地震勘探的特点范文

时间:2023-12-20 16:44:36

地震勘探的特点

地震勘探的特点篇1

关键词:三维地震勘探技术;煤田勘探;应用

DOI:10.16640/ki.37-1222/t.2015.24.051

随着科学技术的不断发展和进步,三维地震勘探技术也取得了较大的发展,并逐渐在煤炭行业中普及。我国近年来加大了对地震勘探技术的研究,分析论证了勘探过程中的地质资料,处理了勘探过程中的采集问题。把三维地震勘探技术应用在煤田勘探中,有利于提高勘探的精度和准度。本文讲述了三维勘探技术的概念、应用的环节以及作业方法,旨在推动我国煤田勘探的发展。

1 三维地震勘探技术的概念

三维勘探技术涉及到学科种类众多,如物理学、计算机学等,三维勘探技术是在二维勘探技术的基础上发展起来的,主要利用三维技术分析研究地震波信息,从而确定地质条件。三维勘探技术比二维勘探技术的优点更多,它所获得的空间数据比较大,信息点的密度比较高。二维勘探技术所采集的数据密度不够高,在实际工作中,无法准确对数据地点进行定位和甄别,影响了数据采集的质量。

2 煤田三维地震勘探技术应用的环节

2.1 野外地震数据的采集

所谓野外地震数据采集就是指利用先进的地震勘探数据采集设备,对煤田以及周边进行地震数据收集。数据采集人员在进行地震勘探数据收集时要能保证数据的准确性,因为只有保证采集到的数据的准确性,才能为以后的数据分析和处理提供可靠的数据信息,从而确保数据分析和准确的准确性,这是环环相扣的。在野外地震数据的采集过程中,要对勘探区域的钻孔地点进行弹药的预处理。处理过程如下,首先把弹药放在特定的位置,随后准确记录爆炸的位置和进行收集接收的位置。其次,还要记录在爆炸中产生的地震波折射数据。最后,要分析研究地震波折射数据,并据此得出煤田地质结构的相关信息,完成煤田勘探工作。

2.2 数据勘探作业的处理

煤田的三维地震勘探工程的复杂性和综合性比较强,涉及到多个学科。地震勘探的各个环节都是紧密联系在一起的,但同时每个环节都有其独立性,是在相对独立的方式下进行的。传统的地震勘探技术有着局限性,已经无法满足现代勘探发展的需求。三维地震卡特技术相比于传统二维地震勘探技术而言,具有无可替代的优势,三维地震勘探技术能收集到数据空间和数据密度都比传统地震勘探技术获取的空间和密度都要大。数据勘探作业的处理在三维地震勘探技术中起到了重要的作用,能对收集到的地震波折射数据进行科学合理的分析和处理。第一,就是要对收集的数据进行准确度检验,以此来确保数据的可靠性和准确性;第二,就是要在完成各个环节的工作后,根据波点的变动绘制出波点分布图。

2.3 地震资料的解释

解释就是利用地震运动学和动力学知识解释地震数据信息,这种技术是对地震、测井以及地质信息的综合运用。三维地震勘探技术收集到的数据包含了大量的地质信息,但主要是运动学信息和动力学信息。三维地震勘探技术收集的地震资料主要包括两个方面,分别是地质结构和矿物资源。一方面,要分析和处理采集到的地震数据信息,并对比其他图表,找出数据信息的特点,再依照分析研究后的数据情况得出地质结构特点,提高勘探结构的效率。另一方面,利用采集到的资料,对煤田中的各类矿物资源进行分析和判断,并根据记载资料进行科学的分类,同时做好相关的记录报告工作。

2.4 勘探资料的处理

在煤田勘探的应用过程中,需要利用三维地震勘探技术处理大量的图片和资源。现在的处理方式主要有两种,一种是利用室内影像对资料底图的设计方式进行深加工,另一种是展现高程资料图片。在三维地震勘探的过程中,对地质图及叠加,常常采用资料底图的设计方式。该方式存在一定的优点,也存在一定的缺点。优点是这种方式能全面表现出煤田所在区域地形的高度差,缺点就是这种方式会存在底图形不好、准确度不高的问题。正是如此,所以要用室内影像对底图形进行进一步的加工处理。在地质结构比较复杂的煤炭底层和断层进行勘探作业时往往使用高程资料图片,这种处理方式可以将煤田较为复杂的地表图像转化为较为清晰的数字表达形式。这种表达方式可以更加准确的表现出煤田地质结构特征,提高资料处理的效率和便捷。

3 煤田三维地震勘探技术作业方法的应用

3.1 合理控制煤田层小断面及起伏形态

在三维地震勘探时,根据三维地震勘探区域的地质特点,要将起伏形态中目的层的深度误差需要控制在1%以内,幅度范围尽量控制在5m 以外的小曲面内。这样才能确保煤田起伏状态勘探的精确度达到相关要求的标准,在85%以上,有效控制控制煤田层小断面及起伏形态。我国近年来在煤田勘探技术方面取得了巨大的进步,通过勘探人员不断的实践和创新,现如今已经良好掌握了反射点的实际归位,但就现阶段的勘探精度而言,煤田勘探的精确度水平仍有待提高。根据相关调查显示,在3m到5m的小范围煤田层断面进行勘探,精准度的平均值在50%左右,如果在地质情况更为复杂的地区进行勘探,那么煤田层的断面勘探精确度更低,在20%以下。

3.2 地震勘探相关煤层的厚度变化的研究

低速薄层是煤田油层的标准,在一定的范围内,地震波振幅谱和煤田反射振幅谱的一阶比值与煤层的厚度成正比。利用地震勘探技术获取煤层的厚度,只要保证钻孔的数量以及典型的比例系数,这样的方法更加简单和便捷。在进行煤层厚度勘探时,一般使用的方法有三种,分别为分析统计法、普矩法和反演直接法。其中,最常使用的是普矩法,这种方法的主要作用就是用在继发性的削弱非均匀盖层上,并在特定条件下会对煤田层的横向变化产生影响。

3.3 对采集陷落柱的范围

采集陷落柱属于煤田的表面构造,附属于非变动构造堆积的破碎岩块。采集陷落柱出现的原因是,高速层在向低速层进行转变的过程中发生了时间延迟。对于采集陷落柱坍陷深度以及几何变形,可以利用三维勘探技术的地震构件图的时间剖面进行适当的推算,以此来实现提高勘探数据精度的目标,使其性能提高80%以上。在地质雷达、煤田勘探等方面,我国煤田三维地震勘探技术采用透坑方式。三维地震勘探技术已经在我国煤田勘探中取得了广泛的应用,正在发挥出越来越重要的作用。

4 煤田三维地震勘探数据的处理措施

使用三维地震勘探技术进行煤田勘探后的数据处理会受到较多因素的影响,如信噪比,一旦勘探时的背景噪音较大,就会影响三维地震勘探激发的层位的稳定性,从而影响单炮声波与面波,致使被测层面数据不够准确。特别是在干扰因素较为强烈的时候,勘探数据会存在很大的偏差,这种情况一般要重新进行数据采集。在进行三维地震勘探数据处理时,需要注意下述几个方面。第一,要进行静校正。这主要因为在勘探地势起伏变化较大的地区时,低速带速度变化会变得剧烈,需要校正的量就会增多。而静校正是其中较为关键的环节,结合传统的自动统计剩余静校正技术,运用修正软件将地表高差和低速带的影响降到最小;第二,是去除干扰波。干扰波有两种类型,分别为面波和声波。去除干扰波一般都是先压制低频,同时采用高频随机干扰。压制低频干扰一般都会选用内切滤波法,这样做可以有效地压制低频面波,提高资料的信噪比,减少对信号的损害;第三,进行地表一致性处理。

5 总结

三维地震勘探技术是目前来说最为先进的地震勘探技术,在地震勘探的各个环节都有应用。在使用三维地震勘探技术进行煤田勘探时,需要严格控制勘探过程,保证数据分析的准确性。我国煤田勘探的发展和进步,有利于推动我们经济的进步和发展。

参考文献:

[1]马国荣.三维地震勘探技术在煤田勘探中的应用分析[J].甘肃科技,2014,30(21):40-41.

[2]杨德义,赵镨,王慧等.煤矿三维地震勘探技术发展趋势[J].中国煤炭质,2011,23(06):42-47,55.

地震勘探的特点篇2

[关键词]滩海油藏;三维地震勘探;地震勘探

中图分类号:P631.4 文献标识码:A 文章编号:1009-914X(2017)15-0038-01

在油气勘探中,地震勘探技术可获取全面的地质信息,为区块油藏勘探提准确的地质资料。三维地震勘探技术作为地震勘探的一种,可将地层情况进行直观、清晰的展现。在浅海滩涂等海陆过渡带油藏开发中,地震勘探存在一些技术难点,有必要对优化勘探技术应用的对策措施进行探究。

1 三维地震勘探技术在滩海油藏勘探中的应用难点

1.1 三维地震勘探技术工作原理

三维地震勘探技术集物理学、数学、信息技术于一体,是综合性地震勘探技术,可获取更加清晰的目的储层地质构造图,更加精准的进行目标储层位置预测,并具备多方向分辨率高、勘探成本低、探测快捷等优点,已成为构造勘探必不可少的手段。该技术基本理论与工作流程和二维地震勘探技术基本一致,但可获取三维数据体,数据更加精确,通过数据绘制地震剖面图,可直观反映地层构造形态、断层等。 其工作原理是通过在地下岩层以人工激发的方式激发地震波,通过地震波反射形成反射波,并对反射波进行回收和分析,确定岩层界面埋藏深度和形状,主要工作流程包括地震数据采集、数据处理、资料解释等。因为勘探分析流程比较复杂,所以要借助现代化软硬件系统和分析技术进行应用。

1.2 滩海油藏勘探难点

一是地质条件较差。滩海油藏处在海陆过渡带,包含陆地、水域和海滩等不同地表形态,水深随涨潮落潮存在较大变化,不同水深表层勘探介质存在差异,加大了勘探难度。滩海区域地质构造多褶皱和断层,二者相伴而生,单构造规模小,地层埋深也比较小,勘探目标层系较多,深层反射性能较弱,复杂地质构造不利于地震波激发和反射,地质成像比较困难。

二是勘探精度要求高。滩海地区不仅存在潮汐、风浪等自然环境下的信号干扰源,人工捕鱼等活动也增加了高频振荡和低频干扰,海沟等又会产生次生干扰,较强的噪音干扰造成信噪比较低。最浅反射层多在50m内,发射信息受干扰后成像和接受信息不连续,获取较好的T0连续成像需要较多有效覆盖次数,而水中检波器一般都在水上,发射后道距较小,不利于浅地层有效覆盖次数增加。

三是水域检波点定位比较困难。在平静水面可通过透置检波器定位,排列好后进行二次定位,但依然存在10m左右的误差,在潮流活动时,检波器定位更加困难,不利于信息准确采集。

2 三维地震勘探技术在滩海油藏勘探中的应用优化

2.1 应用优化技术措施

一是观测系统优化。要加强检测参数论证,根据具体区域水深、海况条件等,结合滩海特点,确保观测系统布置合理。加大高精度地震勘探仪器应用,增加有效覆盖次数,采取较长排列长度进行反射波激发,提高弱反射信号接收和记录,确保各层系地层反射信息都可接收。借助远道信噪比小的优点,增加远道应用次数,确保所有收集信号都具备一定信噪比。二是缩小信息收集单元。要根据滩海油藏地质构造复杂、构造单元较小的特点,对面元进行细分,提升收集资料的分辨率,确保准确反映地质构造断点和各类细节。同时,通过相邻尺寸各异面元资料对比,加深对区块地质信息的了解。

二是深水区域采用OBC海底电缆勘探技术。借助二次定位系统,获取更加准确的检波点位置。借助双分量接收信息特点,每个接收点都设置水中压电检波器和陆上速度检波器,通过信息叠加分析消除干扰,以及海水鸣震和多波混响造成的虚反射,提升信噪比。借助海底电缆较大自重,在潮汐活动中固定,防止因接收系统位置变化造成信息不准。借助电缆长期使用特点,在勘探中只需气枪放炮就可获取勘探信息,提高了勘探效率。

三是优化激发方式。在气枪激发中,要注重利用较大药量和气量激发,确保地震波在复杂多层系中具备较强穿透力,信噪比符合要求。一般要随着气枪沉放深度加大而加大激发能量,确保能提高地震资料信噪比和原始信息分辨率。要在勘探技术实施前对区域地表情况进行分析,有针对性的放置适用采集设备、优化采集参数。

2.2 应用系统设计

为确保适用不同滩海条件,可设计束状观测系统和PATCH观测系统,分别用于陆地和水下观测,前者具有有效覆盖次数多、炮间距均匀、方位角平滑、面元布局较好、适宜速度分析的优点,后者需要确保方位角和炮间距均匀,在此条件下可获取更大的炮间距和更多地覆盖次数,避免外在干扰,确保资料品质。束状观测系统,采用6L48S192P砌墙式细分面元,单个面元为25*25m,细分面元为12.5*12.5m,覆盖次数可达6纵12横的72次,细分后为18次,接收道数为6线*102道德1152道,道间距和炮点距均为50m,炮线距为175m,接收线距为400m,炮检距为5263m,其中纵向最大为4800m、最小为25m,束线滚动距离为1200m,横纵比为0.46。PATCH观测系统,采用PATCH细分面元,单个面元为25*25m,细分面元为12.5*12.5m,道距为50m,有4条接收线,每线有96道,接收线距为400m,有48条炮线,炮线距为175或225m,每条跑线有64个炮点。炮点距为50m,其中最大和最小分别为7426m和12.5m。

2.3 应用关键环节

一是把握激发因素。陆上和泥潭采用炸药震源,单井药量控制在1-6kg,深度为10m;水下采用气枪震源,通过多个气枪同时激发确保激发能量,并利用HYDRO软件进行实时定位,确保激发点准确,但要做好震源交替部位子波校正。

二是把握接收因素。陆上和泥潭利用沼泽检波器进行组合,横纵向要确保一定的组合基距,获取信号可抗干扰,组合参数设置中要尽量保护有效波、保留高频波。水下特别是水深2m以下部位,要利用压电检波器进行单点接收,注意做好二次定位工作,确保检波器偏移在3m以内,抑制DGPS坐标与浮球实际坐标差、检波器与测量标志间的误差以及潮水活动造成的检波器位移。在个别偏移误差较大区域,要对存在误差的资料通过分析软件纠正。

三是测量环节。要以GPS网作为基准,利用国家大地水准面数据建立野外测量控制点,通^RTK进行单个炮点位置的实测,确保各测量点位准确。

3 结论

综上所述,滩海油藏在三维地震勘探技术应用中存在技术难点,为发挥该技术优势,可通过采取优化措施、设计合理勘探系统、把握关键环节,确保勘探数据真实可靠。

参考文献:

[1] 李文良,于政秀.三维地震勘探技术在地质补充勘探中的应用[J].中国矿山工程,2010(02).

地震勘探的特点篇3

[关键词]金属矿 地震勘测 技术探究

[中图分类号]P631.4 [文献码] B [文章编号] 1000-405X(2013)-9-129-2

世界各国对金属矿的探测技术多年来仅限于非地震勘测技术,比如说重力法、电磁法等等,但是这些方法比较适用于金属矿的浅质层,但是随着勘探的纵向区域的加深,传统的勘测方法在能力和精确度方面的可靠性逐渐下降,所以,金属矿的勘测方法倾向于地震勘探技术,其不仅可以代替非地震勘探技术在深层金属矿中作业,更重要的是其在精度、分辨率以及勘探结果上显示出不可取代的地位。

1金属矿地震勘测现状

目前地震勘测技术仍处在前期发展的状态,其在金属矿勘测中的应用主要体现在两个方面,一是对金属矿上的岩石进行物理特性的分析,通过矿石与岩石的物理特性,分析是否具有金属矿勘探的意义;二是分析散射波场的特性,散射波长的特性与金属矿体是有相关关系的,对其进行分析得出金属矿是否具有有效的勘探性,因此地震勘探技术还存在很大的研究和提升的空间。

2金属矿地震勘测的技术分析

基于对金属矿地震勘探国内外现行使用技术的分析可得,常用地震勘测方法有五种,分别是散射波法、折射波法、反射波法、井中地震方法以及地面地震层析成像法。

散射波法。散射波发在地震勘测中属于是比较高等的技术种类,主要是用于勘测非均匀分布的地下介质的地质条件,例如对块状硫化物矿床的探测,一般情况,被探测的金属矿床在与周围岩石之间存在的速度差和密度差会形成散射波场,在差异较大时,地震勘探技术中的散射波对金属矿的散射波场进行探测,可及时有效的发现与矿体关系密切的非均匀体。比如位于我国东部地区的铜陵冬瓜山-铜矿以及我国西部地区的云南锡矿,都是通过散射波法对矿区进行高质量成像,基于数据的模拟发现金属矿区。

折射波法。折射波法在地震勘测中是应用比较早期的技术种类,其主要对矿区中的含金属矿的基岩、基底以及控矿构造进行研究,一眼就结果作为标准进行填图,并且确定金属矿的风化壳,例如位于乌兹别克西部地区的金属矿区,即是利用折射波法对低速区域的异常条带进行划分,主要是对金属矿部分的形态背景进行分析,原因是乌兹别克矿区局部异常的界面低速区域与该矿区的矿床有直接的关系,所以首先需要利用折射波法对低速异常的条带进行划分。在地震勘探技术中,折射波法虽然投入使用比较早,但是其在应用上是受到一定限制的,比如低速层覆盖在高速层下方或者是被勘测的地形结构复杂。

反射波法。反射波法在地震勘探中属于比较常用的技术种类,其主要对和金属矿有关联的地质构造进行探测,对金属矿中的断层进行标注,大致反馈金属矿中含矿地质的构造,包括形态、基底和基岩起伏状态、相似沉积金属矿以及沉积金属矿等,便于有效金属矿的探寻和发现。例如反射波发对矿区的二维或三维层面两千米以内60°-70°倾角处以及裂缝处进行地质构造上的成像。此方法运用的成效体现在位于澳大利亚的北部地区的Mount Isa金属矿区,清楚可圈定出金属矿取的涉及范围以及构造形态。

井中地震方法。井中地震方法是地震勘测技术中比较精细的技术种类,其在金属矿勘探中所涉及到的井中地震方法包括垂直地震剖面、跨孔地震层析成像和“井-地”地震层析成像,当金属矿发育地区的陡倾角大于65°时,属于高难度勘测种类,由于受限于野外采集与处理方法,导致部分地震探测方法的使用效果不是特别明显,因此利用井中地震方法的垂直剖面技术可在井中接受来自陡倾角的各种数据信息以及参数,有效的代替其他地震勘探技术,但是在金属矿区中大部分的井并不是呈现垂直状态的,所以发展为井下地震方法,有利于获取地下速度的详细信息,优化各个地层与界面之间的关系。例如位于加拿大大安大略地区的Kidd Greek金属矿和加拿大魁北克北部地区的Bbitibi金属矿区中的勘探井,前者是利用井中地震方法,发现陡倾角褶曲处火山岩层中包含硫化物矿体,并对此控矿构造进行成像;后者是利用井中地震方法,对一支矿体进行二次勘探,通过对其陡倾角的火山岩进行成像,勘探到具有高波阻抗特性的辉绿岩矿脉分布。

地面地震层析成像法。地面地震层析成像法是地震勘探技术中比较复杂的技术种类,其是以地震勘探的记录为基础,通过对首波的动态进行分析,对地下的速度进行反演,此方法以80%以上的准确性探测金属矿区底层速度的分布,虽然地面地震成像法的探测准确性比较高,但是其在纵行方位上的分辨率不高,远远低于横行方位上的分辨率,所以,地面地震层析成像法只能用于介质速度有差异的金属矿区,比如隐伏矿体、断层处以及矿体与周围岩石的接触地带等,通过对介质波速进行勘探,分析其对应岩石的特性,同时为地震的数据处理提供精确的校正资料,例如位于加拿大地区的Sudbury金属矿区,利用地面地震层析成像法对大型块状主要为硫化物的矿体进行地震反射的勘探,对于金属矿区地下的岩性界面的构造和形态进行探测,以便对地下深处的金属矿体进行圈定。

3地震勘测技术有待改善的问题

金属矿地震勘探技术在应用中暴露出诸多关键性的问题,并且此类问题有待提出具有针对性的解决方案,实现关键性问题的突破和改进。首先是基于金属矿床地质背景的限制,此限制可分为三个层面,第一是金属矿体的不规则分布,而且金属矿体在几何形态上的分布尺度是非常小的,不利于勘探;第二是金属矿床的地质构造复杂多样而且具有不稳定性,其地层处的倾角陡峭,岩石层以岩浆岩和变质岩为主,加大了勘探上的难度;第三是金属矿的表面层次的构成条件非常负责,不仅其地形的起伏变化比较大,而且表层的潜水面和风化层很深,促使地表处的岩石以的状态存在,影响勘探的准确性。

其次是金属矿资源对比其他的资源勘探,其涉及的地质和地震条件以及地质中需要解决的问题是多种多样的,条件和问题的多样表现为:第一在金属矿地震勘探中,目的层缺少比较深的深度,而且其背景的速度相对较高,再加上信号方面有效频宽的限制,与之进行对比,例如勘探技术在油气勘探中的环境条件为目的层最深深度可至数千米,信号有效的频宽在1-120赫兹,金属矿的频宽则为30-200赫兹;第二是金属矿地震勘探中目的层在界面上的波阻抗差非常小,致使有效的地震信号几乎检测不到,在进行有效波的分离和识别上极其困难,而且金属矿大部分为结晶岩,其不均匀性的分布特点造成变化多样的波场图形;第三是形态各异且规模较小的金属矿床,其底层界面在横向上是呈现不连续性的,很难采取合适的地震勘探技术对其进行勘探,缺乏地震勘探方法所需要依据的基本条件,而且当地震波的波长与金属矿体的尺度相当时,地震波会产生散射现象而无法精确的对金属矿床进行探测;第四是金属矿底层纵行方向上的密度差较小,波阻抗差的获得主要是依据金属矿地质的密度差,但是其地址中的各层速度非常接近而且速度非常高,导致垂直方向的速递比较小,只有在不同烈性的岩石之间才会显现出密度的变化,所以严重影响到勘探的顺利进行。

最后金属矿地震勘探技术无论是在理论基础上还是在技术实践上,都存在需要改善提高的地方,对于地震勘探技术尤为需要谨慎的考虑,综合金属矿区的地形特点,进行正确的选取。

4地震勘探技术的发展前景

目前金属矿地震勘探技术已提出多个新型的研究课题,其中最具代表性的是地震波散射技术,近几年更是加强了对此技术的研究力度,其以地震勘探技术的磁法、电法勘探技术为基本,以地震波散射为研究理论,确立了新领域技术的研究方向,未来金属矿地震勘探技术的发展前景是非常广泛的。

5结束语

地震勘探技术在金属矿勘探中的应用是具有不可估量的潜力的,而且地震勘测技术在国内外都备受关注,最重要的原因是地震勘探技术均可运用在金属矿勘探的各个阶段,而且其对浅层与深层的质地构造的反应精确度非常高,有利于获取金属矿的空间分布状态,基于对地震勘探技术的不断研究,其在未来金属矿勘探中的重要性会越来越大。

参考文献

[1]徐明才,高景华.用于金属矿勘查的地震方法技术[J].物探化探计算技术,2010(S1).

[2]尹军杰,刘学伟,李文慧.地震波散射理论及应用研究综述[J].地球物理学进展,2010(01).

[3]李战业,尹军杰.地震散射波模拟成像在金属矿勘探中的应用[J].地质与勘探,2011(02).

[4]徐明才,高景华,荣立新.从金属矿地震方法的试验效果探讨其应用前景[J].中国地质,2011(01).

地震勘探的特点篇4

关键词:煤田地质勘探;技术

1煤炭资源综合勘探方法

根据地形、地质和物性等条件,合理选择勘探手段,统筹布置各项工程,严格工程施工顺序,综合研究各种地质信息,提交高质量地质报告,这就是近年来逐渐完善的煤炭资源综合勘探方法。通过采用遥感扫描面、物探扫线、钻探及测井扫点的工作部署,在具体勘探区,采用重磁资料确定煤系分布范围和基底深度、用高分辨率数字地震控制断层、褶皱和其他异常体的发育;用钻探结合测井方法验证地震勘探结果,并重点控制煤层的变化。通过地震、钻探和测井资料的综合解释研究,可获得高精度的地质勘探成果[1]。在构造上,能够控制落差10~15m的小断层和落差5~10m的小断点、主采煤层的底板等高线能控制在1%~2%以内。在煤层上,能够控制煤层的发育特征,并可利用地震波组的波形、多元参数特征和变化趋势,解释典型煤层的厚度和宏观结构类型。在经济上,大幅度节约了钻探工作量,钻孔数减少50%~80%,缩短了勘探周期,勘探成本降低30%~50%,具有明显的技术经济效益。

2煤田钻探新技术

传统的岩芯钻探仍将是煤炭资源勘探的最直观手段,只不过随着综合勘探方法的采用,钻探工作量相对减少。伴随着新技术革命,钻探将会在自动化程度、操作的灵活性和机械效率等方面有大的进展和提高。

一是全面推广绳索取芯技术。绳索取芯技术就是在不提出钻杆的情况下,采用内套管的结构,以绳索提出内套管的方式,将钻进中收集到内套管的岩芯提取到地面后取出。使用该技术,能够大大减少工人劳动强度,提高效率、提高各项经济技术指标。该技术在煤田地质系统推广已有数年的历史,今后还将继续推广普及,并逐步解决推广应用中出现的技术问题,完善该项技术。

二是推广钻进参数探测技术。在钻探施工时,有许多钻进特征是依靠工人的感觉和经验获得的,钻工是依靠对钻进状态的判断采取措施来调整操作。这种方式人为主观性大、不易掌握,难以形成标准化操作。通过近年来的科技攻关和对外技术合作,钻进参数探测系统正在被越来越多的煤矿企业应用,因为它可以通过各传感仪实时掌握到下列钻进参数:钻杆旋转速度、钻进进尺速度、钻杆扭矩、钻进压力、进水量、返水量、泵压、孔深、泥浆粘度、密度和pH值等。钻工依据这此参数,可及时、准确地调整操作。这可大大降低工人劳动强度,提高钻进质量和工作效率。

3高分辨率数字地震勘探技术

高分辨率数字地震勘探就是一整套以数字方式记录高质量的地震信号,并经数字处理而获得高分辨率地震勘探效果的技术方法,它包括在数据采集上采用四小(小药量、小道距、小采样间隔和小组合基距)、两高(高频检波器、高频低截滤波)、合适的井深及准确点位(炮点、检波点);在数据处理上强调噪声衰减、子波长度压缩及精确的叠加和偏移,最终获得高信噪比、宽带的高频信号,使得小型煤田构造和异常清晰的显出。

从1985年开始至今,高分辨率数字地震勘探技术在地质综合勘探和地震补充勘探实践中得到不断完善和发展。通过地震补充勘探,查明规模较小的断层、褶皱及其他异常体,以使得设计部门能够及时优化、修改设计,包括:

1)改变开拓方案,调整井筒位置和生产能力;

2)修改采区设计,如工作内位置、走向及长度;

3)修改主要巷道位置,调整矿井边界等。

这此成果保证了高产高效矿井的高速高质量建成,避免了因地质资料而带来的直接经济损失。目前,该项技术已得到广泛承认,并被越来越多的煤矿业主,包括亏损煤矿和地方煤矿业主的承认和采用,一场全国性的地震补充勘探和采区地震已经兴起[2]。

近年来,随着用尸要求的逐渐提高和大容量高速计算机的发展,使人们能够对海量的地震勘探数据进行处理,这才使得三维地震勘探技术得以提出和飞速发展。三维地震勘探技术能够将探测小构造的程度大大提高。由于那些条件较好、启用三维方法较早的矿区大受益处,从而使其他一些煤矿或待开发井田的业主开始要求进行三维地震勘探工作,由二维转向三维的大趋势已不容置疑。在二维地震勘探技术推广中,目前正在进一步通过增大主频波来提高分辨率以探测更小的断层,完善山区地震勘探方法,研究总结黄土垣区勘探方法和地震勘探成果解释等方法,进一步发展和拓宽二维勘探技术,以期更好的为煤炭生产用户服务。三维地震勘探由于工作量大、成本高、技术成熟度低等因素,近几年已经通过推广体积解释技术、深度域代替时间域、模型技术的广泛使用、约束反演的使用、山区三维地震问题的解决、纵横波联合勘探的推进、多道三维地震勘探技术的开发、现场实时处理的应用等一系列方法和手段,得到逐步完善和发展,进一步提高了精度、降低成本、提高工作效率、最大限度满足用户的需求。

4煤炭遥感技术

煤炭遥感技术是一项将空间遥感应用于探测与煤田地质和煤炭工业有关方面的高新技术,具有实时、准实时、快速、客观、整体性强的特征。近年来,伴随着计算机软硬件的飞跃有了突破性的进展,逐步形成了较为完整的煤炭遥感利一学体系,在煤田自燃环境监测、煤矿区环境监测、煤矿区水资源调查、煤炭资源调查、中小比例尺填图和区域地质研究等方面取得成功,并逐渐同物探、钻探一样,成为煤炭资源勘探的一种手段。目前,煤炭遥感正在继续沿着和GT8及GP8有机结合的方向,在计算机支持下,建成准实时性、半自动化、半智能化的中国煤田地质和煤炭资源调查信息系统,中国北方煤田自燃环境监测信息系统,中国煤矿区环境监测信息系统,煤矿区水资源调查信息系统,煤炭生产控制与土地复垦监测信息系统,并行成网络化、可视化和社会化的信息产品,为煤炭工业的可持续发展提供科学决策依据。

参考文献

[1]强孟东、王怀洪,煤炭资源综合勘探技术与经济效益[A].山东省煤炭学会2006年年会论文集[C],2006.

[2]甄氏方、张月敏,地震数据特征分析技术及其从用[J].物探装备,2005 (01)

[3]阚绪岩,淮北煤田地质与勘探技术浅析[J]科技资讯,2010 (04).

[4]黄怠峰,也论煤田地质勘探的技术管理[J].黑龙江科技信息,2009,(27)

地震勘探的特点篇5

[关键词]煤炭;地震勘探;教学;实验;实践

[中图分类号] G642 [文献标识码] A [文章编号] 2095-3437(2016)07-0145-02

一、引言

勘探地震学是煤炭高校地质工程等专业必修的一门专业课。该课程综合性强,包含了地质学、计算机、高等数学和大学物理等学科基础知识,具有概念抽象化、公式复杂化、应用具体化的特点,学习该课程具有一定难度。目前地震勘探教学,不管是教材还是辅导书,内容主要是针对石油系统。石油行业地震勘探只能在地面布置检波器,利用地震反射波或折射波进行构造探测,而煤炭行业地震数据采集方式有多种选择,既可以在地面进行地震勘探,也可以在煤矿井下巷道中布置检波器,利用地震槽波进行煤层厚度或者构造探测。可见,煤炭类高校不能完全照搬石油高校地震勘探教学模式。结合本校实际情况,我们将勘探地震学课程设定为三个部分:一是理论教学,二是实验教学,三是实践教学,三个环节紧密相连,综合培养学生的理论水平和动手能力。

二、课堂理论教学内容设定

(一)课程教学安排及授课方式

勘探地震学主要讲授利用震源激发地震波,通过地震波传播特征进行构造探测的原理和相关概念。该课程实践性强,在油气、煤炭等矿产资源勘查领域应用广泛。由于本课程涉及多门基础学科,一般安排到基础课都讲授完的大三阶段来开设,否则很多理论概念学生理解起来相对困难。此外,该课程最好放到野外地质填图实习之后,学生经过野外露头考察地层及构造,认识到要想研究地下地质构造,必须借助其他专业知识。这样他们就有兴趣去学习如何对地下地质构造进行探测。

勘探地震学研究地震波在岩层中的传播规律和特征。由于地震波传播看不见、摸不着,概念比较抽象,学生理解起来困难大。这就需要充分利用好现代化的多媒体教学设备,通过声音、图像、动画、视频等方式,让学生能够更容易理解地震波的传播特征。或者通过类比的方式,用一些身边的例子来帮助学生理解,提高学生学习的兴趣。在课间可以播放生产单位野外数据采集工作录像,让学生获得更直接的现场感官认识。在理论课讲授的同时,要随时结合生产上面临的实际问题,扩充教学内容,让学生明白学了这门课,到底能解决什么生产上的问题,以此提高他们学习的主动性。

(二)理论教学章节的内容安排

地震勘探工作内容分为三个阶段,分别是野外数据采集、地震数据处理和地震资料解释。理论课程共分为八个部分。首先是绪论,主要讲授勘探地震学的相关概念,以及在生产单位的作用,目的是让学生明白这门课的重要性。第一章讲授地震波几何运动学。由于课时有限,课堂上只讲授地震波几何运动学,地震波动力学作为课下自学内容。第二章地震信号频谱分析。主要讲授信号频谱的相关概念,以及进行频谱分析的方法。第三章地震勘探数据采集。内容包括观测系统的设计、数据采集的方式、地震组合原理等。第四章共中心点叠加原理。本章是地震勘探的核心,重点是让学生明白进行共中心点叠加的目的及原理。第五章地震波的传播速度。速度是地震波的核心参数,可以从地震波速度概念、速度影响因素和速度之间的转换关系三个方面进行讲解。第六章地震勘探资料解释,主要讲授地震资料解释的相关概念和方法,包括层位的解释,构造的识别,构造图的制作等。第七章矿井地震勘探方法。主要讲解煤矿行业特有的槽波地震勘探技术,该方法只有煤炭行业井下巷道中进行地震勘探才有。

(三)煤炭与石油系统勘探地震学的差异

煤炭行业地震勘探既能够在地面进行数据采集,也可以到井下巷道中进行数据采集,也就是槽波地震勘探,这个技术在煤矿应用多年,效果良好。目前,国内多家煤炭企业都已购置相关仪器设备,并应用到实际生产中。对于矿井巷道中的采集方式,国内规划教材中都没有涉及,学生到了生产单位,还得重新学习为适应煤炭行业快速发展的井下地震勘探技术,在课堂理论学时中单独拿出四个学时讲解这种只有煤矿行业才有的数据采集方式,重点讲解和地面数据采集方式的区别,强调这种方式利用的不是地震纵波,而是煤矿有的“顶板-煤层-底板”组合条件下,在煤层中相互干涉形成的一种特殊波,既槽波。槽波地震数据采集方式分为反射法和透射法。反射法将炮点和检波器布置在矿井同一巷道内,接收来自工作面内的反射槽波信号,适用于对煤层内地质构造(断层、陷落柱等)进行探测;透射法将炮点和检波器布置在工作面不同巷道内,接收工作面内的透射槽波信号,适合煤层厚度和煤岩类型的探测。

(四)紧跟学科技术前沿重视软件操作

由于国内外石油公司众多,开展地震勘探技术服务研究的公司发展迅猛,很多新技术不断涌现,并很快应用到企业实际生产中。授课教师必须紧跟学科技术发展,以适应地震勘探领域信息快速发展的需求。在课堂中,教师可以穿插介绍国外最新地震勘探进展情况,把每年美国地球物理年会和中国地球物理年会上的研究进展和科研动态介绍给学生,以扩展学生的知识面。同时,这也有利于大四阶段的毕业设计选题。目前地震勘探许多技术都已经商业化,都有成熟的商业软件,在企业实际工作中,基本上都离不开专业软件的使用,如地震数据采集中进行观测系统设计的KLseis、Mesa,用于静校正的TomoPlus等。地震数据处理相关软件有Promax、CGG、Omega、Focus等,地震解释软件有GeoFrame、LandMark、Epos等。因此,在课堂上除了讲授相关专业理论知识外,还应该重点介绍相关的软件。如有条件,最好能够让学生都能动手操作,使学生能够快速上手,利用相关软件解决实际生产问题。

三、课内实验教学项目设计

教学安排理论课时与实验课时的比例约为7∶1或者8∶1,实验室课时相对较少,主要安排地震数据采集和地震资料处理两个项目实验。地震数据采集实验,包括地震波的激发和接收。由于实验室模拟矿井巷道中煤层槽波传播难以实现,所以仍以地面数据采集方式为主,利用实验室拥有的重庆奔腾仪器厂产的BTW24道工程地震仪,采用锤击震源进行激发,产生地震波,接收地震波。实验采用分组的方式,每组学生各自设计观测系统,布置检波器,并操作主机进行数据采集。这可以锻炼学生野外地震勘探数据采集水平,培养学生地震仪操作、观测系统设计、检波器布设、线缆连接、组织施工协调等能力。

地震数据处理内容庞杂,从抽道集、去噪、静校正、动校正、水平叠加到偏移成像,每一个环节实现起来都相当复杂。现有的商业地震处理软件基本上都运行在Unix或者Linux平台,需要有工作站硬件支持,而建设工作站机房成本高、维护困难,学校尚不具备条件。因此,地震数据处理实验项目可以利用现有的普通计算机机房,让学生动手编程实现地震勘探涉及的基本原理。为适应不同学生的编程能力,可自由选择C、C++、Fortran及matlab等程序语言,学生可以根据自身对编程语言的掌握程度随意选择。对于编程能力较强的学生,一般建议他们选择C、C++等编译性语言进行编写。如果编程能力一般,那么可以利用matlab这种相对简单的解释化语言进行编程。

四、课程设计实践环节设置

地质类专业的学生具有较强的地质理论基础,走上生产岗位后,更适合从事地震资料解释工作。为此,可以专门安排两周的课程实践环节,进行地震资料解释课程实习。选择某矿区典型地震资料,最好是构造相对简单,断层、陷落柱、采空区等有明显特征。学生自己动手,通过对煤层和断层的解释,可以让他们充分理解地震勘探资料解释工作的相关流程及方法。如有条件,可在工作站上进行,或者让学生采用手工方式进行地震剖面的构造解释,并完成两张构造图。可采用分组制,四五个学生为一组,每个学生负责不同的环节,每组分为组长,解释员和制图员等。组长总体负责地震资料解释工作,解释员1到2名,负责解释地震层位和断层。制图员负责将数据落实到图纸,并完成构造成图。这样既可以锻炼学生的专业知识,也可以培养学生的团队协助能力。由于地震资料解释多解性强,因此指导教师在实践环节只讲地震解释的基本流程和方法,剩下的完全交给学生,以培养学生的自我学习能力和创造性。构造图完成后,让每个学生写实习报告,并要求每个学生写本次实习的心得体会,以及地震资料解释中出现的问题和处理方法。

五、结语

勘探地震学是一门理论与实践相结合的学科,应充分利用现有的教学资源,从理论、实验和实践三个环节加强对学生专业能力的培养,以提高学生对地震勘探的理解,让学生适应快速发展的煤炭行业,为将来学生毕业后进入生产岗位能够直接将学校所学知识应用到实际工作奠定良好的基础。

[ 注 释 ]

[1] 云美厚.“应用地球物理学”课程整合教学尝试[J].中国地质教育,2013(87):44-46.

[2] 杨双安.基于“卓越计划”的煤田地震勘探教学模式[J].大学教育,2015(8):146-147.

地震勘探的特点篇6

关键词:微动勘探技术,土木工程,观测点,地震仪

近年来,城市建设的进程日益加快,通常需要结合地表地下结构数据,比如大型建筑场所在勘探地质过程中需要了解土层构成,需要勘探场地上有没有软土层;在城市活动断层分析过程中,需要对断层断点处的地理方位进行识别等,要完成这些任务往往要在场地摆置非常多的钻井,同时抽取岩芯进行研究;而钻孔存在着资金成本高、时间长等弊端。而微动勘探方法就非常好地解决了这些问题,微动勘探方法利用提取所测场的土层变化曲线,通过这些曲线反演来计算出土层速度和土层结构。因为该方法主要是通过地下横波速度构成来分析场地构成的,所以在测试场地中有低速土层等,在识别这些土层的详细方位时非常精确。

1微动勘探技术的形成和发展

在土木工程领域,因为利用P—S波来测井这种方式存在着成本高、周期长等缺点,除此之外,利用反射法勘查地质构成这一方法还存在着其技术要求比较严格,对环境破坏性大等问题。在这种形势下,一种新型的勘探方式出现了———微动勘探技术,该方法通过指定的检波器,指定的观测台阵获得这种来自地球的微动信号,接下来通过数据提取来分析面波信号,然后利用反演获得地下横波组织结构。

2微动勘探原理

2.1微动勘探原理

地球表面每时每刻都存在着人类不易觉察的震动,我们称之为微动。微动信号并非人为,其源自于大自然和人类活动,比如天气变化或者潮涨潮汐等。而人类活动主要包括机车、生产活动等,其频率往往超出了1Hz。微动并没有既定的震源,震动波主要是取决于测试点的周围,从而勘探出跟地球相关的有用资讯。微动勘探方法通过指定的仪器,指定的观测台阵来获取来自地球的微动波,接下来通过计算方法来得出面波信号,利用反演方式得出横波速度,从而实现对地质构成的勘探。

2.2微动勘探技术方法

微动是通过体波(P波与S波)与面波(瑞利波与拉夫波)构成的复杂震动,同时面波的能量占整个信号能量的60%以上。即使微动信号的震动幅度和震动频率并不遵循一定的规律,可是通过指定的地理范围能计算出其平稳特征,利用时间与地理上的平稳随机环节来证明。微动勘探方法利用平稳随机环节作为数据参考,通过微动信号来提取频散曲线,然后利用频散曲线的反演方式,来计算出地下成分的横波速度,从而达到勘察目的。

3微动勘探技术在土木工程领域的使用详情

3.1阵列设计与观测

微动勘探是基于阵列设计和阵列形状的。目前,地质结构信息比较丰富,在一定程度上可以事先估算出地下结构,按照感度分析法完成定量策划。假如地质信息不足,不能事先估算出地质构成,可以通过跟勘探长短相同的阵列长度。在通常情况下会通过二重正三角形,即同一个圆心位置放置地震仪,同时在两个同心圆里面分别摆放三个地震仪。微动勘探利用地震仪的宽频带特点,因此需要地震仪有着非常高的统一性,一般情况下,地震仪的统一性需要高出0.9。微动勘探过程中每个机器都是独自运行的。为了使每个观测点同步进行,日本国家普遍会通过卫星标准信号来对仪器的精确度进行验证和调校。

3.2F—K法

现如今,F—K法与相关法在微动勘探技术中比较常用。F—K法在20世纪60年代的时候形成。在20世纪60年代,美国为了实现对其他国家核武器的监督和控制,其地震观测网的直径超出了400km。为了获得核武器基地所发出的信号,美国研发了F—K,从此该方法就形成了,并且在土木工程领域得到了广泛的应用。

3.3自相关法

自相关法利用定义而得出。假如在空间领域微动信号符合随机过程,除此之外微动中所有占优波形成一个面波震动。假如满足以上条件,那么圆形观测矩阵中的全部点和与中心点信号相关的函数平均值就可以计算出来。不论在上述哪种方法中,务必得出任意两点所观测到的定义交叉谱与功率谱。采取的测试办法不同,利用频散曲线得出的结果值也会存在一定差距,可是总体上跟最终测试结果出入不大。

3.4基于反演方式得出的地下横波速度

由于地质结构较为复杂,一般情况下会通过地下模型来分析和研究地下构成,利用该模型可以算出频散曲线值,然后通过反演方法计算出地下横波速度。不论工程大小,其频散曲线反演方法是一样的,往往利用最小二乘法。可是这种方式是依托初始模型才能得出稳定实用的解,这在土木工程中完成地下构成的勘测并不容易。目前,相关领域的专家和学者基于遗传算法发明了一种新的计算方法,这种方法对最初模型的精确度要求并不高,推演环节也比较可靠,作为目前计算地下横波速度值的主要方法。

4微动勘探方法在土木工程领域中的特征

1)土木工程领域中,所需要的勘探设备比较简单,往往需要勘探仪器实用性强。微动勘探方法往往需要超出3个以上的地震仪器就可以进行现场勘测。假如利用7个地震仪器,可以摆放成同心正三角形,那么仅仅需要3d左右的时间就可以实现对地下横波速度的测试。2)对周围施工环境没有任何要求,特别是车流量比较大的繁华街区,微动勘探技术跟之前的反射法有着本质的区分。微动勘探法利用信号源就可以实现勘测。如果在繁华的市中心进行勘测,不会影响勘测结果,而且来自机动车辆的噪声还为勘测提供了大量的勘测信号。3)微动勘测方法并不是主动勘测,因此对四周的生态环境不会造成任何破坏作用,特别是对国家生态保护区进行勘探,该方法非常适用。4)微动勘探方法得出的勘测结果准确性和分辨率都比较高,基于微动勘探方法和钻孔方法,可以制作出地下二维和三维组织模型。5)基于微动勘探方法得出的地下结构和P—S方法所获得值非常接近,因此该方法的精确度非常高。

5结语

微动勘探方法在土木工程领域中,所需要的测量设施并不复杂,而且资金成本也不高,有着测试周期短,对施工环境没有任何要求,对生态环境不会造成破坏等特征。因此微动勘探技术在土木工程领域凭借着其他技术无法媲美的特性,必将在土木工程领域成为主流勘探方法。

参考文献:

[1]王磊.建筑工程的发展趋势分析[J].江西建材,2015(2):111-112.

地震勘探的特点篇7

【关键词】黄土塬地区;宽线地震采集;采集参数;观测方法

鄂尔多斯盆地南部黄土塬地区地形起伏较大,经过长期冲蚀,形成塬、沟、梁、坡及峁等特有的复杂地貌。巨厚的黄土、淤泥及砾石等沉积激发条件差异明显,表层结构横向连续性差,导致激发能量不均匀,波形、波场变化强烈,地震激发和接收条件较差,且干燥疏松的黄土层侵蚀洞、缝发育,孔隙度大,对地震波吸收衰减严重,同时原生和次生相干干扰极其严重,地震资料品质差,信噪比低。所以,黄土塬地区一直被视为地震勘探的“”。 该区的中生界石油勘探开发需要解决小幅度构造和河道砂体、三角洲砂体的分布等问题,分析储层物性,进行储层横向预测,优选井位进行油藏综合评价都对地震资料提出更高的要求。针对黄土塬地区表层条件的复杂性,通过改进地震激发与接收条件而发展起来的黄土塬宽线采集技术,可以大大改善和提高地震资料的信噪比和分辨率。

1 宽线地震采集方法原理

1.1 原理

宽线地震勘探技术与常规的单炮单线二维地震勘探技术相比,在平行测线方向上布置多条接收线,,同时激发线可以是多条或单条,在保证宏面元内所有反射信息能同相叠加的前提下,所有测线采集到的信息经过特殊手段处理后最终叠加到一起,得到一条宽线叠加剖面(图1)。通过宏面元反射信息的叠加,可以大大提高地震的覆盖次数,有效压制侧面干扰,大大提高地震资料的信噪比和分辨率,改善地震资料品质。

a:三线两炮

b:两线一炮

图1 宽线地震采集技术示意图

1.2 参数选择

(1)优化激发条件:黄土塬地区巨厚、疏松干燥的黄土对地震波的吸收衰减作用强烈,导致激发、接收条件差。前人的理论计算表明,10m厚度的疏松干燥黄土中地震波的吸收衰减量,相当于在2000m深地层中地震波的吸收衰减量。因此,选择良好的激发对于地震资料采集至关重要。单井中小药量能减小爆炸半径,提高激发频率;若要激发高能量、高频率的地震波,须采用多井组合激发。

鉴于黄土塬区复杂的地形地貌条件,通过在全区踏勘,采用组合井激发的方式,确保良好的激发效果。通过实验,确定组合井选择胶泥层顶界面以下激发,如果没有胶泥层则在15m以下的潮湿黄土中激发,组合井数15口,单井药量2kg,沿测线方向线性组合,组内距3m的组合方式,可获得良好的地震能量,有效提高资料的信噪比。

(2)采集方式:利用黄土塬地区地下地层平缓、断层少的特点,通过设计最佳的线距来获得最大的炮检联合组合方式,在横向面元尺度要求允许的范围内布设多条接收线,不同炮点和炮点线的布设有所不同,这样覆盖次数提高为垂直测线方向具有覆盖次数的数倍。炮检点相对单线纵横向离散,面元道集内增加传播路径的差异,减小了干扰的相干性,从而大大提高了对干扰的压制能力。此外,在仪器录制参数选择上应采用宽频带接收,最大限度地保留地震反射信号中的高频成分。同时采用加长尾锥、挖坑接收等方法来应对巨厚黄土对地震波强烈的吸收和衰减作用,提高地震波的接收强度和能量。

(3)观测方法:根据不同的地质任务和根据不同的地质任务和不同的地表条件,可以选择边线放炮观测系统,双边线放炮观测系统,中线放炮观测系统,多线放炮观测系统,面元细分观测系统,非纵观测系统等不同的观测方式。通过采用二维直线采集三维观测的方法,相邻面元叠加方法,在黄土塬区复杂的地质条件下,采用独特的静校正、残余校正和去噪后,通过横向面元反射波同相叠加等方法大大增加了覆盖次数,有效地压制了黄土区干扰,提高了剖面信噪比和分辨率。

2 勘探效果分析

2.1 有效地提高了地震剖面信噪比和分辨率

通过多种技术方法的综合应用,较好地克服了激发、接收条件的不利影响。同时在资料处理过程,进行大量的噪音压制、原生及次生干扰压制和静校正等,通过相邻面源地震信息叠加,有效地提高了资料的信噪比和分辨率,地震剖面品质大幅度提高,为该区下一步勘探和开发提供了坚实的基础资料。

2.2 扩大了地震勘探领域

地震勘探实践表明,宽线地震勘探方法针对以往二维地震勘探来说,对于干扰压制和信噪比提高等方面具有明显的效果,针对构造不甚发育的地表复杂区和低信噪比地区可以推广应用,有效地解决了地震勘探“”的问题,扩大地震勘探方向和领域。

2.3 有效地获得了更丰富的地质成果

黄土塬宽线采集方法与黄土山地三维采集、黄土直测线、高分辨率沟中弯线共同组成了黄土塬地区地震勘探的技术系列。近几年通过在黄土塬区采集地震测线处理解释,获得了丰富的地震地质信息。利用宽线地震采集和处理的剖面分辨率和信噪比较高,反射波振幅能量相对较强,波组特征更为稳定,连续性相对增强,地质现象更为清晰,可以基本满足研究区地质研究工作的需求,为勘探开发工作的持续推进提供良好的资料条件。

3 结论与建议

地震勘探实践表明,黄土塬地区通过优化激发和接收条件,采用组合井激发和加长尾锥、挖坑接收等方法,可以有效地应对巨厚黄土对地震波的吸收和衰减作用,提高地震波的接收强度和能量。采用二维直线采集三维观测的方法,横向面元允许范围内增加接收线,可以大大增加覆盖次数,有效的压制干扰,提高剖面的信噪比和分辨率。利用宽线技术采集、处理的成果剖面,反射波振幅能量相对较强,波组特征更为稳定,连续性更好,地质特征更为清晰,有效地解决了黄土塬区地震勘探的难题,满足相关地质研究工作的需求,为勘探开发工作的持续推进提供良好的资料条件。地震宽线技术可有效地压制干扰,提高剖面信噪比,可在地表复杂区、低信噪比地区推广应用,扩大了地震勘探领域。

参考文献:

[1]阎世信,等.黄土塬地震勘探技术[M].北京:石油工业出版社,2001.

[2]张德忠.复杂地表地区地震勘探实例[M].北京:石油工业出版社,1994.

地震勘探的特点篇8

关键词:多分量技术 勘探原理 实际应用前景展望

一、多分量地震勘探技术概述

40年前,地球物理学家开始对多波地震勘探进行研究,特别是在学者证实了裂隙诱导各向异性的特征和横波分裂的存在后,地震波的各向异性就成为了学术界研究的方向和热点,同国外相比我国的地震各向异性的研究起步较晚,在进入到改革开放后才逐步发展起来。具体到多分量地震勘探技术来讲,近10多年来,主要集中在以下领域的研究拓展:

1、多分量地震勘探原理

多分量地震波的勘探原理是利用地震产生的横纵波对勘测的区域进行回波信息采集。大量的多波技术研究仍然是针对转换波采集,激发采用常规纵波震源,接收采用多分量数字检波器,以获得纵(P)波和转换(P-S)波。地震波在岩层中以球面形式传播,当遇到岩层物性界面的时候就会一部分反射,一部分发生折射进入前方的介质。反射和折射回来的信号被高灵敏度的多分量数字检波器采集并传送至中央处理器,此时就可以根据地震波在不同介质中的传播特性差异来进行分析,并利用综合解释系统来反演地下地质结构。

针对煤田勘探来讲,由横波速度比纵波速度慢可看出,对于厚度较小的同一岩层,横波从某一岩层顶传播到其岩层底所需的时间比纵波长。由于煤层厚度一般不大,因此,根据横波来分辨煤层的能力要比纵波强。理论与试验表明,综合应用纵波和横波资料可获得更准确的反映构造和岩性的参数,

2、多分量的数据采集

多波多分量地震研究首先要解决的是信息采集技术,其采集的重点是对转换波测量。目前,在三分量野外数据采集设备的研究和发展方面,已经取得了突破,多道遥测数字地震仪和多分量数字检波器相继问世。为了解决陆上静态校正问题,研究出多波微测井等技术。3D/3C地震观测普遍采用的是宽带方位块状检测系统,如今已经出现了针对转换波勘探的商业用软件。此外,针对海洋地震的三维四分量海底电缆也已经得到了广泛的应用。

3、多分量的数据处理

采集完成后就需要对多分量数据进行处理,通常资料处理包括了:整个波场的处理,如对波场进行分离;P波的时间、深度域的分析处理;P-SV波的时间、深度域的分析处理。转换波处理与P波处理十分相似,但也存在着不同,因为转换波的射线路径是不对称分布的,所以不能用P波处理技术完全分析。另外,横波的静校正量要大于纵波,这就会对VP/VS和近地表方位的各向异性分析产生影响;因为波场存在耦合,所以不能对横纵波进行绝对的分离,从而影响处理的效果。

二、多分量地震勘测技术的应用实验

以某地区的多分量二维地震勘查区为例。

1、数据的采集

为了勘测该区域的地质构造及煤层赋存情况,对该区域进行了常规二维地震勘探后又在预选区域进行了多分量地震数据采集技术应用实验。区域内的地表主要为田地、林地;激发岩层性质为黄沙、黄胶泥、泥灰砂等。按照多分量地震勘探的方法和技术要求进行多条二维地震测线数据采集。

在实验开始前首先进行了施工方案的前期论证,根据实验区域的纵波资料和测井资料设计地质模型,进行多分量地震数据的正演工作,然后根据纵波、转换波产生机理差异,进行纵波和横波联合观测系统的设计。在参考目的层深度的前提下,利用理论计算形成纵横波的反射系数与排列长度的曲线关系,从而设计出相应的最大排列长度。根据不同层面上确定的最佳数据接收窗口,可以知道纵波炮检范围在0-3000m,转换波炮检的距离为400-4500m,在此基础上设计了若干观测系统和施工参数,并进行了现场试验,以此甄选出最佳的观测系统。

如图1所示,其中一条D01测线接收的三分量地震记录。从能量分析上看,Z分量所形成的能量最强,X分量次之,Y分量能量为最小。从X分量上看,标示出的T06、T1、T2、T4层转换波最为明显,资料的质量也较高。

图1:D01测线三分量地震原始记录

2、多分量地震勘探生成的资料的处理和解释思路

对多分量地震资料的处理和解释的基本流程:1)制作合成的地震波资料记录,因为纵波在垂直方向射入不能产生转换波,所以主要根据横波测井资料制作不同的炮检距的记录,然后进行动态校对处理,最后利用叠加得到转换波的合成资料。处理情况如图2。

图2:转换波地震记录

2)波形识别与层位的对比,在合成地震记录的标定基础上,确定纵波和转换波所控制的层位。和常规的纵波地震资料相比,多分量地震资料首先应当对波形进行识别然后再对多波层位进行标定。主要采用的技术措施就是利用多波的极化特征、速度传播规律、频谱特性、振幅差异、炮检距离等相关特性对采集到的波形进行识别和分析。层位对比是纵横波资料联合解释及对岩层性质参数提取的关键问题。

3)对时间进行压缩,根据控制层位置将转换波压缩到与纵波相一致的时间尺度,通过压缩时间的对比,可以获得相应的纵波和横波之间明显的对应关系。

4)对所属的剖面属性进行计算,即对纵波、横波振幅比剖面或者泊松比等属性剖面进行计算。从图3中可以看出D01测线部分多分量时深剖面图。

图3:经时间压缩后的D01测线多分量剖面

从剖面上看,转换波剖面与纵波剖面相比,所反映的地下地质结构变化不大,但转换波剖面对目的层中的岩溶管道裂隙及一些微小构造异常等反应的较清楚。根据纵波速度与岩层构造中的孔隙度、孔隙中的流体性质有关,纵波在含气、流体层中传播,速度有所降低,导致成像不好,能量减弱,而横波在通过含气、流体层时,速度基本不受影响,因而转换波能量基本保持不变。通过纵横波剖面相互对比,并参考已知地层资料揭示的内容,证实在该段目的层中存在着裂隙发育和微小断层。

三、与单一纵波地震勘探相比多分量地震勘探应用中的优势和难点

多分量地震数据的采集和分析都是为了更好的对数据进行利用,以此达到准确勘测的目的,在解译和利用方面除了常规的层位解译外,主要的资料应用优势还包括以下几点:1)转换波对成像的质量起到了优化作用,转换波在穿过储气层、盐丘等介质时,成像有特有的优势效果。横波基本不会受到充气沉积岩的散射和衰减的干扰;2)用纵横波的振幅差异分析岩层的类型和含油气情况;3)流体描述,因为横波不受孔隙中流体性质的影响,可以识别孔隙中是否含有流体;4)采用横波分裂进行裂缝和各向异性的分析,当横波通过各向异性介质的时候,会出现分裂,形成快横波和慢横波,其偏振性、时差以及振幅差异等有益于对裂隙进行定性和定量的分析和评估; 5)横波联合对地震数据资料进行反演,以此消除单一波形对地震反演的欠缺,即利用横波信息在一定的程度上缓解只用纵波推演的多解性。

除了上述的应用优势以外,目前来说,多波地震勘探也存在着不少难题:(1)相位对比比较困难;(2)层位追踪对比存在误差;(3)“同分辨率滤波”法很难将纵、横波剖面中的相位完全对应。此外,多波地震勘探本身还存在着许多技术难点,如横波剖面的信噪比较低,处理时存在横波的静校正、共转换点的确定、VVO以及纵、横波分离等尚待研究解决的问题。

四、结论和应用前景展望

多波地震勘探解决了很多常规单一纵波勘探难于解决的地质问题,在小断层识别、储气下地层解释、纵横波剖面联合解释油气层方面和某些薄煤层地区有着自己独特的优势,而且在实际应用中,对比证明其对泥岩、砾岩、砂岩等都有较好的辨识能力,完全可以为勘探结论提供必要的参考。

特别是近10年来,随着多分量地震勘探技术在理论和仪器上的发展,多波勘探方法正在成为一种新兴的、具有广阔应用前景的勘探技术。在煤田勘探中引入多波地震勘探,将会实现从找构造为主,发展为地层地震和岩性地震,达到构造精细勘探和岩性预测,解决煤矿综合机械化开采所要求查明的地质问题,开辟地震勘探在煤层气、勘探、煤炭地下气化和矿井岩溶水防治等应用的新领域。

参考文献:

[1]胡朝勇,朱明,修中标.多波多分量地震勘探的现状与发展趋势[J].科技信息, 2009,(26) .

[2]季玉新,魏修成,陈天胜.关于多波多分量地震资料极性问题的讨论[J].石油物探, 2010,(01) .

[3]刘军迎,雍学善,高建虎,杨午阳.多波多分量地震波场数值模拟及分析[J].石油物探, 2007,(05) .

[4]梁庆华,宋劲. 矿井多波多分量地震勘探超前探测原理与实验研究[J].中南大学学报(自然科学版),2009,(05) .

上一篇:医养结合的好处范文 下一篇:经济普查存在的问题及建议范文