列的频率分量最佳嵌入强度。

3)DCT域嵌入算法

本为算法是对图I进行分块DCT操作的,首先对原始图像I分成K个不重叠的8×8子块,即:

其中,M和N分别为原始图像的长和宽;然后分块进行DCT变换,即:

把每一块DCT变换系数按“之“字形进行排序,将其转化为一维描述(,0≤u≤64),将每一块的嵌入强度系数三维矩阵(Tc(k,i,j),1≤k≤5776,0≤i,j

嵌入完成后进行反“之”字形排列,再进行IDCT变换:

所有子快都进行上述操作,就能得到嵌入水印后的图像。水印嵌入框图如图2所示。

1.3 水印的提取

首先根据原始载体图像利用位置与强度确定算法确定每一块图像的嵌入强度和嵌入位置,然后将原始图像和水印化图像分别进行分块(8×8)DCT变换,分别对各块”之”字排列,按照嵌入位置和嵌入强度取其差值,提取出置乱后水印信息的扩频序列:

利用密钥生成正交Gold序列集:

按每组长度为511把生成的扩频水印序列w'进行分组:

把扩频序列的一个分组r'i与正交Gold序列集中的每一个Gold序列分别做相关运算:

取其中互相关系数最大的那个Gold序列的下标记为si,将生成的所有下标串联起来即可生成一个字符串:

把生成的字符串序列转化为二进制,则可得提取到的水印序列:

把水印序列的最后2位去掉,再转化为40×40的矩阵即得到置乱后的水印图像的数据矩阵,最后利用图像置乱算法(置乱次数为27)即可得到提取的水印图像。水印提取框图如图3所示。

1.4 试验结果

仿真实验中,原始图像为320×320的Lena灰度测试图像,二值水印图像为gzu.bmp。图4给出原始图像、水印图像和水印化的载体图像以及未受攻击提取的水印图像。由图像可以看出,单纯从视觉很难判断水印化图像与原始图像的区别,本文算法的未受攻击测试的水印化载体图像与原始图像的PSNR=36.3646,因此,不可见性良好,且从视觉上也可判断其具有良好的不可见性。

主要实验内容包括:JPEG压缩攻击,压缩率最低到15%;不同程度的剪切攻击;分别加入高斯噪声、椒盐噪声和乘积噪声,即噪声攻击,中值滤波攻击,图像直方图化,图像变亮或变暗,增加或降低对比度等攻击。

(a)原始cdma_lena.bmp图像 (b)原始水印图像

(c)置乱后的水印图像 (d)水印化cdma_lena,bmp图像

(e)未受攻击提取的水印图像

图4原始图像

1.5 试验结果分析

从实验给出的测试图像和测试数据可以看出,本文算法对基本的图像处理具有很强的鲁棒性,从实验数据看出,处理后的图像与水印化图像的峰值信噪比有明显的降低,但是提取出的水印质量还是较好,尤其是对直方图均匀化、亮度和对比度的变化以及乘积噪声等攻击具有较强的抗干扰性。由于本文在嵌入水印之前把水印进行了置乱,所以使本论文对剪切处理具有较强的鲁棒性,对于横切处理,虽然提取的水印不是很清晰,但足以证明水印的存在性;零星剪切处理后,已经把人类感兴趣的部分切掉,由于剪切面积不是很大,所以,还能提起出水印,用视觉可以判断出水印的存在;对于中间纵切和中间剪切的图像处理,从攻击图像可以看出,人类感兴趣的重要部分基本完全切掉,只剩下背景部分,这样的图像已经没有应用价值,因此是否能提取出水印已经不是那么重要了,但是,根据本文算法,仍然提取了水印图像,只不过与原始水印

图像相比,PSNR值较小,但用肉眼也能勉强分辨出水印图像的内容。实验证明无论从所给出的图像质量评价指标来看,还是用视觉判断,都成功的实现了水印的提取。与文献[5]相比其鲁棒性有显著提高,特别是针对JPEG压缩和剪切攻击;同时由于本文利用到了自适应算法,使水印系统安全性与文献[5]相比有所提高。

本文算法也有不足之处,就是对图像的旋转测试不鲁棒,因为嵌入位置是固定的,待测图像旋转一定角度后,所有的图像数据都移位了,在检测时应用本文算法找不到所嵌入的起始位置,导致不能正确提取水印。但是利用Hough变换法进行直线提取其边缘,然后矫正其图像的旋转角度,矫正之后就可以提取水印了。

2 总结

本文针对二值(图像)水印,提出了一种在水印结构设计方面使用Gold码的扩频水印方法。为提高水印系统的鲁棒性,对原始水印图像在嵌入前进行了Arnold置乱处理;为增强水印系统的安全性,水印嵌入时使用了自适应嵌入,在得不到原始载体图像的情况下绝对得不到任何水印信息。与使用m序列或正交序列对作为扩频序列的方法相比,本文所提方法的优点在于,利用了Gold码地址数多、抗干扰力强的特点,使得水印系统在抵抗各种噪声、滤波和压缩等攻击方面具有更好的鲁棒性。

当然,对于水印信息的检测和恢复,本文所提方法需要原始载体图像参与,这可能会给实际应用带来不便,但可以通过进一步改进算法来实现盲提取。另外,本文提出的方案仍有其他需要研究之处,比如水印结构设计方面的扩频码长度、原始水印图像在嵌入前的置乱次数、扩频码分组策略等。

参考文献:

[1] 黄继武,谭铁牛.图像隐形水印综述[J].自动化学报,2000,26(5):645-655.

[2] Huang Jiwu,Shi Yun Q.An adaptive image watermarking scheme based on visu-al masking[J].IEEE Electronics Letters,1998,34(8):748-750.

[3] COX I J,MILLER M L,BLOOM J A.DigitalWatermarking[M].London:Acad-emic Press,1999.

[4] 方艳梅,黄继武.基于CDMA扩频技术的图像水印算法[J].中国图像图形学报,2003,11(8A):1314-1319.

上一篇:移动通信业务论文范文 下一篇:3g通信技术论文范文