分子生物学技术范文

时间:2023-11-01 05:00:48

分子生物学技术

分子生物学技术篇1

关键词:教学方法;分子生物学;实验教学

Discussion about educational reform on teaching of molecular biology for undergraduate major in biotechnology

Shen Xin

Beijing Forestry University, Beijing, 100083, China

Abstract: In this paper, teaching approach was probed in regards of content, method and experiment on the course of molecular biology for undergraduate major in biotechnology. In the reform of course content, we had reduced the content overlaid with other courses for instance the knowledge on genetic information transmission and meanwhile increased the content on updated knowledge. In reform of teaching method, we introduced guiding type educational approach. In reform of course experiment, open type experiment was established. Through the presented reform, students become more active in studying the correlated knowledge and become more capable on experiment. The teaching effect get improved.

Key words: teaching method; molecular biology; experiment teaching

分子生物学是生物类本科教育中一门主要的基础课,它以探究生命过程中生物大分子的结构与功能为主要内容,以解析基因组和蛋白组中生物大分子在各个生命过程中的作用、基因表达调控机制以及信号传递网络为主要研究目标[1-3]。生物大分子结构与功能的研究渗透于生理学、发育生物学等各学科研究中,相关的知识构成了基因组、转录组和蛋白组研究的重要基础。掌握分子生物学的原理和实验技术对生物类学生认识生命的本质,培养生命科学研究能力至关重要,也有助于后续专业课程的学习,为将来进一步深造奠定坚实的基础。从学科特点而言,分子生物学是一门新兴学科,理论体系处在一个不断发展和完善的阶段,研究方法也在不断创新。分子生物学课程知识点多而分散,实验涉及的内容较为复杂,要求我们在教学中一方面要适时地更新教学内容,满足学生掌握分子生物学发展动向的需要,另一方面要充分调动学生的学习积极性,培养学生的创新意识和从事科学研究的能力。我们在多年分子生物学课程的教学改革和课程建设中,针对生物技术专业的分子生物学教学分别从教学内容、教学方法和实验教学等方面进行了探索,具体情况如下。

1 加强新知识点教学内容,深化对生命本质的认识

知识更新快是分子生物学一个鲜明的特点,如何将经典的基础知识与新知识点结合起来是分子生物学教学中需要探讨和解决的问题。在前期分子生物学教学中,我们以经典的遗传信息传递过程为主线,侧重对基础知识的介绍,新知识点虽有涉及,但远不能反映学科的发展。近年来,随着生命科学研究的不断深化,真核生物基因表达调控机制、信号传递网络、生物大分子在生命过程中的作用等方面科研成果不断涌现,转录调解因子的组合调控机制、组蛋白修饰与DNA甲基化、异染色质化、转录后基因沉默、细胞对环境信号的感知及信号转导机制等已经成为发育生物学、生理学及其他学科研究的热点[4-9]。了解和掌握这些知识对学生认识生命过程的本质具有重要意义。在已往的教学中,我们用较多的课时讲解以中心法为基础的遗传信息流的基本原理,但在教学实践中我们发现这部分内容与其他课程存在较大的重叠,一个主要的困惑是学生在学习过程中重复学习相同的知识点,这在很大程度上影响了学习的积极性。另一方面,在经典教材中真核生物组合调控、表观遗传学、基因转录后调控等内容篇幅明显偏低,而这些内容正是目前分子生物学发展的热点,对学生认识生命过程的本质尤为重要。如何更合理地安排学时,兼顾基础知识与科学发展新动向,是我们教学改革的重要环节。通过摸索,我们在教学实践中适当减少遗传信息传递的课时,压缩与其他学科重复的内容,增加了对真核生物组合调控机制、DNA甲基化修饰、组蛋白N端修饰、真核生物信号转导等内容。通过对教学效果的评估,我们观察到,教学内容的调整增强了学生学习的积极性,提高了他们对课程重要性的认识,同时也使学生对生命过程的本质有了更深刻的认识,为后续生理学和发育生物学的学习奠定了基础。

2 调整教学方法,培养创新意识

兴趣是学习的动力,充分调动学生的学习积极性是教好这门课的关键。多年的教学经验告诉我们,灌输式教育不利于学生学习兴趣和创新意识的培养,容易导致学生形成死记硬背的不良学习习惯。在灌输式教育模式下,学生处于被动学习状况,学习的积极性不高,思考问题的意识和分析问题的能力不强。为改变学生被动学习的现状,克服灌输式教育带来的不利影响,我们需要对教学方法进行改革,为此,我们在课程建设过程中尝试了导向性教学。在教学过程中,我们指定适量的文献作为课外阅读材料,以知识获得过程为主线,引导学生分析讨论前人发现问题与解决问题的过程,并帮助他们分析、总结相关实验方案。通过教学方法的改革,学生不仅学到了相关的基础知识,还学到了科学家发现问题、解决问题的思路和方法以及科学家为科学献身的精神。另外,搜集获取科学文献的能力是从事科学研究能力的重要方面。专业外语阅读能力对学生获取知识非常重要,我们在导向性教学中采取了双语教学的方式,结合导向性教学给学生布置英语阅读任务,让学生自己搜集资料,使学生既培养了创新意识也提升了搜集文献的能力。通过教学方法的改进,学生增强了对分子生物学的学习兴趣,也提高了他们的综合分析能力,更重要的是,通过导向性教学,学生逐步养成了独立思考的习惯并提高了创新意识。

3 强化实验基础,注重能力培养

分子生物学研究策略被广泛应用于当今的生物学研究中,分子生物学方法在科学研究创新中扮演着越来越重要的作用,分子生物学实验技能的培养对发展学生潜能,提高毕业生质量至关重要,在加强学生素质教育与培养创新能力方面有不可替代的作用。相对于理论教学,实验教学具有实践性、综合性和创新性的特点,对学生学习兴趣和科研能力的培养有很大帮助。为培养具备较强科研能力的生物科学专业和生物技术专业毕业生,我们在分子生物学教学实践中设置了开放性实验,内容包括核酸的提取与纯化、电泳分离与鉴定、分子克隆、PCR扩增、原核表达及蛋白质亲和层析等实验。这些实验在当今生物学研究中被广泛应用,掌握这些研究方法对学生科学研究能力的培养大有益处,我们期待学生通过实验环节掌握分子生物学实验的基本原理和基本技能。为配合实验课开展,在教学中我们用较大篇幅介绍基本实验的原理和新技术,包括生物大分子的制备技术、PCR技术、杂交技术、RNAi技术等。在教学实践中我们发现学生对分子生物学实验表现出浓厚的兴趣,参与实验的积极性很高。通过实验,学生对科学研究过程有了深刻的感性认识,这对学生了解知识获得的途径和方法有很大帮助。在实验教学过程中,我们发现,前期的实验课存在明显的不足,主要表现为实验原理的相关基础知识不足和实验准备环节的欠缺。在前期教学实验中,实验准备由教师完成,学生用教师配好的缓冲液、培养液进行操作,虽然能够获得不错的实验结果,但对学生能力的培养不利,学生常常不了解缓冲液中各成分的作用,对培养液配制中需要注意的问题也缺乏了解,我们认为这些问题涉及学生的基本素质,关系到能力的培养,为此在教学中我们采取了一些针对性的措施。一方面在理论课中增加了与实验技术相关的基础知识的介绍,如对核酸提取缓冲液、蛋白提取中的细胞裂解液等作了详尽介绍[10-12],通过讲解使学生对变性剂、抗氧化剂、缓冲剂、离子型与非离子型表面活性剂等成分的作用有了充分的认识与了解,对蛋白质和核酸纯化原理有了全面的掌握。另一方面,在教学环节中,我们将实验改为开放性实验,要求学生自己准备实验,教师做必要的指导,通过这些措施使学生将分子生物学论课上学到的知识与实际操作过程相互印证。开放性实验使学生分子生物学实验技能得到了显著提高,为学生独立操作实验和培养良好的科研能力打下坚实基础。

4 结束语

经过几年的教学实践,我们逐渐摸索出分子生物学教学的一些方法和技巧,并通过教学内容和教学方法的改革激发了学生的学习热情和主动性,不仅使他们掌握了分子生物学的基础理论,更重要的是培养了他们发现问题的意识和解决问题的能力,养成了独立思考的习惯,教学改革显示出良好的效果。今后,我们还将继续探索,让分子生物学理论和实验教学在生物科学与生物技术本科生培养过程中发挥更大的作用。

参考文献

[1] 向义和.分子生物学的起源与进展―物理学、化学与生物学的交互作用[M].北京:清华大学出版社,2012.

[2] 杨岐生.分子生物学[M].杭州:浙江大学出版社,2004.

[3] 陈启民,耿运琪.分子生物学[M].北京:高等教育出版社, 2010.

[4] Kontos CK, Scorilas A, Papavassiliou AG.. The role of transcription factors in laboratory medicine[J].Clin Chem Lab Med,2013(6):1-9.

[5] Leitch HG, Tang WW, Surani MA. Primordial germ-cell development and epigenetic reprogramming in mammals[J].Curr Top Dev Biol,2013,104:149-187.

[6] Br?utigam K, et al. Epigenetic regulation of adaptive responses of forest tree species to the environment[J].Ecol Evol,2013,3(2):399-415.

[7] Gudsnuk K, Champagne FA. Epigenetic influence of stress and the social environment[J].ILAR J,2012,53(3/4):279-288.

[8] Chinnusamy V, Zhu JK. RNA-directed DNA methylation and demethylation in plants[J].Sci China C Life Sci,2009,52(4):331-343.

[9] Kornienko AE, Guenzl PM, Barlow DP, Pauler FM. Gene regulation by the act of long non-coding RNA transcription[J].BMC Biol,2013,30(11):59.

[10] 李钧敏.分子生物学实验[M].杭州:浙江大学出版社,2010.

[11] 王廷华.PCR理论与技术[M].北京:科学出版社,2009.

分子生物学技术篇2

【关键词】HIV病毒;分子生物学检测;进展

艾滋病病毒(HIV)主要侵袭人体免疫系统,导致人体免疫缺陷发生多种感染疾病或肿瘤。艾滋病的不可治愈及其快速传播使患者不断增多,2012年全球感染总人数已达3900万人,中国近半艾滋病病毒感染者尚未发现,为了防止艾滋病的大规模流行,艾滋病的检测工作越发重要。目前筛查的免疫学方法,由于灵敏度低,漏检窗口期和新近感染病毒的感染者,而以核酸检测为代表的分子生物学技术,灵敏度和特异性均显著提高,明显缩短检出病原体的窗口期,是HIV诊断方法和诊断试剂持续发展的主要方向,对遏制艾滋病的传播蔓延有重要意义。

1 HIV生物学特性

HIV呈圆形或椭圆形,直径900~140nm,外层为类脂包膜,成分是外膜糖蛋白(gp120)和跨膜糖蛋白(gp41),核心由RNA逆转录酶、DNA多聚酶和结构蛋白等组成,基因组除了具有逆转录病毒的基本结构——基因长末端重复序列(LTR)、核心蛋白(gag)、聚合蛋白(po1)、包膜蛋白(env)gF,还有非常复杂的调控机制,包括tat、rev、nef、vif、vpr、vpu等调节基因,其作用是在转录、翻译、装配等各个环节对病毒的生长和繁殖起调节作用。HIV基因组中存在3个gag-pol- env.Gag基因编码的核心蛋白均位于病毒的核酸蛋白体上,P17位于白与壳层之间的基质上,包被于包膜蛋白的内部。核衣壳包被于内部核酸的,由主要的P24和P40及P55组成,其结构比较稳定,是HIV-1型的特异性蛋白。Env编码包膜蛋白即gp120和gp41,起协助HIV进入宿主细胞的作用。聚合酶蛋白包括P66、P51和P31,它位于病毒的核区内,并与病毒核酸紧密相关[1]。

根据env基因V3段碱基排列的不同,HIV-1分为11个亚型即A、B、C、D、E、F、G、H、I、J、M和0亚型,HIV-2分为6个亚型[2],不同国家和地区有相对优势亚型,HIV亚型在流行病学、诊断、临床、试剂选择、药物筛选和疫苗研制上有着重要意义。

2 HIV-1的感染机制及感染标志

病毒侵入人体后,通过病毒表面gpl20在化学因子CCR5或CXCR4帮助下与细胞表面受体CD4分子结合,然后在gp41的协助下HIV的膜与CD4+细胞的细胞膜相融合,病毒核心蛋白及RNA进入胞浆。两条RNA+在逆转录酶作用下成DNA-,在DNA多聚酶的作用下复制DNA,此DNA部分存留在胞浆内产生系列变化,然后在细胞膜上装配成新病毒,再感染其它细胞。HIV感染后,首先能够监测到病毒RNA,其次是p24抗原,最后是抗体[3]。

3 分子生物学检测技术

随着分子生物学检测技术快速发展,HIV RNA或DNA检测得到应用,核酸检测已是艾滋病实验室诊断的主要发展方向[4],在HIV感染的监测、诊断、研究、疗效观察及预后判断等方面均发挥着越来越大的作用,主要有定性和定量两类。

3.2 定性检测

3.2.1 原位杂交(insite hydzmion)

应用特定的标记探针以分子杂交法直接检测标本中的HIV病毒靶核酸,起初标记探针是放射性标记,后来逐渐发展为酶标记或化学发光标记等等。原位杂交的阳性率比聚合酶链反应(PCR)略低,随着核酸扩增技术的出现并广泛使用,基因探针技术也就逐渐失去应用意义。

3.2.2 聚合酶链反应技术(PCR)

PCR是一种以核酸生物学为基础的分子生物学诊断技术。基本原理类似于DNA的天然复制过程,其特异性依赖于与靶序列两端互补的寡核苷酸引物。PCR由变性—退火—延伸三个基本反应步骤构成。患者感染HIV 1~14d后血浆中能检测出HIV RNA,可用于急性感染期患者、抗体检测不确定等情况的辅助诊断或用于血液筛查,尤其在HIV阳性母亲产下的婴儿是否感染HIV的诊断中有着非常重要的意义,前病毒DNA PCR检测法对出生48h内的婴儿检测敏感性为38%,出生14d的婴儿检测敏感性达93%[5]。

3.2.3 逆转录多聚酶链反应技术(RT-PCR)

RT-PCR技术通过对RNA逆转录酶的应用实现,即将病毒RNA逆转录DNA,接着进行PCR,指数扩增DN段,将放大产物变性并与多孔板结合,利用酶联系统进行检测。RT-PCR技术可在2h内扩增产物达到凝胶电泳或实时荧光法可检测的水平,准确定量的RT-PCR方法已被许多商业实验室证实,目前多种改良的快速RT-PCR检测方法应用于HIV的快速临床诊断[6,7]。

PCR灵敏度高、特异性强、操作简便,但易污染出现假阳性结果;此外,HIV基因的多样性,尚无一套引物能够覆盖所有的HIV序列,限制了检测敏感性,因此,阳性结果还须核酸序列测定加以确认。HIV核酸定性检测阳性结果可作为HIV 抗体窗口期的早期诊断的辅助指标,但不能单独用于HIV感染的确诊,成为限制PCR对于HIV感染诊断的临床应用。

3.3 定量检测

HIV核酸定量检测即病毒载量测定,感染HIV后病情发展速度直接与血浆中病毒载量呈正比。在其他血清学和病毒学标志出现前检出病毒核酸,使窗口期缩短6~11.5d,且慢性潜伏期也能检出,便于早期辅助诊断;HIV病毒载量常用于用于评估疾病病程、监测抗病毒治疗成效、选择抗病毒治疗方案;还可用于鉴定出生后18个月内的婴儿血液中的HIV-IgG抗体是否来自于母体,婴儿是否感染HIV(母婴诊断)。当前,常用的定量检测方法有较高的敏感性、特异性和可重复性。

3.3.1 分支DNA信号扩大系统(bDNA)

bDNA是指人工合成带有侧链的DN段标记被激发的标记物,利用发光强度与样品中HIV RNA含量成比例,可通过发光强度来定量检测血浆中HIV-1型RNA的一种方法。bDNA作为一种定量核酸检测方法具有对检测靶序列变异的更强识别能力,目前发展到灵敏度更好的、具有靶序列放大系统的第三代bDNA有数十个覆盖整个基因组的探针,不仅可用于检测HIV感染,可以方便地检测HIV的部分变异株,且可用于疗效观察,文献报道其为一种高灵敏度及特异性的方法[8,9]。与PCR相比bDNA不存在扩增物的交叉污染,但灵敏度不如PCR,提高bDNA的灵敏度仍是难点[10]。

3.3.2 核酸序列依赖的扩增系统(NASBA)

NASBA是以RT-PCR为基础,由一对引物介导的、连续均一的、体外特异性核苷酸序列等温扩增RNA的新技术,原理是提取病毒RNA,加入AMV逆转录酶、核酸酶H(Rnase H)、T7RNA聚合酶和引物进行扩增。NASBA无需热循环装置,只在一个温度下进行(42℃),即可扩增大量拷贝的RN段。对不同条件的实验室可以一次扩增足量的RNA用于多次研究和直接使用肝素抗凝的血浆样品,适合冻存血浆的回顾性分析。其高效扩增的特性,能与多孔板酶介导的显像技术及实时荧光检测结合。因扩增产物的不稳定性特征,对传染病病原的定性、定量检测,减少了分子诊断实验室扩增产物的交叉污染。但操作较繁琐,不便于大批量处理,且扩增时退火温度较低,容易引起污染,当前,NASBA已应用于HIV-1的分子诊断[10]。

3.3.3 转录介导的扩增系统(TMA)

TMA技术原理与NASBA大致相同,差别是TMA利用MMLV逆转录酶及T7 RNA聚合酶两种酶,MMLV逆转录酶既有逆转录酶的活性又具有RNA酶H活性,反应温度为41.5℃,1h内RNA模板扩增约109倍。相比p24抗原检测,TMA技术可缩短窗口期6 d,比HIV抗体检测缩短14 d [11]。

3.3.4 连接酶酶促链式反应 (LCR)

LCR法是基于靶分子依赖的寡核苷酸探针相互连接的一种探针扩增技术,原理是由两段数l0个核苷酸组成的单链DNA探针与目标序列杂交,将被检测物中的特异性片段进行扩增,检测扩增产物。LCR既可扩增,又可检测DNA突变,对已知突变类型的基因诊断是一个切实有效可行的方法,是随PCR后一种较有发展前景的体外扩增新技术。

3.3.5 实时荧光定量PCR技术

实时荧光定量PCR技术的应用使HIV核酸检测技术又进入到一个新境界。原理是在PCR反应体系中加入荧光基团,利用荧光信号实时监测整个PCR进程,最后通过标准曲线对未知模板进行定量分析。一般使用TaqMan探针或Sybr Green荧光染料。但Sybr Green染料不能区别目的产物和非目的产物,使结果有偏差,目前广泛使用的是TaqMan探针技术。荧光实时PCR则可以进行实时检测,改变了传统的电泳终点检测,得到相应的S型扩增曲线,其不但可以进行定性检测,更重要的是可以进行定量检测。与常规相比,具有特异性强、自动化程度高、有效解决污染问题等特点,能够检测血浆中的病毒载量及血液中单个核细胞的前病毒载量。美国PE公司1996年发明TaqMan技术[12],已广泛应用于基因检测, 国内2002年4月深圳匹基公司获批准第一个生产HIV荧光PCR检测试剂盒,并应用于临床诊断,国产实时荧光RT-PCR试剂检测HIV-1血浆病毒载量与进口试剂相比具有较好的相关性[13],并具有价格低廉的优势,已在临床逐步推广应用。

3.3.6 PCR-ELISA

PCR-ELISA技术是PCR扩增以后,在微孔板上借用酶联免疫吸附试验(ELISA)的原理,使用酶标抗体,进行固相杂交来实现定量。该技术是一种具有很高灵敏度和特异性的方法[14],但ELISA是一个开放性的反应,扩增后进行ELISA反应,容易产生污染引起假阳性,同时操作过程较繁琐,临床上难以广泛应用。

3.3.7 基因芯片技术

是PCR技术与核酸分子杂交相结合,通过对HIV基因组分析,将该病毒的高度保守序列作为鉴定指标,可直接对病毒病原体进行检测,显著提高了诊断的准确性。1996年,Kozal等[15]研制出一种DNA芯片,对HIV-1逆转录酶及蛋白酶的基因突变进行筛选,并跟踪监测HIV拮抗药物的产生和突变、疾病相关基因型以及患者在治疗中的反应。1998年,Hauser等[16]应用DNA芯片技术在艾滋病患者出现抗体反应前检测HIV,对艾滋病的早期诊断有十分重要的意义。Affy-nletrix公司和Roche Mo1ecular公司合作生产的新一代诊断试剂盒,利用RMS实验室的PCR扩增技术和DNA芯片技术结合检测艾滋病患者的HIV耐药反应。HIV PRT440也已广泛用于HIV-l病毒的测序、分型及多态性分析[17] 。基因表达谱研究可以高通量在检测基因表达信息[18]。国内也有文献报道采用基因芯片检测HIV[19,20] 。由此可见,基因芯片在鉴定HIV感染中具有其他方法无可比拟的优越性。

尽管基因芯片技术需要进一步的不断完善,但完全可以预计在不久的将来其应用前景会锦上添花。不单限于HIV的耐药性检测和基因诊断,可以让许多感染性疾病病原体的基因集中在一张芯片上,同时对其进行感染诊断。

总之,分子生物学检测技术有助于HIV感染者的早发现、早诊断、早治疗,也有助于对治疗艾滋病药物的疗效评价、预测和监测疾病进程,减少艾滋病对个人、家庭及社会的危害。随着HIV分子生物学技术在高特异性、高敏感性、快速、自动化等方面的不断进步,HIV分子诊断可望成为艾滋病诊断标准之一,并通过对HIV突变及个体遗传差异的检测指导抗病毒治疗,为人类遏止艾滋病的流行发挥重要的作用。

参考文献:

[1] 杨绍基,任红.传染病学[M].第7版.北京:人民卫生出版社,2008:113.

[2] 倪语星,尚红.临床微生物学检验[M].第5版.北京:人民卫生出版社,2012:112-116.

[3] Constantine NT,Zink H.HIV testing technologies after two decades of evolution[J].Indian J Med Res,2005,121(4):519-538.

[4] 陈勤.HIV-1感染机体的分子生物学基础[J].现代医学,2004,4:7-9.

[5] 沈霞.艾滋病的实验室诊断[J].中华检验医学杂志,2003,26:327-328.

[6] 普冬,赵勤,汪亚玲,等. 巢式PCR方法检测艾滋病毒载量结果评估[J].实用临床医学,2008,9(12):25-26.

[7] Stevens W,Horsfield P,Scott LE.Evaluation of the performance of the automated NucliSENS easyMAG and Easy Q systems versus the Roche.Am PliPrep-AMPLICOR combination forhigh-throughput monitoring of human immunodeficiency virus load[J].J Clin Microbiol,2007,45:1244-1249.

[8] 张淑琼,吕 浩,穆剑强,等.bDNA与RT-PCR方法检测艾滋病患者病

艾滋病病毒(HIV)主要侵袭人体免疫系统,导致人体免疫缺陷发生多种感染疾病或肿瘤。艾滋病的不可治愈及其快速传播使患者不断增多,2012年全球感染总人数已达3900万人,中国近半艾滋病病毒感染者尚未发现,为了防止艾滋病的大规模流行,艾滋病的检测工作越发重要。目前筛查的免疫学方法,由于灵敏度低,漏检窗口期和新近感染病毒的感染者,而以核酸检测为代表的分子生物学技术,灵敏度和特异性均显著提高,明显缩短检出病原体的窗口期,是HIV诊断方法和诊断试剂持续发展的主要方向,对遏制艾滋病的传播蔓延有重要意义。

1 HIV生物学特性

HIV呈圆形或椭圆形,直径900~140nm,外层为类脂包膜,成分是外膜糖蛋白(gp120)和跨膜糖蛋白(gp41),核心由RNA逆转录酶、DNA多聚酶和结构蛋白等组成,基因组除了具有逆转录病毒的基本结构——基因长末端重复序列(LTR)、核心蛋白(gag)、聚合蛋白(po1)、包膜蛋白(env)gF,还有非常复杂的调控机制,包括tat、rev、nef、vif、vpr、vpu等调节基因,其作用是在转录、翻译、装配等各个环节对病毒的生长和繁殖起调节作用。HIV基因组中存在3个gag-pol- env.Gag基因编码的核心蛋白均位于病毒的核酸蛋白体上,P17位于白与壳层之间的基质上,包被于包膜蛋白的内部。核衣壳包被于内部核酸的,由主要的P24和P40及P55组成,其结构比较稳定,是HIV-1型的特异性蛋白。Env编码包膜蛋白即gp120和gp41,起协助HIV进入宿主细胞的作用。聚合酶蛋白包括P66、P51和P31,它位于病毒的核区内,并与病毒核酸紧密相关[1]。

根据env基因V3段碱基排列的不同,HIV-1分为11个亚型即A、B、C、D、E、F、G、H、I、J、M和0亚型,HIV-2分为6个亚型[2],不同国家和地区有相对优势亚型,HIV亚型在流行病学、诊断、临床、试剂选择、药物筛选和疫苗研制上有着重要意义。

2 HIV-1的感染机制及感染标志

病毒侵入人体后,通过病毒表面gpl20在化学因子CCR5或CXCR4帮助下与细胞表面受体CD4分子结合,然后在gp41的协助下HIV的膜与CD4+细胞的细胞膜相融合,病毒核心蛋白及RNA进入胞浆。两条RNA+在逆转录酶作用下成DNA-,在DNA多聚酶的作用下复制DNA,此DNA部分存留在胞浆内产生系列变化,然后在细胞膜上装配成新病毒,再感染其它细胞。HIV感染后,首先能够监测到病毒RNA,其次是p24抗原,最后是抗体[3]。

3 分子生物学检测技术

随着分子生物学检测技术快速发展,HIV RNA或DNA检测得到应用,核酸检测已是艾滋病实验室诊断的主要发展方向[4],在HIV感染的监测、诊断、研究、疗效观察及预后判断等方面均发挥着越来越大的作用,主要有定性和定量两类。

3.2 定性检测

3.2.1 原位杂交(insite hydzmion)

应用特定的标记探针以分子杂交法直接检测标本中的HIV病毒靶核酸,起初标记探针是放射性标记,后来逐渐发展为酶标记或化学发光标记等等。原位杂交的阳性率比聚合酶链反应(PCR)略低,随着核酸扩增技术的出现并广泛使用,基因探针技术也就逐渐失去应用意义。

3.2.2 聚合酶链反应技术(PCR)

PCR是一种以核酸生物学为基础的分子生物学诊断技术。基本原理类似于DNA的天然复制过程,其特异性依赖于与靶序列两端互补的寡核苷酸引物。PCR由变性—退火—延伸三个基本反应步骤构成。患者感染HIV 1~14d后血浆中能检测出HIV RNA,可用于急性感染期患者、抗体检测不确定等情况的辅助诊断或用于血液筛查,尤其在HIV阳性母亲产下的婴儿是否感染HIV的诊断中有着非常重要的意义,前病毒DNA PCR检测法对出生48h内的婴儿检测敏感性为38%,出生14d的婴儿检测敏感性达93%[5]。

3.2.3 逆转录多聚酶链反应技术(RT-PCR)

RT-PCR技术通过对RNA逆转录酶的应用实现,即将病毒RNA逆转录DNA,接着进行PCR,指数扩增DN段,将放大产物变性并与多孔板结合,利用酶联系统进行检测。RT-PCR技术可在2h内扩增产物达到凝胶电泳或实时荧光法可检测的水平,准确定量的RT-PCR方法已被许多商业实验室证实,目前多种改良的快速RT-PCR检测方法应用于HIV的快速临床诊断[6,7]。

PCR灵敏度高、特异性强、操作简便,但易污染出现假阳性结果;此外,HIV基因的多样性,尚无一套引物能够覆盖所有的HIV序列,限制了检测敏感性,因此,阳性结果还须核酸序列测定加以确认。HIV核酸定性检测阳性结果可作为HIV 抗体窗口期的早期诊断的辅助指标,但不能单独用于HIV感染的确诊,成为限制PCR对于HIV感染诊断的临床应用。

3.3 定量检测

HIV核酸定量检测即病毒载量测定,感染HIV后病情发展速度直接与血浆中病毒载量呈正比。在其他血清学和病毒学标志出现前检出病毒核酸,使窗口期缩短6~11.5d,且慢性潜伏期也能检出,便于早期辅助诊断;HIV病毒载量常用于用于评估疾病病程、监测抗病毒治疗成效、选择抗病毒治疗方案;还可用于鉴定出生后18个月内的婴儿血液中的HIV-IgG抗体是否来自于母体,婴儿是否感染HIV(母婴诊断)。当前,常用的定量检测方法有较高的敏感性、特异性和可重复性。

3.3.1 分支DNA信号扩大系统(bDNA)

bDNA是指人工合成带有侧链的DN段标记被激发的标记物,利用发光强度与样品中HIV RNA含量成比例,可通过发光强度来定量检测血浆中HIV-1型RNA的一种方法。bDNA作为一种定量核酸检测方法具有对检测靶序列变异的更强识别能力,目前发展到灵敏度更好的、具有靶序列放大系统的第三代bDNA有数十个覆盖整个基因组的探针,不仅可用于检测HIV感染,可以方便地检测HIV的部分变异株,且可用于疗效观察,文献报道其为一种高灵敏度及特异性的方法[8,9]。与PCR相比bDNA不存在扩增物的交叉污染,但灵敏度不如PCR,提高bDNA的灵敏度仍是难点[10]。

3.3.2 核酸序列依赖的扩增系统(NASBA)

NASBA是以RT-PCR为基础,由一对引物介导的、连续均一的、体外特异性核苷酸序列等温扩增RNA的新技术,原理是提取病毒RNA,加入AMV逆转录酶、核酸酶H(Rnase H)、T7RNA聚合酶和引物进行扩增。NASBA无需热循环装置,只在一个温度下进行(42℃),即可扩增大量拷贝的RN段。对不同条件的实验室可以一次扩增足量的RNA用于多次研究和直接使用肝素抗凝的血浆样品,适合冻存血浆的回顾性分析。其高效扩增的特性,能与多孔板酶介导的显像技术及实时荧光检测结合。因扩增产物的不稳定性特征,对传染病病原的定性、定量检测,减少了分子诊断实验室扩增产物的交叉污染。但操作较繁琐,不便于大批量处理,且扩增时退火温度较低,容易引起污染,当前,NASBA已应用于HIV-1的分子诊断[10]。

3.3.3 转录介导的扩增系统(TMA)

TMA技术原理与NASBA大致相同,差别是TMA利用MMLV逆转录酶及T7 RNA聚合酶两种酶,MMLV逆转录酶既有逆转录酶的活性又具有RNA酶H活性,反应温度为41.5℃,1h内RNA模板扩增约109倍。相比p24抗原检测,TMA技术可缩短窗口期6 d,比HIV抗体检测缩短14 d [11]。

3.3.4 连接酶酶促链式反应 (LCR)

LCR法是基于靶分子依赖的寡核苷酸探针相互连接的一种探针扩增技术,原理是由两段数l0个核苷酸组成的单链DNA探针与目标序列杂交,将被检测物中的特异性片段进行扩增,检测扩增产物。LCR既可扩增,又可检测DNA突变,对已知突变类型的基因诊断是一个切实有效可行的方法,是随PCR后一种较有发展前景的体外扩增新技术。

3.3.5 实时荧光定量PCR技术

实时荧光定量PCR技术的应用使HIV核酸检测技术又进入到一个新境界。原理是在PCR反应体系中加入荧光基团,利用荧光信号实时监测整个PCR进程,最后通过标准曲线对未知模板进行定量分析。一般使用TaqMan探针或Sybr Green荧光染料。但Sybr Green染料不能区别目的产物和非目的产物,使结果有偏差,目前广泛使用的是TaqMan探针技术。荧光实时PCR则可以进行实时检测,改变了传统的电泳终点检测,得到相应的S型扩增曲线,其不但可以进行定性检测,更重要的是可以进行定量检测。与常规相比,具有特异性强、自动化程度高、有效解决污染问题等特点,能够检测血浆中的病毒载量及血液中单个核细胞的前病毒载量。美国PE公司1996年发明TaqMan技术[12],已广泛应用于基因检测, 国内2002年4月深圳匹基公司获批准第一个生产HIV荧光PCR检测试剂盒,并应用于临床诊断,国产实时荧光RT-PCR试剂检测HIV-1血浆病毒载量与进口试剂相比具有较好的相关性[13],并具有价格低廉的优势,已在临床逐步推广应用。

3.3.6 PCR-ELISA

PCR-ELISA技术是PCR扩增以后,在微孔板上借用酶联免疫吸附试验(ELISA)的原理,使用酶标抗体,进行固相杂交来实现定量。该技术是一种具有很高灵敏度和特异性的方法[14],但ELISA是一个开放性的反应,扩增后进行ELISA反应,容易产生污染引起假阳性,同时操作过程较繁琐,临床上难以广泛应用。

3.3.7 基因芯片技术

是PCR技术与核酸分子杂交相结合,通过对HIV基因组分析,将该病毒的高度保守序列作为鉴定指标,可直接对病毒病原体进行检测,显著提高了诊断的准确性。1996年,Kozal等[15]研制出一种DNA芯片,对HIV-1逆转录酶及蛋白酶的基因突变进行筛选,并跟踪监测HIV拮抗药物的产生和突变、疾病相关基因型以及患者在治疗中的反应。1998年,Hauser等[16]应用DNA芯片技术在艾滋病患者出现抗体反应前检测HIV,对艾滋病的早期诊断有十分重要的意义。Affy-nletrix公司和Roche Mo1ecular公司合作生产的新一代诊断试剂盒,利用RMS实验室的PCR扩增技术和DNA芯片技术结合检测艾滋病患者的HIV耐药反应。HIV PRT440也已广泛用于HIV-l病毒的测序、分型及多态性分析[17] 。基因表达谱研究可以高通量在检测基因表达信息[18]。国内也有文献报道采用基因芯片检测HIV[19,20] 。由此可见,基因芯片在鉴定HIV感染中具有其他方法无可比拟的优越性。

尽管基因芯片技术需要进一步的不断完善,但完全可以预计在不久的将来其应用前景会锦上添花。不单限于HIV的耐药性检测和基因诊断,可以让许多感染性疾病病原体的基因集中在一张芯片上,同时对其进行感染诊断。

总之,分子生物学检测技术有助于HIV感染者的早发现、早诊断、早治疗,也有助于对治疗艾滋病药物的疗效评价、预测和监测疾病进程,减少艾滋病对个人、家庭及社会的危害。随着HIV分子生物学技术在高特异性、高敏感性、快速、自动化等方面的不断进步,HIV分子诊断可望成为艾滋病诊断标准之一,并通过对HIV突变及个体遗传差异的检测指导抗病毒治疗,为人类遏止艾滋病的流行发挥重要的作用。

参考文献:

[1] 杨绍基,任红.传染病学[M].第7版.北京:人民卫生出版社,2008:113.

[2] 倪语星,尚红.临床微生物学检验[M].第5版.北京:人民卫生出版社,2012:112-116.

[3] Constantine NT,Zink H.HIV testing technologies after two decades of evolution[J].Indian J Med Res,2005,121(4):519-538.

[4] 陈勤.HIV-1感染机体的分子生物学基础[J].现代医学,2004,4:7-9.

[5] 沈霞.艾滋病的实验室诊断[J].中华检验医学杂志,2003,26:327-328.

[6] 普冬,赵勤,汪亚玲,等. 巢式PCR方法检测艾滋病毒载量结果评估[J].实用临床医学,2008,9(12):25-26.

[7] Stevens W,Horsfield P,Scott LE.Evaluation of the performance of the automated NucliSENS easyMAG and Easy Q systems versus the Roche.Am PliPrep-AMPLICOR combination forhigh-throughput monitoring of human immunodeficiency virus load[J].J Clin Microbiol,2007,45:1244-1249.

分子生物学技术篇3

关键词:医学检验;现代分子生物学技术;应用;趋势

目前我国科学技术得到飞速发展,在很大程度上促进了现代医学的发展,其中对现代分子生物学技术的应用也越来越多,而且从某一角度来看,现代分子生物学技术对医学的持续发展具有不可替代的重要作用。从整体上来看,基因克隆技术等现代分子生物学技术的出现,已经开始极大的影响到了现代医学发展,并随着逐步完成的基因测序工作,也很好的解决了原先一直得不到解决的难题。在逐步进入到后基因时代后,在生物学界也逐渐开始广泛的应用数理科学,这为生物学发展提供了新的方向,同时也为应用分子诊断技术提供可能。因此分子生物学技术在现代医学中的作用已经十分显著,在医学检验中可以加强对现代分子生物学技术的有效应用,这对多种疾病的有效诊断与治疗都具有重要的意义和作用。

一、现代分子生物学技术在医学检验中的应用

(一)分子生物传感器

分子生物传感器作为一种固定的化学、生物技术,具体指的是在换能器上固定好相应的动植物组织、微生物、细胞、受体、核酸、蛋白、抗原、抗体、酶等生物识别元件,如果待测物在检测过程中会与生物识别元件之间生产特异性反应,那么换能器就能够输出相关的反应结果,也可以检测到一定的光信号和电信号等,进而实现对待测物进行定量、定性分析,得到检验结果。目前在体液中核酸、小分子有机物、微量蛋白等多种物质检测中都已经广泛的应用分子生物传感器,能够为多种疾病的临床分析和诊断提供有价值的参考依据。在Skladal等人的研究结果中显示,压电传感器在经过寡核苷酸探针修饰后对血清中的HCV(丙型肝炎病毒)进行检测,并对其DNA的PCR(聚合酶链式反应)扩增以及结构转录过程进行实时监测,整个过程用时比较短,一般都可以控制在10min左右,而且这一检测装置还能够重复使用。

(二)分子生物芯片技术

随着科学技术的持续发展,人们对各种疾病的认识水平和程度都不断加深,再加上不断改进和优化的分子生物学,原先传统的医学检验技术已经不能很好的适应当前社会对全面、准确、快速、微量等检验要求。分子生物芯片技术作为一种新型检验手段,指的是在支持物上固定好大量的探针分子,固定好后与标记样品之间进行反应或杂交,然后根据自动化仪器检测到的反应或杂交信号来对样品中靶分子数量进行判断。另外就病原菌检测来说,目前已经完成了大部分病毒、细菌的基因组测序工作,并根据每种微生物的特殊基因制成具有代表性的一张芯片。这样一来,就看将可检测标本中有无病原体基因表达以及相关情况进行反转录,就能够有效的对患者感染和感染病源宿主、进程反应进行综合判断。

(三)分子生物纳米技术

目前在临床中用来检验生物活性物质的方法种类比较多,其中最基础、最关键的技术主要是以抗体为基础,这也是应用范围最广的一种检验技术比如当前在各种异生质以及生物活性物质检测中已经成功的应用了免疫分析联合磁性修饰技术。在纳米磁表面固定一定的特异性抗原或抗体,以化学发光物质、荧光染料、放射性同位素、酶等物质作为检测基础,相较于传统微量滴定板技术来说,该技术具有灵敏、快速、简单等多方面优势。在VanHelden等人的研究结果中显示,将快速、高效的化学发光免疫测定技术联合与抗体连接的纳米磁性微球组成自动检测系统,目前已经在HIV-1和HIV-2检测中得到成功应用.另外目前也已经建立了在人胰岛素检测中应用的全自动夹心法免疫测定技术,其中也需要借助碱性磷酸酶标记二抗、蛋白纳米磁性微粒复合物以及抗体。

(四)分子蛋白组学

随着相关人们对分子蛋白质组学的深入研究,目前已经获得了一定的成果,但是从整体上来说,部分结论还是存在着相互矛盾、众说纷纭等缺陷与不足,比如在以SELDI-TOF-MS(表面增强激光解析离子化--飞行时间质谱技术)为代表的蛋白质组学技术中不能很好的体现出部分具有代表性的肿瘤标志物。导致这一现象出现的原因主要包括以下几个方面:一是该技术自身就存在限制性,如重复性、敏感性,而且在具体检测过程中检测设备在确认每一峰值蛋白的时候都会存在一定的局限性;二是在选择对照组和实验组的时候是否合理,如果选择不合理的话,就会出现某一蛋白组模式反映的仅仅只是代谢紊乱、炎症反应或者是肿瘤的特异性;三是就不同的实验室结果来说,其标本处理过程差异、结果可比性等都难以确认。因此,如果在医学检验中需要加强对分子蛋白组学的广泛应用,深入解决这些问题尤为重要,也只有这样才能够在医学检验中将SELDI-TOF-MS技术的革命性作用充分发挥出来。

二、在医学检验中分子生物学技术的应用发展趋势

就在医学检验中分子生物学技术的应用发展趋势来说,主要体现在以下两个方面:一方面是定量PCR,另一方面是实现PCR的全自动化。比如通过对集检验与扩增为一体的一次性试验卡的应用,就能够很好的处理PCR污染的问题,或者是还可以推广和普及从制备到检测标本整个过程的相应自动化仪器以及全封闭系统,这对PCE交叉污染问题的有效解决具有重要意义和作用。目前在临床科研中,除了对PCR增强研究力度,同时也加强了对Q复制酶扩增系统、3SR(自限序列扩增系统)、TAS(转录扩增系统)、SDA(链置换扩增系统)、LCR(连接酶反应)等体外基因扩增技术的应用。另外人们也逐渐开始更加关注分子生物学技术的质量控制以及标准化两个方面,尤其是卫生部颁布、推广的PCR实验室管理办法,在很大程度上促进了PCR技术的健康发展。

结语:总的来说,随着不断成熟和完善的基因克隆技术以及基因测序工作,目前我国已经逐步进入后基因时代,现代分子生物学技术在各个行业和领域中的作用越来越重要,尤其是对于医学检验来说,通过应用现代分子生物学技术,不仅仅能够更加快速、准确的获得疾病检验结果,为患者疾病的确诊提供有价值的参考依据,同时也大大节省了医疗资源,对我国医疗事业的持续发展具有积极的促进作用。

参考文献: 

[1]分子生物学技术在医学检验中的应用进展[J]. 王海英.当代医学. 2011(06) 

[2]现代分子生物学技术在医学检验中的应用[J]. 李鹏.临床和实验医学杂志. 2007(03) 

[3]为21世纪中国检验医学事业崛起而奋斗——写于本刊更名之际[J]. 杨振华.中华检验医学杂志. 2000(01) 

[4]四年制医学检验技术专业的培养目标及教学的思考[J]. 陈婷梅,尹一兵,冯文莉,涂植光.中国高等医学教育. 2014(08) 

[5]医学检验创新人才培养模式的构建与实践[J]. 张继瑜,王前,郑磊,裘宇容,亓涛,熊石龙,李海侠.中华检验医学杂志. 2014 (01) 

[6]临床检验基础课程的实验教学改革与体会[J]. 曾涛,马丽.国际检验医学杂志. 2013(12) 

[7]虚拟现实技术在医学实验教学中的應用[J]. 曹丁,李文建.中国医药指南. 2013(03) 

分子生物学技术篇4

同工酶作为基因产物的蛋白质,其结构的多样性在一定程度上反映出不同种群在不同污染历史条件下分化进化上DNA组成和生物体遗传多样性。同工酶之所以作为分化进化的重要研究对象,首先是因为它在品种间有丰富的多样性。目前一半以上的酶类存在同工酶类。其次,同工酶易于检测出。同工酶虽然由单拷贝基因编码,但通过酶染色放大作用同样易于检测出。

2.2 RFLP技术

RFLP(Restriction Fragment Length Polymorphisma,限制性内切酶片段长度多态性)作为第一代分子生物学标记自问世以来已广泛运用于多门生物学科研究中,但它运用于植物抗性研究还只是近几年的事。RFLP能对植物的抗性基因进行定位和分离,利用RFLP技术,对于核基因组或叶绿体基因组、尤其是后者,若能提取纯净DNA,则可直接从酶切后的电泳图谱看出其多态性,利用这一方法可以测定种群内、种群间不同水平的物种在污染环境下抗性分化进化水平上的差异。

与核酸序列分析相比,RFLP可省去序列分析中许多非常繁琐工序,但相对RAPD 而言,RFLP方法更费时、费力,需要进行DNA多种酶切、转膜以及探针的制备等多个步骤,仅对基因组单拷贝序列进行鉴定。但RFLP又有比RAPD优越之处, 它可以用来测定多态性是由父本还是母本产生的,也可用来测定由多态性产生的突变类型究竟是由碱基突变或倒位、 还是由缺失、插入造成的[26]。

2.3 PCR技术

PCR(Ploymerase Chain Reactions,聚合酶链式反应)自80年代中期问世以来,以其快速、简便、灵敏、特异等特点受到分子生物学界极大青睐,已广泛用于基因工程、临床检验、环境生物监测以及进化生态学中核酸水平的基因多态性等研究领域。

PCR由高温变性、低温退火(复性)及适温延伸三部反应构成一个扩增循环,使目的DNA片段得以迅速扩增。这一技术能选择性富集一个特异DNA序列,并成106扩增。PCR 扩增技术与RFLP结合使用其用途更为广泛,PCR技术主要优点有:①PCR与DNA测序结合,扩增后无需再克隆,纯化即可直接测序。②可扩增一个只知基因一侧或两侧碱基序列的基因。 ③可进行DNA多种突变的测定,如碱基互换、缺失、插入型突变[16]。PCR 近几年已逐渐引入到植物抗污染进化研究领域中,并表现出强大的应用潜力。

2.4 RAPD技术

RAPD在植物抗污染进化研究中具有重大推动作用。利用RAPD 分析矿区不同重金属污染历史下作物DNA结构多样性,从中可试图找到对重金属污染具有抗性的DNA片段或基因组。这些研究虽然在国内外刚刚起步,但这些工作直接从分子水平上分析污染条件下种群遗传结构上的分化进化,在理论上具有广阔的研究前景和意义。

2.5 核酸序列测定

核酸序列测定包括DNA和RNA序列的测定。由于rRNA基因较保守,因此分子生物学中更重视rRNA基因的测定。在植物抗污染进化研究中主要运用叶绿体4.5SrRNA、5SrRNA 及胞质5SrRNA基因,然而,核酸序列的测定在植物抗性分化进化研究中尚未见报导, 此项技术在实际操作和运用上还有待于进一步完善。

3 结语

分子生物学技术篇5

【摘要】随着分子生物学、基因组学和生物信息学的发展,微生物的分子水平上的研究也取得了快速发展,与其他方法相比,其灵敏度高、可重复好和可靠性好,是目前应用最广泛的方法之一。

【关键词】分子生物学;技术;肠道微生物

【中图分类号】R446.5【文献标识码】A【文章编号】1005-1074(2009)04-0032-01

人体肠道中寄生着种类繁多和数量巨大的微生物,构成了肠道微生态体系。这正常情况下,这些微生物对机体无害,或有利于机体的健康,为正常菌群。正常菌群参与宿主对营养素的消化、吸收与合成;刺激其免疫机制。这种与宿主的肠道相互依存又相互影响的关系形成了动态的微生物平衡[1]。微生物学研究表明,环境条件的轻微变化,均可导致机体微生态系统的变化,造成菌群的失调,对宿主的肠道功能产生不良影响[2]。肠道微生态的破坏,还可引起内外源性感染,干扰机体营养代谢和免疫功能,甚至严重影响机体健康,导致一系列疾病的发生。随着分子生物学、基因组学和生物信息学的发展,微生物的分子水平上的研究也取得了快速发展,与其他方法相比,其灵敏度高、可重复好和可靠性好,是目前应用最广泛的方法之一。

1肠道微生物总DNA的提取

肠道微生物总DNA的提取是研究胃肠道微生态系统的基础,只有获得尽可能完整的DNA模板才能为后续分析提供可信性。目前获得肠道菌群总DNA的方法主要有酚/氯仿抽提法、Chelex-100煮沸法、GuSCN/silica法,以及近年来一些大型公司推出的商业试剂盒。酚/氯仿抽提法间接从样品中获取基因组DNA是实验室常用提取细菌DNA的方法,金晶等[3]通过对酚/氯仿法提取肠道微生物总DNA进行优化,得到了基本完整的基因组DNA.这一经典的技术由于其操作过程不需要特殊的仪器设备,得到的DNA纯度相对较高,被广泛的应用。

2肠道微生物基因片段获取

Sharles等于1990年在E.Coli基因组中发现的一种基因间重复保守序列,大小约为126bp。1991年,Hulton等在Salmonella typhimurium,Yersinia pseudo- tuberculosis,Klebsiella pneumoniae和Vibrio cholerae中也发现这种高度保守的重复序列,由于该序列主要存在与肠杆菌科,故称之为肠杆菌基因间的重复共有序列(Enterobacterial repetitive intergenic,ERIC)。Versalovic等认为ERIC-PCR扩增的是两个相邻的ERIC保守序列之间的区域,由于不同的细菌基因组上的ERIC重复序列的数目和分布不同,从而得到由一系列大小不同片段组成的DNA指纹图谱不同地域和不同年代的同一株菌其指纹图谱一样,不同的方法提取基因组DNA,图谱具有良好的可重复性。潘莉等[4]为了了解以粪检有无白细胞区分的两类腹泻儿童肠道菌群结构的特征及其与健康儿童的差别,应用ERIC-PCR对其肠道微生物总DNA进行扩增,结果分析发现了一段与腹泻相关的未知基因序列。在检测运动员不同训练强度下肠道菌群结果变化ERIC-PCR也能取得很好的结果[5]。

3DNA遗传指纹图谱技术分析

3.1变性梯度凝胶电泳和温度梯度凝胶电泳变性梯度凝胶电泳(Denaturing GradientGel Electrophoresis,DGGE)是由Fisher和Lerman发明用于检测DNA突变的技术,其原理是利用长度相同的双链DN段解链温度的不同,通过梯度变性胶将DN段分离开来。DGGE可以用来检测除最高温度解链区域以外的所有发生单个碱基变化的DN段。另一个基于相似原理的技术,称为温度梯度凝胶电泳(Temperature Gradient Gel Electrophoresis,TGGE),与DGGE的不同之处在于不是变性剂呈现线性梯度,而是温度呈现线性梯度,使得不同的核酸序列停留在凝胶的不同位置从而得以分离。该技术很突出的优点:可以分离具有细微差异的基因组片段;从凝胶中切下谱带,然后测序分析来揭示群落成员系统发育的从属关系,检测出特异细菌种群的存在;具有同时检测多个样品,可以对不同样品进行比较。

3.2限制性片段长度多态性限制性片段长度多态性(Restriction Fragment Length Polymorphism,RFLP)技术于1980年由人类遗传学家Bostein提出。该技术是利用限制性内切酶能识别DNA 分子的特异序列,并在特定序列处切开DNA分子,即产生不同长度大小、不同数量的限制性酶切片段,于是电泳图谱呈现多态性。末端限制性片段长度多态性分析(Terminal Restriction Fragment Length Polymorphisn,T-RFLP)与RFLP相似,只是在 PCR 引物末端标记荧光,扩增的基因片段被限制性内切酶消化后,那些带有荧光标记的末端限制性片段就可在DNA测序仪上检测出来。Cecilia等[6]利用T-RFLP技术分析抗生素治疗和服用益生菌产品对人类肠道微生物区系的影响,结果表明T-RFLP技术易于监控部分优势菌群,但是利用培养技术却很实现对它们的监控。

3.3分子杂交技术-荧光原位杂交荧光原位杂交(Fluorescence In Situ Hybridization, FISH)是在 20 世纪80 年代末在放射性原位杂交技术的基础上发展起来的一种非放射性分子细胞遗传技术,以荧光标记取代同位素标记而形成的一种新的原位杂交方法。基本原理是:如果被检测的细菌基因组DNA纤维切片上的靶 DNA与所用的核酸探针是同源互补的,即可形成靶DNA与核酸探针的杂交体。将核酸探针的某一种核苷酸标记上报告分子如生物素、地高辛,经荧光检测体系在镜下对待测DNA进行定性、定量或相对定位分析。该法具有安全、快速、灵敏度高、探针能长期保存、能同时显示多种颜色等优点。人体肠道微生态系统的动态平衡对生理、健康有着重要作用,分子生物学技术的快速发展使研究人体肠道微生物各种群的数量、结构及动态变化更为直接和精确。当然,分子生物学技术人目前尚有一些缺陷,在与传统的培养鉴定方法方法结合使用,将能够在人体胃肠道复杂的微生物生态研究中发挥重要的作用。

参考文献

[1]杨汝德,李武明,许燕滨.动物和人类的肠道菌群的形成及意义[J].微生物学杂志,1998,18(1):52-55.

[2]顾国胜,任建安,黎介寿.结肠粘膜表面保护系统与肠道菌群[J].中国使用外科杂志,2003,23(2):118-120.

[3]金晶,彭颖,李晓波.快速提取肠道微生物基因组DNA的方法[J].现代生物医学进展,2007,7(1):100-103.

[4]潘莉,杜惠敏,黄海冬,等.腹泻儿童肠道菌群结构特征的ERIC-PCR指纹图分析[J].中国微生态学杂志,2003,15(13):141-143.

[5]乔德才,陈敬,魏桂芳,等.用DNA指纹图谱技术分析运动负荷对运动员肠道菌群区系结构的影响[J].体育科学,2004,24(1):73-75.

[6]Cecilia Jernberg, Asa Sullivan,et al. Monitoring of antibiotic-induced alterations in the human intestinal microflara and detection of probiotic strains by use of terminal restriction fragment length polymorphism[J].Appl Environ Microbiol,2005,71(1):501-506.

分子生物学技术篇6

一、引言

近年来,分子生物学进入发展的快车道,许多先进技术相继出现,分子生物学的理论知识已渗透到生物学的诸多领域。由于分子生物学具有微观性和抽象性的特点,在教学过程中须通过实验操作来形象地展示其理论和技术,所以分子实验在该课程教学中具有非常重要的地位[1]。随着计算机、互联网的发展,虚拟仿真技术开始崛起,它是一种人工模拟三维仿真环境的综合性集成技术。由于操作简便、安全性高、成本低及场景逼真生动等优点,虚拟仿真实验已逐步渗透入高校的实验教学。至2013年以来,国家教育部便积极开展了部级虚拟仿真实验教学中心的建设工作[2]。如何将虚拟仿真技术引入分子生物学实验教学,完善现有实验教学的不足,提高学生的积极性和创新能力,增强实验教学效果,已成为高校急需解决的教学课题。

二、传统分子生物学实验教学存在的问题

1.教学内容陈旧。目前,许多分子实验教学内容与前沿分子生物学发展结合性不紧密。陈旧的教学内容让学生失去了学习的兴趣。另外,由于分子生物学实验会用到一些具有危险性的化学试剂和药品,为了学生安全考虑,教师往往选择一些安全性高、容易操作的实验内容。这样容易使学生得不到锻炼,造成教学内容陈旧、资源匮乏。

2.教学方法单一。传统教学方式比较单一,往往是教师逐一讲解实验目的、实验原理、实验方法及实验步骤等。学生只需在课堂上完成相应实验操作,上交实验报告。这种教学方式看似降低了实验操作错误率,提高了教学效率,但是学生主动思考的机会少,容易形成惰性和依赖性,对教学内容只知其然而不知其所以然。

3.成本投入大。随着分子生物学的发展,实验教学涉及的仪器也更加先进昂贵。许多高校在这方面的资金投入不足,无法采购先进高端的实验仪器,相应的分子生物学实验课无法开展,学生因此无法接触到最前沿的分子生物学技术,严重影响了实验教学效果。

4.学生动手能力弱。由于时间限制,教师须在上课前完成材料准备、试剂配制及仪器调试等工作。学生只需按实验步骤将事先准备的试剂按比例添加即可。学生只是在简单地模仿实验部分操作,并没有参与整个实验的操作过程,这会造成学生动手能力差,当遇到问题时无法找到根源所在。

5.受时空限制大。由于教室资源有限,课堂上无法允许每个学生独立进行实验。通常情况下,2―4个学生一组开展实验,这样无法保证每个学生都能动手进行操作。另外,由于课时限制,实验内容只能有选择地进行授课,这会让学生有接触更多分子生物学技术的机会。

三、虚拟仿真实验的优势及在分子实验教学中的应用

1.降低实验危险性。有些分子生物学实验会涉及有毒有害的化学试剂,如果操作不当,容易发生实验安全事故。例如,在DNA提取中会涉及易制毒化学试剂三氯甲烷,这种试剂易燃助燃且易制毒,受公安部门管制,琼脂糖凝胶电泳中涉及具有致癌性的溴化乙锭,蛋白质提取中涉及易制毒易制爆试剂丙酮等。虚拟仿真实验授课不但不用接触危险性化学试剂,还可以通过直观的虚拟仿真实验,对危险化学试剂的操作和使用有更为准确的认识。因此,虚拟仿真实验教学可以降低实验的危险性,同时提高学生的实验理解能力。

2.可视微观性实验。分子生物学实验原理比较抽象,内容非常微观,用到的试剂量非常少。例如,DNA用量以纳克计算,PCR反应的试剂以微升计算。另外,一些实验反应过程是肉眼看不见的。例如,PCR反应中DNA是如何变性、复性和延伸的?DNA重组子的构建实验中,目的DNA片段是如何连接到载体DNA上的?这些都是肉眼看不到的。只有整个实验完成后,通过电泳检测才能判断实验成功与否。为了更为直观地展示实验反应过程或实验原理,我们可以采用虚拟仿真实验进行教学,使之与传统实验操作相结合,不仅可以丰富教学手段,激发学生的学习兴趣,提高学习主动性,还可以使学生对实验原理有更深刻的认识,最终熟练掌握和运用所学的分子生物学知识[3]。

3.缩短实验周期。有些分子实验周期较长,学生在课堂上很难完成。例如Southern杂交,其实验包括基因组DNA制备、DNA限制酶切、DNA消化产物的琼脂糖凝胶电泳、DNA转移、探针标记、杂交和洗膜检测等步骤,每一步都需要很长时间,整个实验过程需要两天甚至几天的时间。虚拟仿真实验则可以避免此类问题的发生。教师可以将这类周期性长的实验设计成虚拟实验,不但可以减少实验等待时间,使实验过程变得清晰紧凑,还可以让学生在实际实验操作过程中有的放矢,进而提高实验教学效率[3]。

4.降低实验成本。有些分子生物学实验会涉及价格昂贵的化学试剂或大型仪器。例如,RT-PCR实验要用到价格很贵的反转录试剂盒,荧光定量PCR实验要用到价格不菲的荧光定量PCR仪。虚拟仿真实验则不需要采购这些价格昂贵的化学试剂和大型仪器,在虚拟实验中,不但可以保证学生接触更先进的分子生物学技术,增加更为丰富的教学资源,还可以大大降低实验资金投入。

5.打破空间限制。虚拟仿真实验不受空间限制,只要有移动终端,学生就可以随时随地进入虚拟仿真实验平台开始实验操作,每位学生都有动手进行实验操作的机会。同时,虚拟仿真实验允许学生多次进行平台重复实验操作,这样既可以加深学生对分子生物学实验的理解,也可以提高学生的创新能力。

6.丰富考核方式。传统分子实验考核方式是学生提交实验报告,最终成绩由考勤率、实验操作表现和实验报告成绩构成。这种考核方式过于单一,不利于学生积极性和创造性的提高,且容易造成学生机械性地完成或相互抄袭实验报告,严重影响实验教学效果。而虚拟仿真实验中的考核方式更具多样化和生动化,教师事先设置好相应的“知识障碍”,学生设法解除“知识障碍”,并成功完成实验项目后才获得相应的成绩[4]。这种考核方式可以激发学生接受考核的积极性,减少抄袭实验报告的现象,进而提高实验教学效果。

四、结束语

分子生物学技术篇7

关键词:分子生物学;医学检验;蛋白质

20世纪80年代中期,分子生物学技术进入人类的生活,自此之后,分子生物学的发展取得了突飞猛进的成果,已经逐步成为医学领域不可或缺的诊疗手段之一[1]。分子生物学技术作为检验医学的最新方法,已被检验学科的各领域所应用,近年来,分子基因芯片技术、分子蛋白组分析技术等技术都为检验学科提供了新的发展思路,为此,笔者根据自己的一些临床经验,从与检验医学相关的技术与发展进行简单的分析介绍:

1、聚合酶链式反应(PCR)的应用

PCR是一种体外酶促合成特异DN段的方法,是分子生物学中最常用的技术。基因的克隆、分离和核苷酸序列分析等都用到PCR技术,也可以应用与突变体和重组体的构建以及基因表达调控的研究,也涉及到基因多态性的分析、肿瘤机制的探索、遗传病和传染病的诊断等诸多方面。PCR的操作步骤分别是高温变形、低温退火、适温延伸,作为一个循环周期,多次循环反应,使目的DNA得以迅速扩增。传统的操作技术与这些衍生出的新PCR技术(定时定量PCR、原位PCR技术等)相比,都具有灵敏度高、操作简单、省时省力等特点。

2、分子生物传感器的应用

现代检验医学中,分子生物传感器被广泛应用于临床,成为了临床诊断和病情分析的重要依据,其应用的主要范围在体液微量蛋白、小分子有机物等多种物质的检测。分子生物传感器的工作原理是利用如酶、蛋白质、DNA、抗体、抗原、生物膜、微生物、细胞等生物物质作为识别元件固定在转化器上,当待测物与生物识别元件发生特异性反应后,将生化反应转通过转化器将所产生的反应结果转变成可定量的物理、化学信号等,从而进行生命物质和化学物质检测和监控[2]。这样一来我们可以设想如果分子生物传感器能够在体内实施监控,那么对于患者来说是个很大的福音。

3、分子生物芯片技术的应用

随着医学科学技术的飞速发展,传统的医学检验技术显然已经不能跟上生物学的脚步,对于临床上更微量、更迅速的检验要求已经满足不了。生物芯片技术把传统医学检验技术的复杂、自动化程度低、检测目的分子数量少、低通量等不足都解决了,其原理是把分子间特异性地相互作用,将大量探针分子固定于支持物上,通过缩微技术,实现对细胞、蛋白质、基因及其它生物组分的检测。这一技术是通过不同的探针阵列和特定的分析方法,使其应用更加广泛和有价值,如基因表达谱测定、突变检测、多态性分析、基因组文库作图及杂交测序等均为“后基因组计划”时期基因功能的研究以及现代医学科学及医学诊断学的发展提供了强有力的工具,在基因的发现、基因诊断、药物筛选、给药等个性化方面也同样取得了重大突破[3]。

4、分子生物纳米技术的应用

分子纳米技术的发生和发展,使人们在防治和治疗疾病上又向前迈了一大步,改善了人类的整个生命系统。纳米技术可以探测机体内化学或生物化学成分的变化,适时地释放药物和人体所需的微量物质,及时消灭侵入人体的细菌和病毒,修复畸形的基因,扼杀萌芽的癌细胞。近来有学者将抗体连接的纳米磁性微球与高效率、快速的化学发光免疫测定技术相结合的自动检测系统,成功用于血清中人免疫缺陷病毒1型和2型(HIV-1和HIV-2)抗体的检测[4]。

5、分子蛋白质组学的应用

人类基因组的测序成功为蛋白组学的研究提供了一个很好的平台,但目前仍有很多新发现的基因编码蛋白质功能未知的,比如目前癌基因的发现,虽然在一定程度上得到了很大发展和进步,但癌症的发病原因、诊断和治疗等方面还存在一些未解决的问题。

6、展望

目前检验医学中的发展趋势是定量PCR和PCR的全自动化。体外基因扩增技术除PCR以外,还衍生出LCR,链置换扩增系统(SDA),转录扩增系统(TAS),自限序列扩增系统(3SR)等技术也将由科研逐步进入临床领域[5,6]。所以说现代医学分子生物技术的前景是美好的,各种新技术的应用也在不断涌现,并且成熟的运用到临床医学检验中。

参考文献:

[1]王海英.分子生物学技术在医学检验中的应用发展[J].当代医学,2011,17(6)16.

[2]Yuregir,Sahin,Yilmaz,et al.Fluorescent in situ hybridization studies in multiple myeloma[J].Hematology,2009,14(2):90-94.

[3]SkladalP,EiccardiCS,YamanakaH.Piezoelectric biosensors for real time monitoring of hybridization and detection of hepatitis C virus[j].J virol Meth,2004,117(2):145-151.

[4]李向军,郑娜,侯书荣,等.磁性纳米粒子在生物传感器中的应用[A].中国化学会第十四届有机分析及生物分析学术研讨会会议论文摘要集,2007,10-01

[5]Sklada P,Jilkova Z,Svoboda I.Investigation of osleproteger in interactions with ligands and antibodies using piezoelectric biosensors[J].Bios Bioel,2005,20(10):2027-2034.

分子生物学技术篇8

 

所谓生物医学,顾名思义就是将电子学的知识和生物学的相关知识以及医学的相关知识进行融合的一种新的学科领域[1]。然而,在生物医学的研究过程当中,由于生物医学的学科本身具有很高的准确性和和精准性要求,因此,微电子技术在生物医学当中得到了广泛的运用。

 

一、生物医学传感器

 

在生物医学中,生物体在通常情况下都会具有相应的生命迹象、生命性质和生命状态以及生命的成分,并且通过一定的变量表现出来,而生物医学传感器就是把生物体的这些相关的特征通过电子设备的转化,将这些信息成为一种函数关系,并通过函数关系将这些信息表现在电子设备当中[2]。在生物医学领域,主要的医学传感器主要分为以下几种,首先是电阻式的生物医学传感器,其次还有电感式的医学生物传感器,此外还有电容的医学生物传感器,除此之外还包括热电式的生物医学生物传感器,除了以上的四种传感器外,常用的医学传感器还有光电生物医学传感器和生物传感器等等。在生物医学的传感器的发展当中,集成化和微型化的发展方向是传感器发展的比较主要的趋势。这种微型化和集成化的特征能够使生物医学在最大程度上实现测量的精确化,甚至可以将这种精确度带入到分子和原子的水平和高度,使生物医学的发展步入空前繁荣的发展阶段。在传感器的发展过程当中,生物医学传感器的前进轨迹主要有四种基本的方向,首先就是将无机物作为研究材料从而进行的研究;其次是在对生物传感器研究的过程当中,根据有、无机物自身的长处从而对有、无机物材料进行融合的传感器的研究;再次,为了使传感器在使用的过程当中能够保证自身的精确度,智能化技术的传感器也是经常会运用到生物医学当中的[3]。最后,在生物传感器的运用过程当中,将纳米技术和微电子技术相融合的传感器技术进行研究,也是传感器在未来发展当中经常会遇到的。生物医学传感器如下图所示。

 

二、植入式电子系统

 

除此之外,植入式电子传感器也是在生物医学当中经常会遇到的微电子技术。由于人体的很多生物特征都是在人体的内部才能够发现的,因此,在生物医学领域,也需要在人体的内部植入一定的电子设备,从而能够顾实现对人体内部的生命特征和医学中所需要的其他的人体内部的参数进行测量,并根据测量出来的数据从而能够实现对人体疾病的判断,并相应对人体的疾病进行治疗。在这种情况下,植入式电子系统就开始在医学领域得到广泛的应用。随着电子技术的不断发展,在通常的情况下,可以采取多种方法对人体内植入一些植入式的微电子系统,最常见的是将没有任何毒性的材料植入病人的身体内,值得注意的是这种材料能够不会与生物具有相斥性[4]。

 

在生物医学微电子技术的研究当中,与植入性电子系统相关的主要技术有以下几种情况。第一种情况是对植入式电子系统的天线进行设计的技术,这种技术主要是针对将天线进行微型化处理的问题的技术。第二种情况是对射频电路进行设计的技术研究,这种技术主要是为了针对生物体的体内和体外之间的通信环节所进行的技术。第三种技术主要是低功耗植入式集成电路的生物医学微电子技术,这种技术主要是针对一些电子设备在生物体内由于长时间的工作,会给人体产生过多的热量,从而影响到生物体健康的一种技术。第四种情况是指为生物体内的电子系统提供运转所需要的能量的生物技术,这个技术主要是针对植入式电子设备需要能量的供给进行设计并运用的。第五种情况就是对电子系统设备的微弱的电子信号进行捕捉的技术,由于人所处的环境是十分复杂的,所以有时候很难捕捉到植入式微电子设备的信号,因此,在这种情况下,就需要采用这种对微弱信号进行捕捉的技术。最后一种技术是对微电子植入技术进行封装的一种技术,通过对微电子植入技术进行封装,从而实现微电子设备在人体内的健康运转,并且不会对人体造成伤害。下图为植入式电子系统图。

 

三、生物芯片技术

 

生物芯片是最近几十年才开始进行广泛使用的技术手段,二十世纪八十年代的时候,微电子技术取得了极大的发展,科学家将生物的活性分子和有机功能的分子通过装配构造一个微型的电子设备,在这种微型的电子设备内部,包含了对生物体体内的信息进行收集的系统,和对生物体内的信息进行处理的系统以及对生物体体内的信息进行传输的系统。从二十世纪九十年代开始,经过了十年的发展后,生物芯片的发展进入了另外一个高度,在这个时候,生物芯片能够对各种生物体进行工作,除此之外,电子芯片甚至还可以对生物体的细胞以及生物体内的软组织的基因信息进行读取,因此,生物芯片在这时候甚至被形象地称为“人体内的小实验室”。在目前的社会当中,生物芯片技术得到了广泛地应用,其中比较显著的生物芯片是基因芯片,如下图所示[5]。

 

结束语:

 

随着科技水平的不断提高,微电子技术已经得到了广泛地运用,尤其是在生物医学领域。生物医学传感技术、植入式电子系统技术以及芯片技术等为生物医学领域的发展注入了活力,促进了生物医学领域的发展。

 

上一篇:老子的思想范文 下一篇:比较英语范文