光电材料范文

时间:2023-10-30 17:00:11

光电材料

光电材料篇1

瞬态光伏技术(TPV)能够有效探索半导体功能材料中光生电荷的输运性质,是一种无损检测技术。简述了利用瞬态光伏技术探索半导体功能材料的光电性质,包括分析功能材料的类型、载流子的传输方向、载流子的寿命、分离效率等信息,这对我们理解半导体功能材料的各种光物理过程是非常有益的。

关键词:

瞬态光伏技术;光生电荷;光生电子-空穴对;光生载流子

瞬态光伏技术是微区扫描技术中表面光电压的一种。表面光电压就是半导体的光伏效应,当半导体的表面被大于其带隙能的光照射时,半导体价带(VB)中的电子由于吸收了光子的能量,跃迁到半导体导带(CB),价带中留下空穴,产生光生电子-空穴对,这种光生电荷的空间分离产生的电势差为光伏效应,W.G.Adams在1876年最先观察到这一现象。1948年以后,半导体领域的开拓使得光伏效应成为一种检测手段,并应用于半导体材料特征参数的表征上。不同于稳态表面光电压(SPS)检测在连续波长的光激发下的光生载流子(电子或空穴)的分离结果,瞬态光伏技术检测的是在极短的光(纳秒ns或飞秒fs级别)激发后的光生载流子的产生、分离、复合等一系列动力学行为。

1瞬态光伏技术的发展

瞬态光伏的说法源于英文Transientphotovoltage。这种检测方法也有许多其他的表达方式,如时间分辨光伏等。最早利用瞬态光伏技术的是E.O.Johanson[1],1957年Johnson通过此技术探索了多种半导体中少数载流子的寿命。瞬态光伏技术的发展依赖检测仪器中光源的使用,Johnson采用的光源为电火花隙(Sparkgap),它的时间分辨率在微秒范围内。J.Hlavka和R.Svehla[2]使用发光二极管作为光源,将测试装置从等效电路上进行分析,得到的时间分辨率为100ns。这一技术的改进对未来瞬态光伏技术的迅速发展起到了至关重要的推动作用。随着具有超快时间分辨率的脉冲激光器作为光源,瞬态光伏的时间分辨率也逐渐提高,在各类型的半导体材料中都有应用,探索这些半导体材料的光电性质,获得了很多优异的成果。例如2004年,B.Mahrov等人研究了空穴导体CuSCN等和电子导体TiO2等的瞬态光伏,分析得知不同的半导体类型(空穴或电子导体)导致了电荷注入方式不同[3]。

在利用瞬态光伏技术作为研究手段的工作中,德国Th.Dittrich研究小组获得了令人瞩目的成绩。他们不仅检测到时间分辨率为纳秒级的光伏结果,同时研究了不同类型半导体材料的瞬态光伏性质,建立了多种模型[4]。V.Duzhko博士在低电导材料方面也做了大量的工作,从单一的Si器件到现在的复杂器件,如染料敏化的TiO2器件、量子点电池器件等[5]。此外,瑞士的AndersHagfeldt小组[6],英国的BrianC.O'Regan小组[7]和日本的KunioAwaga小组[8]也对半导体材料的瞬态光伏性质有卓越的研究。在国内复旦大学应用表面物理国家重点实验室的侯晓远教授课题组和吉林大学光化学与光物理实验室的王德军教授领导的科研小组对瞬态光伏技术的研究都取得非常好的研究成果。侯晓远教授课题组从有机薄膜半导体等瞬态光伏结果发现了极快激子解离过程[9]。王德军教授课题组在研究功能半导体材料,如TiO2、ZnO、Fe3O4、BiVO4等新兴的半导体材料的瞬态光电性质有重要发现[10-13]。

2瞬态光伏技术的装置及获得的信息

理想的光伏测试技术可以调节不同的参数对半导体功能材料进行测试,例如,调节系统的温度、压力、气氛等一系列参数,也可以选择不同的光源(连续光源或者脉冲激光源)进行瞬态光伏(时间分辨的光电压)的测量,如图1a中所示。作为一种无损检测设备,瞬态光伏系统的搭建通常是按照图1b中的简图自组装搭建。光源为脉冲激光器,测试过程中经过衰减的激光可以通过渐变圆形中性滤光片进行调节,衰减后的激光通过反光镜直接照射到样品池中。样品池的被测信号经过信号放大器,由数字示波器进行检测记录。光生电荷的产生是一个极其快速的过程,相比之下,光生电荷载流子的分离、扩散、转移和复合则较慢,一般时间分辨率在纳秒、微秒甚至更长的时间,光生载流子在不同时间分辨率内的传输动力学行为对半导体功能材料的活性有着重要的影响。例如,半导体的光电转换效率就受到半导体光生电子空穴对的分离程度影响;光生载流子的传输方向影响功能材料的性质及其应用;同时光生载流子的寿命及其具有的能量可以决定体系的氧化还原性等。因此,通过瞬态光伏技术可以获得半导体功能材料光生电荷的分离效率、获得光生载流子(电子或空穴)的扩散方向、光生载流子的扩散寿命等微观动力学信息。通过这些信息,我们可以分析半导体功能材料的物理化学性质,以及这些性质与材料活性之间的关系,这对进一步提高和优化功能材料的性能是非常重要的。

3瞬态光伏获得材料类型和载流子传输方向

利用瞬态光伏技术可以判断功能材料的类型。例如图2所示,2a中为n型Si的瞬态光伏谱图。它显示当材料的表面受到光照以后,n型半导体的瞬态光伏信号为正,光生电子向材料的体相迁移,光生空穴向表面迁移,并在表面大量聚集,因此表现为正信号。2b中p型Si的瞬态光伏信号为负。当p型材料受到光激发以后,光生电子向材料的表面移动,光生空穴向体相移动,因此信号为负[14]。

4瞬态光伏技术比较材料的分离效率及寿命

利用瞬态光伏技术可以分析半导体功能材料的光生电荷分离效率和光生载流子的扩散寿命。在光催化应用中,光生载流子的分离效率及寿命影响着催化剂的活性。光生电子-空穴对的分离效率越高,载流子的寿命越长,说明在光催化降解过程中参与氧化还原反应的载流子越多,催化活性越高。如在C掺杂的TiO2材料(C-TiO2)中[10],不同的煅烧温度获得的样品,由于光电性质的不同,催化活性具有明显差异。如图3a所示,瞬态光伏信号在最大值处(P2峰)归因于光生电荷载流子的扩散,与P25的瞬态光电压曲线相比,在130℃、150℃、180℃煅烧温度制备下C掺杂TiO2样品P2峰位的响应时间分别是19ms、32ms、30ms,C的掺杂使得样品的扩散光伏寿命明显延长,说明C-TiO2的光生载流子的分离效率更高,光生载流子的复合更慢,因此有更多的载流子参与光催化的氧化还原反应,催化活性更高,如图3b。

5瞬态光伏技术的未来及展望

利用瞬态光伏技术研究半导体功能材料的光电性质目前已经取得了很大进展。未来这一研究领域是否能够取得更大的突破和快速的发展,很大程度上仍然取决于人们对光生电荷载流子输运的动力学过程和光电功能半导体活性之间关系的更深入的研究。飞秒、皮秒时间分辨瞬态技术是未来的发展,在超快时间分辨率内的半导体光电性质,对于我们深入探索光电功能体系的活性及机理有着重要的作用。

光电材料篇2

关键词:农田信息;采集装备;光伏电池;封装材料

中图分类号:TQ325文献标识码:A 文章编号:1672-3791(2015)08(b)-0000-00

传统采用干电池或蓄电池的手段对农田监测设备进行供电,然而农作物生长周期一般都比较长,因此需要监测的时间也比较长[1]。由于干电池或蓄电池储能有限,不适合于长时间工作,另外大面积地更换电池非常费时与费力,而且投资成本较大,因此采用干电池或蓄电池的监测手段往往只限制在实验室环境中。光伏电池可以通过获取太阳的能量对农田信息采集装备持续供给能量,这样为信息采集装备实现全天候农田环境中农作物的生长状况监测提供了可能[2, 3]。

本文首先介绍目前农田信息采集装备中运用到的光伏电池的封装技术,然后介绍了农田信息采集装备中光伏电池的封装材料包括:封装胶和封装膜的理化特性,指出了这些材料的在农田中运用的范围。本文内容可以为农业科技工作者合理选用光伏电池材料来提高农田信息采集装备电能供给性能提供了参考。

1 封装技术

目前,农田信息采集装备中使用到的光伏电池的封装技术主要采用非玻璃封装和玻璃封装。

1.1 非玻璃封装技术

非玻璃封装技术[4]一般采用树脂板、复合封装膜、金属膜等,然后利用真空加热加压手段,对光伏电池板进行封装。非玻璃封装材料具有抗老化、质量轻、柔韧性能好等的优点,采用非玻璃封装材料可以制作出柔性电池,但由于目前其所需加工工艺比较复杂且生产成本相对较高,因此非玻璃封装技术没有被广泛推广到农田信息采集装备电能供给用的光伏电池中。

1.2 玻璃封装技术

玻璃封装技术[5]一般采用乙烯-醋酸乙烯共聚物膜(Ethylene-Vinyl Acetate Copolymer, EVA)、热塑性聚氨酯薄膜(Thermoplastic Polyurethane, TPU)、聚乙烯醇缩丁醛膜(Polyvinyl Butyral, PVB)等原料来生成封装材料。玻璃封装光伏电池时,将敷设好的光伏电池放入层压机内,通过真空抽气机将光伏电池板组件内的空气抽出,然后加热使胶膜熔化,熔化后的胶膜将电池、玻璃和背板粘接在一起,冷却取出组件,加上金属边框后,完成光伏电池的制作。相对于非玻璃封装材料而言,其具有的显著特点包括:成本较低、加工工艺简单,因此玻璃封装技术被广泛应用于生产和加工农田信息采集装备电能供给的用光伏电池中。

2 封装材料

目前,农田环境监测装备中用于光伏电池的封装材料主要包括:封装胶和封装膜。

2.1 封装胶

封装胶可以防止光伏电池在农田环境中受到水汽、灰尘、农药等侵蚀的影响。下面主要讨论了农田环境监测装备中常用的三种光伏电池封装胶包括:环氧树脂胶(Epoxy Resin)、有机硅胶以及丙烯酸树脂胶(Acrylic Acid Resin))等的性能及其适用范围。

2.1.1 环氧树脂胶

环氧树脂指含有两个或两个以上环氧基团,良好的粘接性、绝缘性和耐腐蚀性等的诸多优点,被广泛运用光伏电池组件封装中[6, 7]。但由于聚合物中网状结构的存在,造成了其阻氧性能、防水性能都比较低,因此必须解决芳香环抗紫外辐射的性能,目前较好的解决办法是在环氧树脂中添加紫外光接收剂,防止环氧树脂胶在长期紫外光照射下黄变,提高了耐候性,使得环氧树脂胶可以被应用用于农田环境下的光伏电池中[12]。

2.1.2 有机硅胶

有机硅胶兼具有机性能和无机特性。有机硅胶的Si-O 键长为0.193nm,比C-C (0.154nm)的长,键对侧基转动的位阻小;Si-O-Si 的键角(145°) 比C-C-H及H-C-H的键角(109°)大,这使得Si-O之间易发生转动,链段之间相对比较柔顺,即使在-60℃的低温环境下,有机硅胶也能保持良好的性能,因此有机硅胶可以适应于冬季气候较低的农田环境监测装备应用中[8]。

2.1.3 丙烯酸树脂胶

丙烯酸树脂是由丙烯酸酯类和甲基丙烯酸酯类以及其它烯属单体共聚制成的树脂,但是,丙烯酸树脂分子呈现出线形结构,且缺少交联点,导致材料在耐水性、耐候性、抗热性指标都较低,因此丙烯酸树脂胶光伏电池不适合于直接运用于开放式的农田环境监测应用中。有研究显示,有机硅材料的添加使得丙烯酸树脂光伏电池在农田环境信息采集装备中的应用成为了可能,但其性能有待于农业科技工作者进一步验证。

2.2 封装膜

农田环境信息采集装备中应用到的常见的光伏电池封装膜有:乙烯-醋酸乙烯共聚物膜、热塑性聚氨酯薄膜、聚乙烯醇缩丁醛膜等。

2.2.1 乙烯-醋酸乙烯共聚物薄膜

乙烯-醋酸乙烯共聚物(EVA)薄膜具有良好的柔软性和橡胶性质的弹性,在低于-60℃温度下仍能保持较好的挠性,因此EVA薄膜光伏电池可以被应用于冬季气候较低的农田环境信息采集装备中;目前EVA薄膜是作为封装农田环境监测装备中能源供给用的光伏电池中最主要材料。

2.2.2 热塑性聚氨酯薄膜

目前,提出的拜耳材料技术可以消除热塑性聚氨酯薄膜交联时间,这样可以很大程度上减轻热塑性聚氨酯薄膜真空层压机的负荷,有助于简化热塑性聚氨酯薄膜的生产工艺和减低其生产成本,使得到热塑性聚氨酯薄膜可以被广泛应用于农田环境信息采集装备中能源供给用的光伏电池中去。

3 结语

目前,EVA材料仍然是封装农田信息采集装备中能源供给用的光伏电池的主要材料,但随着生产技术的不断改善,新型优质的材料生产成本和周期也将会进一步减少,其它一些新型封装用的材料(如PVB)在农田信息采集装备用到的光伏电池中应用比例也将会逐渐增大,新型封装材料的应用将进一步提升农田信息采集装备的总体性能。

参考文献

[1] 万其号, 布库, 李岩, 等. 国外自动监测控制装置在农牧业机械中的应用[J]. 中国农机化学报, 2015, 1: 040.

[2] 肖摇婷,庄义庆,糜摇林,等. 物联网传感技术在大棚草莓生产中的应用[J]. 江苏农业学报,2014,30(5):1185-1187.

[3] 李飞飞, 缪t晟, 吴华瑞, 等. 农田能量异构无线传感器网络簇首选择机制[J]. 江苏农业科学, 2014, 42(8): 400-402.

[4] 张秀清, 李艳红, 张超. 太阳能电池研究进展[J]. 中国材料进展, 2014, 33(7): 436-441.

[5] 密保秀, 高志强, 邓先宇, 等. 基于有机薄膜的太阳能电池材料与器件研究进展[J]. 中国科学: B 辑, 2008, 38(11): 957-975.

[6] 余谟鑫, 戴子林, 陈少纯, 等. 太阳能电池封装技术[J]. 材料研究与应用, 2010, 4(1): 1-4.

[7] 邵燕瑛. 太阳电池组件封装技术的探讨[J]. 能源工程, 2008 (3): 32-34.

光电材料篇3

电子科学与技术(以下简称“电科”)专业是以培养具备微电子、光电子、集成电路等领域宽厚理论基础、实验能力和专业知识,能在电子科学与技术及相关领域从事各种电子材料、元器件、集成电路、电子系统、光电子系统的设计、制造、科技开发,以及科学研究、教学和生产管理工作的复合型专业人才为目标的工程专业。作为电科专业教育中重要内容的光电子技术,不仅是当代信息技术两大支柱之一,而且随着现代科学技术的发展持续焕发着生命活力。而让光电子技术保持如此强劲发展势头的主要原因之一,正是光电子材料与器件的广泛应用,例如激光器与新型光电探测器的应用的人你还。另外,诸如纳米光电材料与器件、光子晶体及相关器件、超材料及相关器件与表面等离子体激元及器件等新型光电子材料与器件的研究与应用,是目前国际上光学与光电子学研究领域的前沿热门方向。由此可见,学习光电子材料与器件的相关知识,不仅对电科学生知识体系的构建与就业方向的确定具有积极的影响,也为那些将来希望从事新型光电子材料与器件科研工作的学生,提供了坚实的理论基础与知识储备。然而,根据笔者的调研,虽然国内许多重点大学的电科专业都开设了光电子技术课程,但很少有大学专门开设光电子材料与器件这门课程。而由于光电子技术的内容多、涉及知识面广,教学课时又往往有限(一般为32或48个学时),因此在光电子技术的实际教学过程中,讲授教师往往重视光电子技术基本概念与理论知识的教学,而轻视光电子材料与器件的教学。该文从光电子材料与器件的研究内容、应用及发展等方面说明其在电科专业教育中的重要性,并结合自身光电子材料与器件课程的教学经验,研讨电科专业中光电子材料与器件的教学方法。

1 光电子材料与器件简介

光电子材料是指能产生、转换、传输、处理、存储光电子信号的材料。光电子器件是指能实现光辐射能量与信号之间转换功能或光电信号传输、处理和存储等功能的器件。自1960年美国科学家梅曼发明世界上第一台红宝石激光器以来,光电子材料与器件如雨后春笋般发展迅速。在短短的50多年里,光电子材料与器件经历了从红宝石激光器的发明,到半导体激光器、CCD器件及低损耗光纤的相继问世;从各种光无源器件、光调制器件、探测与显示器件的小规模应用到系统级集成制造实用化阶段;从大功率量子阱阵列激光器的出现再到光纤激光器、光纤放大器和光纤传感器的诞生。光电子材料与器件从未停止过发展的脚步,并正在不断深刻影响着人类社会的方方面面。在实际需求的引导下,各种新型光电子材料与器件层出不穷,性能也不断提高。尤其是近年来,随着微米及纳米级加工技术的成熟,新型的微纳光电子材料与器件的研究异常活跃。纳米光电材料、光子晶体、超材料、表面等离子体器件等领域的研究成果丰硕,为未来光电子器件的微型化、集成化发展奠定了坚实的基础。

综上所述,光电子材料与器件在当代信息产业与科学技术中具有极其重要的地位,因此,光电子材料与器件这门课程不仅应当单独作为一门课程独立教学,而且应该作为重视工程教育的电科专业的核心课程。

2 光电子材料与器件课程教学研究

2.1 光电子材料与器件课程的教学形式、课时安排与教材选择

光电子材料与器件课程不仅包含丰富的理论知识,例如光电子材料的物理特性以及光电子器件的工作原理等,而且与实际应用结合精密,因此,本课程宜采取理论教学与实验教学相结合的教学形式。

在课时安排方面,作为电科专业的一门核心专业课程,光电子材料与器件课程的总课时应不低于32学时(2学分),理论课学时不低于26学时,实验课不低于6学时。

另外,在教材选择方面,由于光电子材料与器件是光电子技术中的一部分内容,而目前国内关于光电子技术方向的参考书籍很多,其中亦不乏一些光电子技术课程的经典教材,例如西安电子科技大学安毓英主编的《光电子技术》[1],西安交通大学朱京平主编的《光电子技术基础》[2]等。虽然这些光电子技术参考书中或多或少都会介绍与光电子技术相关的材料与器件,但是,目前专门介绍光电子材料与器件方向的教科书却是少之又少,市面上仅有国防工业出版社2012年出版的侯宏录主编的《光电子材料与器件》[3]一书。加之,该书中所涉及的理论知识较深,基础浅薄的本科生很难驾驭。由此可见,对于光电子材料与器件这门新兴课程而言,设立统一的教材并不合适。因此,笔者建议该课程的讲授教师根据理论教学与实验教学的内容,自行编写该课程的讲义与课件。

2.2 光电子材料与器件课程的理论教学

按照电科专业的专业定位以及培养目标,光电子材料与器件课程的理论教学也应该突出“工程”内容。传统的光电子技术教学中所重视的原理、定律与规律等内容,在光电子材料与器件教学中要弱化;而传统光电子技术教学中往往被弱化乃至忽视的光电子材料与光电子器件的相关知识,要在光电子材料与器件课程教学中占主体地位。如此才能保证在有限理论课时的前提下,让学生对光电子材料与器件有一个全面的认识。

在教学内容的设置方面,由于光电子材料与器件主要应用于光电子技术之中,因此,为了便于学生的理解与知识体系的构建,笔者建议光电子材料与器件课程理论教学的章节设置按照光电子技术的章节设置进行。以笔者讲授光电子材料与器件理论课程(共26学时)为例,该理论课程共被分成了绪论(2学时)、激光原理与典型激光器(5学时)、太阳能电池(4学时)、光通信器件与材料(5学时)、光探测器件(5学时)、光电显示器件(3学时)与光存储器件(2学时)等七个章节,这七章内容基本囊括了光电子技术中光产生、光转化、光传输、光探测、光显示以及光存储等各个重要环节中最为典型的器件以及所用到的材料。另外,在每章内容的设置上,也尽可能突出“工程”内容,弱化“理论”知识。下面,笔者将详细介绍笔者在光电子材料与器件教学中各章的教学内容。

第一章绪论主要包括光电子材料与器件课程简介以及光电子技术的基本知识简介。在光电子材料与器件课程简介中,向学生介绍课程设置的目的和意义、课程的主要内容、教学与考试方式与参考资料等。通过这部分内容的介绍,让学生对本课程的意义、内容、侧重点有一定的认识。在光电子技术基础知识简介中,重点向学生介绍光电子材料与器件与光电子技术的关系,并通过对光电子技术的概念、特征、发展等方面的介绍,让学生对光电子技术以及光电子材料与器件有一个整体的认识。

第二章激光原理与激光器重点介绍几种典型激光器的材料、结构与工作特性,其主要内容包括三个部分:激光原理简述、典型激光器与激光器的应用。在激光原理简述部分,由于多数电科专业在学习光电子材料与器件课程之前已经修过激光原理等类似课程,所以该部分内容为简略介绍的内容,主要帮助学生回顾激光的特征、历史与光辐射理论等知识点。而第二部分内容典型激光器是本章内容的重中之重,在该部分内容中,将依次向学生介绍固体、气体、液体与半导体这四大类激光器中的典型激光器的结构、特征与工作特性等知识。由于发光二极管与半导体激光器结构与工作原理上的相似,在介绍完半导体激光器后,可以顺理成章地介绍发光二极管的结构与特征。另外,本章最后还简单介绍了激光器的几种常见应用。

太阳能电池虽然是光电探测器中光伏效应的一种特殊应用,但是由于它在现如今光电子技术产业以及光电子器件中的重要地位以及良好的发展趋势,该部分内容被独立成一章。在第三章太阳能电池中,主要分两小节给学生介绍,第一小节介绍当今能源与环境问题以及太阳能的开发和利用,让学生了解当今能源资源的现状以及新能源研究与应用的迫切需求,然后介绍太阳能利用的历史以及发展趋势;第二小节正式介绍太阳能电池的工作原理、结构以及特性等知识。

第四章光通信器件与材料主要介绍的是光通信系统中所用到的有源与无源光器件。本章内容共分为两小节:第一小节介绍光纤通信的基础知识,包括光纤通信的定义,光纤的结构、导光原理、发展历史,以及光纤通信系统的组成与特点。第二小节正式介绍光纤通信系统中所用到的各类光电子器件以及构成这些器件的核心材料。在光纤通信中,最重要的器件当属光纤,所以,本节开始就着重介绍光纤的相关知识,包括它的结构、原理、分类、特征参数与传输特性。然后,又将光纤通信系统中的其它光电子器件分为有源与无源器件两类,并分别介绍了这两类光器件中的代表器件:掺铒光纤放大器与波分复用与解复用器。最后,在本章结尾还介绍了光纤通信系统中其它几种常用光器件,例如光耦合器、光衰减器、光环行器等。

第五章光探测器首先介绍了光电探测器的物理效应、性能参数、噪声;其次,按照光电探测器物理效应的不同一一介绍了几种典型的外光电效应探测器(光电管与光电倍增管)与内光电效应探测器(光电导、光电池与光电二极管)。教学的重心仍然放在对探测器结构、工作原理以及特性等方面。

第六章光显示器件重点介绍四种光显示器:阴极射线管、液晶显示器、等离子显示器与电致发光显示器。

第七章光存储器件主要介绍了现如今最常用的一种光存储系统―― 光盘系统以及其中最总要的器件光盘。

2.3 光电子材料与器件课程的实验教学

光电子材料与器件实验课程的教学要与理论教学紧密相连,并重点介绍理论课上讲解过的光电子材料与器件,实验课程的学时应不低于6学时,开设的时间最好在理论教学完成之后,以保证学生在实验前已对实验器件与实验原理有一定的了解。在实验项目的设定方面,既要保证与理论课程内容的相辅相成,又要尽量避免与其它课程实验项目的重复,造成资源的浪费。例如,许多大学的电科专业都已经将激光原理一课作为该专业的核心专业课程,并配备了相应的激光器实验。在这种情况下,如果在光电子材料与器件实验教学中再次引入激光器的实验内容,不仅消耗了宝贵的实验时间,实验效果也会大大降低。

下面跟大家简单介绍笔者在光电子材料与器件实验教学(6学时)中的实验安排。

(1)实验内容:共包含六个实验项目,它们分别是:光控开关实验、光照度计实验、红外遥控实验、PSD位移测试实验、太阳能充电实验与光纤位移测量系统实验(每个实验1学时)。各实验中都应用到了一个或几个核心光电子器件,这些光电子器件基本涵盖了学生在理论课程中所学到的最为重要的几类器件,例如光控开关实验应用到了光电探测器中的光敏电阻作为核心元器件;而红外遥控实验中用到了发光二极管光源与红外探测器等光电子器件。

(2)实验要求:以往的光电子技术实验往往重视现象的观察与定性分析,但经笔者调研,这种实验方法很难最大限度激发学生的求知欲与动手能力,因此,在对原有的实验指导书进行改良后,笔者自行编写了实验的指导书,并在每个实验项目中加入了一些测量与定量分析的实验内容。例如太阳能充电实验,原来的实验指导书只是观察太阳能充电的效果,但是,在新改良的实验指导书中,要求同学测量不同光源照射下太阳能电池的输出电压与输出电流,并要求学生分析比较其差别。通过这种方式,充分调动学生的实验积极性,在具体的实验教学中也取得了很好的效果。

(3)实验方式:分组实验,共同撰写实验报告。这样,不仅提高实验效率,还能够锻炼学生的团队协作意识。

(4)考核方式:根据每位学生实验完成的情况与实验报告撰写的情况综合评分。

3 结语

光电材料篇4

,供电局优秀抄表员,沉稳、内敛,面对平凡、枯燥、乏味、吃力不讨好的抄表工作,以认真负责的工作精神、热情周到的服务态度、平和乐观的生活心态赢得了领导和同事的认同和赞誉。

爱岗敬业尽职尽责

负责辖区内3200多户居民和商服的抄表催费工作,客户分布范围大,分表箱又占多数,每个月他都得靠双脚走遍了辖区内的家家户户,不漏一表,不落一户,抄表到户,催费到家。辖区内有一户“钉子户”商服,业主十分蛮横,抄表时极力阻止,后来干脆将电表给砸了。面对如此跋扈的客户,也很气愤,可又想争执无法解决问题,抄表员的责任是将电费回收回来,他就平静下来,和业主攀谈起来。他先把话题岔开,打破彼此之间紧张的气氛,气氛缓和后,他就耐心的和业主谈起了对业主经营困难的理解和自己的工作职责,业主被的工作精神打动,主动陪了表并缴纳了电费,并说“如果我的员工,也像你这样就好了”。

,局开始换集抄表,为了开个好头,局里选择让第一个换表。十二月份,正直冬天最冷的时候,站在外边两个小时人就冻的透透的,而的辖区又有很多单元没有单元门,三千多块表,十五天内必须换完。为了赶工期,每天早上六点就出家门,装上成箱的电表,带上自己买的电钻,一干就到晚上实在看不清楚的时候。手冻的实在拿不了钻了,就放在怀里暖和暖和,脚冻的受不了了,就跺跺脚、跑跑步,中午就简单的吃点包子、米饭,硬是提前两天完成了任务,为全局换表开了个好头。

明察暗访反窃电能手

为保证电量及时抄回,实现降损增收,利用一切业余时间,学习查偷窃电知识,到现场对可疑用户和“惯偷”用户进行检查,并形成了一套应对不同偷电用户的方法。

位于佳市永安街附近的一户居民不只是个“惯偷”,而且是个不折不扣的“赖皮”,以前曾经被查到过偷电,抄表员给他打电话,知道事情可能不妙,他就拒接电话,回到家后将断开的零线重新接上,抄表员第二天来找他,他就来了个死不承认。脑袋灵光,知道他的秉性,发现他偷电后,就用照相机拍了下来,并找来人证,“赖皮”回来后,无言以对,第二天马上到供电局交上了罚款。

辖区内的一家“小饭桌”客户,每天要给十几个孩子做饭,而且全部都是用电器,有一个月电量突然下降很多,很明显是偷电。检查了电表,却没有发现任何问题。干过生产,对线路十分精通,他就开始对线路进行检查,结果发现这位客户是通过下暗线用了路灯电。找到客户,说明了来意,客户羞愧难当,很快交上了罚款。

真诚服务奉献爱心

是个热心肠人。有一次,他去佳市太阳市场附近的一户居民楼催费,敲门后屋内有人应声,等了好长时间,门才缓缓打开,扑面而来一股浓浓的中药味道。一位骨瘦如柴的中年妇女出现在房门口,眼窝深陷,面色苍白,头发凌乱,有气无力地问他有什么事,告诉她欠电费后,中年妇女回屋半天才出来解释说,自己身染重病不便行动,丈夫离家出走,麻烦代她交上电费。帮她交了电费,并将她的情况反映给了领导,为她争取到了局设立的“爱心基金”,买了米、面、油等生活必需品给她送去,中年妇女感动得流下了眼泪。

在收取怡安社区办公楼电费时,了解到怡安社区有许多困难孤寡老人,生活十分困难。就牵线搭桥,使局和怡安社区结成帮扶对子,帮助老人解决日常生活中的困难,为他们送去家人温暖。

光电材料篇5

【关键词】光伏材料;有机聚合物;器件

在当今全球能源高度紧张的背景下,由于高科技的快速发展,对太阳能发电领域的科技开发已经成为一个标志性起点,对光伏效应的太阳能电池的充分利用是当今高科技发展背景下清洁能源利用的根本目的,同时也是现代较热门的研究对象,原因在于传统无机材料的太阳能电池生产工序较为复杂,生产成本较高,设备较为昂贵,材料的选择不够便利,并且能量转换效率不理想等一系列原因,导致其发展受到了阻碍。

目前,光伏电池的发展方向主要有:进一步使太阳能电池性能得到改善、降低太阳能电池的制造成本,同时还要重视减少因大规模大批量的生产给环境带来的不利影响。近几年,由于导电聚合物的研究与开发,大大提高了开发低成本的有机聚合物光伏电池的可能性,有机光伏电池的主要具备有机化合物种类多样化,有机分子的化学结构较容易修饰,化合物的提纯与制备的加工工序较简便等主要优点,同时还较容易制造柔性器件、特别形状的期间以及大面积器件等,然而当前有机光伏太阳能电池与传统的无机太阳能电池相比,其光能与电能之间的转化能力还处于劣势,所以,其研究的重点是在于如何提升有机光伏电池的光电转换率。有机光伏太阳能电池与传统的无机碳杨能电池的工作原理较为相近,二者都是以半导体界面的光能福特效应为基础进行发电工作。

在当前的太阳能电池中,传统的无机太阳能电池在理论及研究方面发展较为成熟,然而有机半导体光伏太阳能电池依然处在理论构思和研究过程当中。

一、有机光伏材料的介绍

有机光伏材料与无机材料的基本区别在于有机光伏材料中的光生激子之间具有强烈的束缚作用,一般都是紧密的束缚在一起,通常不会出现自动分离而形成单独的电荷;其电荷是通过跳跃的方式在规定区域内进行分子传输工作,并非带内传输,因而其迁移率较低;相对于太阳光光谱来说,对于光的波长吸收范围较为狭窄,但其吸收系数很高,100纳米的薄膜就可以收集到较强的光密度;有机材料一般在有水条件下与有氧条件下处于不稳定状态;对于其本身是一维半导体的情况来说,其本身的电能与光性都各自具有较高的各向区别,这种特性可以为器件的研究设计带来很大的利用价值。

分子链中能够通过部分离域的不同轨道来完成光能吸收和电荷传输等过程,同时分子链中还存在共轭体系是有机光伏材料器件的激活材料所必须具有的功能。有机光伏材料还可以按照相应的机械性能与加工性能分为可溶材料、不溶材料、为荣材料以及液晶材料。其中一般包括小分子、低聚物分子、高聚物分子、液晶分子等。能够吸收可见光线的低聚物或者单体物质,称之为发色团,在此基础上,根据其本身的可溶性分为染料和颜料,一般可溶性较强或具备一定溶解性的被称为染料,没有溶解性或具备较弱溶解性的称为颜料。在通常情况下,激活层材料所具备的溶解性能决定着有机光伏材料电池的制作工艺。在制作过程中,对于可溶性较强的染料以及可溶聚合物应采用溶液旋转涂抹的方法或刮涂成膜等方法,对于不溶或难溶的颜料分子主要采用真空积沉法成膜,晶体颜料分子则应使用物理蒸发成膜的方式来对其进行加工,本文重点概述有机光伏材料中的高分子材料与低分子材料。当今主要用于有机光伏器件研究的材料有噻吩(PTH)衍生物、聚对苯(PPP)衍生物、聚苯乙炔(PPV)衍生物、聚苯胺(PANI)等一系列高分子材料,这些聚合物基本具有较大的共轭系统,可以利用相应的掺杂或者化学分子修饰来使材料的导电性能得到调节。

由于液晶分子具备很高的电子荷载迁移率同时具有较长的激子扩散长度,因而在近几年的有机光伏材料太阳能电池研究中得到重视,液晶分子材料会在一定的温度范围内介于固态与液态之间,在这种状态之下,其分子更加便于重新排列或自行组合,同时还能够充分发挥自身的机械性能,所以晶体分子对光伏电池的研究与应用方面发挥了更加有利的作用。

二、有机光伏电池的基本工作原理

有机光伏电池的基本工作原理相近于无机太阳能电池原理,其基本原理如下:

1、有机光伏器件在经过一定的光照后,会将具有能量的光子吸收到半导体层内,从而激发电子从价带到导带之间的移动,同时在价带区域留出空隙,这种空隙通常被称为“空穴”,这样的空穴中带有正电荷。

2、传统半导体内的被激发电子和通过上述过程所形成的空穴之间会出现自由的反电极方向运动,同时在导电聚合物体中所受入的射光子激发而形成的电子与空穴之间会产生相互束缚作用,从而形成激子。

3、通常情况下,这些电子与空穴的形成都是有光子的激发作用来完成的,如若在电场之内或在电场的界面位置上,这些电子与空穴所形成的组合将会产生分离活动,形成单独的电子与空穴,这也就是人们所说的带电荷载流子,它们的互相迁移运动就形成了光能电流,如图1所示。

然而有机材料的机子奋力活动与移动现象并不是全都有效的,因此,为了时光能更加有效地向电能转变,务必要具备以下几个具体条件:首先,在有机光伏材料太阳能电池中的激活区域内的采光条件必须要好,光能吸收量一定要大;其次,在对光子进行吸收后所产生的自由何在电流子必须要有足够的数目,从而使内部电场的存在表现得更加清晰;最后,在其中所产生的荷载电流子要尽可能的降低自身损耗量来向外部电路进行电能输送工作,从而使光能与电能的转换率有所提高。

然而在效果上并没有达到预定要求,事实上的光能向电能转换过程中依然有大量损耗现象的存在,是有机光伏材料太阳能电池的实际使用效率变得很低。在光能向电能转换的过程中会受到不同因素的影响,从而大量损耗,在光吸收的过程中,光能的折射与反射作用会使光能有大量的损耗,从而影响了光电转换效率,在激子产生的过程当中,激子复合也会导致能量流失,另外在光转换过程中的激子扩散、电荷分离、电荷传输、电荷收集等各个环节中也存在不同的能量流失,直接导致了有机光伏材料太阳能电池使用率降低。

三、有机光伏材料的未来发展趋势与研究方向

通过人们近几年对有机光伏材料进行研究与开发,并对其技术不断深入创新后,在有机光伏材料太阳能电池的研究方面取得了相当丰硕的成果,并获得了开路高电压的发电方法,短路电流的发生几率以及填充因子影响率也比传统的无机太阳能电池低很多,较低光电流的形成原因是由于光能吸收率不够所造成的,除此之外,光电流较低的形成原因还由于电流在产生的过程中电阻对其本身的影响所造成的额外损耗,然而填充因子的形成是由于地点和在传输过程中出现的高复合影响所造成的。因此,应重点研究一下几个关键点:

1、提高光能吸收率,并相应的改善光能吸收环境。在此过程中一般采取具有红外光能吸收的聚合材料以及共轭结晶染料,同时还要改善设备的受光条件,要保证设备安置在阳光充足的地点,使其光能接受率有所提高。

2、充分利用高有序的液晶材料和具备较高流动性能的聚合材料,从而使光电流产生条件得到改善,从而有利于降低光电能的损耗量。

3、加强器件设备的优化性能与稳定性能,器件性能的提高无非是降低电能损耗量的有效途径之一。

4、加强对有机光伏材料性能的了解,同时了解相关器件的使用性能,只有掌握了有机光伏材料的性能才会使该材料能够更好地发挥其应有的作用。

与此同时,高效有机光伏材料器件还应该具备光诱导的电荷产生与分离或产生的电荷及时传输到电极等因素,并需要在同一种材料中同时完成这两个不同的过程,决定邮局光伏器件效率的基本因素在于怎样才能有效的完成这一过程。

多功能的有机光伏材料在未来发展中应通过分子设计朝着电光特性的可调节性、加工简单并能支撑较大面积的薄膜可控制度的方向发展,同时还要求有机光伏材料能够与其他材料进行良好的融合,并保证材料成本与技术成本较低。

在器件方面应采取以下措施来进行期间优化阶段:首先,要加强金属电极的优化,使其达到“欧姆接触”,从而能够更有效的收集光能,其次,在对D/A对匹配进行优化的同时还要加强对共轭聚合物带隙的调整,以便于更好的接收光能,最后,还要注重优化相分离复合材料的网络微结构,以便于其载流子的产生效率与传送效率的提高,与此同时还需要求点和载流子在复合体中的不同分组吸收与移动达到最大数值,经过上述对器件方面的优化措施,使有机光伏材料的光电转换率得到有效提升。

四、结束语

由于有机光伏材料在近几年内的研究与应用得到快速发展,并取得了良好的成果,经有关数据统计,目前有机光伏材料的光电转换率已经达到了新高,这一成果主要归功于该领域中广大的研究人员的不懈努力,相信通过不懈的努力会使有机光伏材料在未来的清洁能源发展中发挥更好的作用。

参考文献

[1]封伟,王晓工.有机光伏材料与器件研究的新进展[J].化学通报,2003(05).

[2]孙卫民,郭金川,孙秀全,周彬.缓冲层提高有基聚合物光伏电池性能研究[J].光子学报,2009(07).

[3]李真,蔡志岗,陈志强,等.偶氮苯聚合物薄膜光致微结构的研究[J].光子学报,2007

(36).

[4]段晓菲,王金亮,毛景,等.有机太阳能电池材料的研究进展[J].大学化学,2005.

[5]孟庆巨,刘海波,孟庆辉.半导体器件物理[M].北京:科学出版社,2005(21).

[6]徐明生,季振国,阕福麟,等.有机太阳能电池研究进展[J].材料科学工程,2000(18).

[7]郑建邦,任驹,郭文阁,等.太阳能电池内部电阻对其输出特性影响仿真研究[J].太阳能学报,2007(27).

光电材料篇6

[关键词]固态平板;发光二极管;氮化镓;碳化硅

中图分类号:O43

文献标识码:A

文章编号:1006-0278(2013)08-177-01

微电子技术的发展大大促进了纳米技术在平板显示技术方面的应用,目前已经开发和应用的各类平板显示技术有:液晶显示技术(LCD)、等离子体显示技术(PDP)、场致发射显示技术(FED)、电致发光平板显示技术(ELD)、真空荧光平板显示技术(VFD)和发光二极管技术(LED)等。众多研究成果表明氮化镓(GaN)及其合金的带隙覆盖了从红色到紫外的光谱范围;碳化硅也可在可见光区内有效发光,因此,氮化镓和碳化硅两种材料是近年来研究的比较多的全色光电材料。另外,与硅平面技术相容的离子注入SiO2薄膜材料,可以获得几乎遍布整个可见光区的光发射。

一、GaN材料

GaN材料研究与应用是目前全球半导体研究的前沿和热点,GaN材料所具有的禁带宽度大、击穿电场高、电子饱和速度高、热导率大、物理化学性能稳定等诸多优点,是研制微电子器件、光电子器件的新型半导体材料,并与SiC、金刚石等宽带隙化合物半导体材料一起,被誉为是继第一代Ce、Si半导体材料、第二代GaAs、InP化合物半导体材料之后的第三代半导体材料,它具有优良的光学性能,可作出高性能的发光器件,GaN基LED的发光波长范围可从紫外到可见光区。

GaN材料制作的可见光区发光器件已取得令世人瞩目的进展。2002年,化成OPTONIX、STANLEY电气、三菱电线工业联合开发了发光效率达301m/W的白色发光二极管(LED)。该LED在发出波长382nm紫外光的GaN类(紫外LED)中配合使用了将紫外光分别转换为红色光、绿色光、蓝色光的荧光体材料。同年,美国Kopin公司成功地开发出了以+2.9V电压驱动的氮化镓蓝色发光二极管(LED),该LED在驱动电压+2.9V、驱动电流20mA的情况下达60cd/m2。

二、SiC材料

近年来,又由于SiC材料具备独特的性质:宽禁带、高击穿电场、高漂移饱和速度、高导热率、介电常数小、抗辐射能力强、化学稳定性好,使其在光电器件、高频大功率、高温半导体器件等方面具有巨大潜力而备受青睐。SiC有250多种多型体,每种多型体的C/Si双原子层的堆垛次序不同,最常见的是立方密排的3C-SiC和六角密排的6H和4H-SiC,不同多型体的电学性能和光学性能不同。

由于SiC具有高击穿电场、高饱和迁移速度和高热导率的优点,使其在高压应用方面优于硅和砷化镓。更值得指出的是,高击穿电场和宽禁带的特点有利于开发高电压、大电流SiC功率器件,并且在很大程度上缩小体积,从而获得了相当于Si器件十倍以上的功率密度。由于宽禁带和高热导率,其工作温度达600度以上。此外,采用SiC器件的功率系统可极大程度地降低对散热的要求,又可进一步缩小体积。对于许多高温和大功率应用领域,目前几乎所有功率器件都采用Si工艺。硅功率器件在电学上的缺点是带隙小、器件结温低、典型温度不超过150℃。低结温导致硅功率器件不适于许多要求高温工作的场合。尽管有时采用外部冷却使其能应用于工作温度较高的设备中,但是冷却系统庞大体积和重量使其失去实用价值。相比之下,SiC功率器件是很有前途的。

三、纳米硅薄膜材料和离子注入SiO2材料

根据对半导体发光材料和器件的发展和现状分析,纳米硅薄膜材料和离子注入SiO2材料在发光二新型低维人工半导体材料,它具有新颖的结构特征与独特的物理性质。nc-SiH膜具有电导率高(10-3~10-1Ω-1·cm-1)、电导激活能低(E=0.11eV~0.1eV)、光热稳定性好、光吸收能力强、易于实现掺杂、具有明显的量子点特征等特性。

在硅单晶衬底上生长SiO2经Si离子注入和适当的退火可以获得红、黄蓝三种波长的发光,其发光强度可与多孔硅相比拟。蓝光谱波长为470nm,它是由氧空位缺陷发光,黄光峰也是由缺陷引起,而红光峰则是由注入的过剩S聚集成纳米晶粒,因量子限制效应而发光。离子注入SiO2发光,其意义在于,首先在一种材料上可获得红、黄、蓝全部三种基色,为全色固态现实提供了可能;其次,扬弃了多孔结构和电化学工艺,在工艺上完全与硅平面工艺相容。

四、展望

光电材料篇7

关键词半导体材料量子线量子点材料光子晶体

1半导体材料的战略地位

上世纪中叶,单晶硅和半导体晶体管的发明及其硅集成电路的研制成功,导致了电子工业革命;上世纪70年代初石英光导纤维材料和GaAs激光器的发明,促进了光纤通信技术迅速发展并逐步形成了高新技术产业,使人类进入了信息时代。超晶格概念的提出及其半导体超晶格、量子阱材料的研制成功,彻底改变了光电器件的设计思想,使半导体器件的设计与制造从“杂质工程”发展到“能带工程”。纳米科学技术的发展和应用,将使人类能从原子、分子或纳米尺度水平上控制、操纵和制造功能强大的新型器件与电路,必将深刻地影响着世界的政治、经济格局和军事对抗的形式,彻底改变人们的生活方式。

2几种主要半导体材料的发展现状与趋势

2.1硅材料

从提高硅集成电路成品率,降低成本看,增大直拉硅(CZ-Si)单晶的直径和减小微缺陷的密度仍是今后CZ-Si发展的总趋势。目前直径为8英寸(200mm)的Si单晶已实现大规模工业生产,基于直径为12英寸(300mm)硅片的集成电路(IC’s)技术正处在由实验室向工业生产转变中。目前300mm,0.18μm工艺的硅ULSI生产线已经投入生产,300mm,0.13μm工艺生产线也将在2003年完成评估。18英寸重达414公斤的硅单晶和18英寸的硅园片已在实验室研制成功,直径27英寸硅单晶研制也正在积极筹划中。

从进一步提高硅IC’S的速度和集成度看,研制适合于硅深亚微米乃至纳米工艺所需的大直径硅外延片会成为硅材料发展的主流。另外,SOI材料,包括智能剥离(Smartcut)和SIMOX材料等也发展很快。目前,直径8英寸的硅外延片和SOI材料已研制成功,更大尺寸的片材也在开发中。

理论分析指出30nm左右将是硅MOS集成电路线宽的“极限”尺寸。这不仅是指量子尺寸效应对现有器件特性影响所带来的物理限制和光刻技术的限制问题,更重要的是将受硅、SiO2自身性质的限制。尽管人们正在积极寻找高K介电绝缘材料(如用Si3N4等来替代SiO2),低K介电互连材料,用Cu代替Al引线以及采用系统集成芯片技术等来提高ULSI的集成度、运算速度和功能,但硅将最终难以满足人类不断的对更大信息量需求。为此,人们除寻求基于全新原理的量子计算和DNA生物计算等之外,还把目光放在以GaAs、InP为基的化合物半导体材料,特别是二维超晶格、量子阱,一维量子线与零维量子点材料和可与硅平面工艺兼容GeSi合金材料等,这也是目前半导体材料研发的重点。

2.2GaAs和InP单晶材料

GaAs和InP与硅不同,它们都是直接带隙材料,具有电子饱和漂移速度高,耐高温,抗辐照等特点;在超高速、超高频、低功耗、低噪音器件和电路,特别在光电子器件和光电集成方面占有独特的优势。

目前,世界GaAs单晶的总年产量已超过200吨,其中以低位错密度的垂直梯度凝固法(VGF)和水平(HB)方法生长的2-3英寸的导电GaAs衬底材料为主;近年来,为满足高速移动通信的迫切需求,大直径(4,6和8英寸)的SI-GaAs发展很快。美国莫托罗拉公司正在筹建6英寸的SI-GaAs集成电路生产线。InP具有比GaAs更优越的高频性能,发展的速度更快,但研制直径3英寸以上大直径的InP单晶的关键技术尚未完全突破,价格居高不下。

GaAs和InP单晶的发展趋势是:(1).增大晶体直径,目前4英寸的SI-GaAs已用于生产,预计本世纪初的头几年直径为6英寸的SI-GaAs也将投入工业应用。(2).提高材料的电学和光学微区均匀性。(3).降低单晶的缺陷密度,特别是位错。(4).GaAs和InP单晶的VGF生长技术发展很快,很有可能成为主流技术。

2.3半导体超晶格、量子阱材料

半导体超薄层微结构材料是基于先进生长技术(MBE,MOCVD)的新一代人工构造材料。它以全新的概念改变着光电子和微电子器件的设计思想,出现了“电学和光学特性可剪裁”为特征的新范畴,是新一代固态量子器件的基础材料。

(1)Ⅲ-V族超晶格、量子阱材料。GaAIAs/GaAs,GaInAs/GaAs,AIGaInP/GaAs;GalnAs/InP,AlInAs/InP,InGaAsP/InP等GaAs、InP基晶格匹配和应变补偿材料体系已发展得相当成熟,已成功地用来制造超高速,超高频微电子器件和单片集成电路。高电子迁移率晶体管(HEMT),赝配高电子迁移率晶体管(P-HEMT)器件最好水平已达fmax=600GHz,输出功率58mW,功率增益6.4db;双异质结双极晶体管(HBT)的最高频率fmax也已高达500GHz,HEMT逻辑电路研制也发展很快。基于上述材料体系的光通信用1.3μm和1.5μm的量子阱激光器和探测器,红、黄、橙光发光二极管和红光激光器以及大功率半导体量子阱激光器已商品化;表面光发射器件和光双稳器件等也已达到或接近达到实用化水平。目前,研制高质量的1.5μm分布反馈(DFB)激光器和电吸收(EA)调制器单片集成InP基多量子阱材料和超高速驱动电路所需的低维结构材料是解决光纤通信瓶颈问题的关键,在实验室西门子公司已完成了80×40Gbps传输40km的实验。另外,用于制造准连续兆瓦级大功率激光阵列的高质量量子阱材料也受到人们的重视。

虽然常规量子阱结构端面发射激光器是目前光电子领域占统治地位的有源器件,但由于其有源区极薄(~0.01μm)端面光电灾变损伤,大电流电热烧毁和光束质量差一直是此类激光器的性能改善和功率提高的难题。采用多有源区量子级联耦合是解决此难题的有效途径之一。我国早在1999年,就研制成功980nmInGaAs带间量子级联激光器,输出功率达5W以上;2000年初,法国汤姆逊公司又报道了单个激光器准连续输出功率超过10瓦好结果。最近,我国的科研工作者又提出并开展了多有源区纵向光耦合垂直腔面发射激光器研究,这是一种具有高增益、极低阈值、高功率和高光束质量的新型激光器,在未来光通信、光互联与光电信息处理方面有着良好的应用前景。

为克服PN结半导体激光器的能隙对激光器波长范围的限制,1994年美国贝尔实验室发明了基于量子阱内子带跃迁和阱间共振隧穿的量子级联激光器,突破了半导体能隙对波长的限制。自从1994年InGaAs/InAIAs/InP量子级联激光器(QCLs)发明以来,Bell实验室等的科学家,在过去的7年多的时间里,QCLs在向大功率、高温和单膜工作等研究方面取得了显着的进展。2001年瑞士Neuchatel大学的科学家采用双声子共振和三量子阱有源区结构使波长为9.1μm的QCLs的工作温度高达312K,连续输出功率3mW。量子级联激光器的工作波长已覆盖近红外到远红外波段(3-87μm),并在光通信、超高分辨光谱、超高灵敏气体传感器、高速调制器和无线光学连接等方面显示出重要的应用前景。中科院上海微系统和信息技术研究所于1999年研制成功120K5μm和250K8μm的量子级联激光器;中科院半导体研究所于2000年又研制成功3.7μm室温准连续应变补偿量子级联激光器,使我国成为能研制这类高质量激光器材料为数不多的几个国家之一。

目前,Ⅲ-V族超晶格、量子阱材料作为超薄层微结构材料发展的主流方向,正从直径3英寸向4英寸过渡;生产型的MBE和M0CVD设备已研制成功并投入使用,每台年生产能力可高达3.75×104片4英寸或1.5×104片6英寸。英国卡迪夫的MOCVD中心,法国的PicogigaMBE基地,美国的QED公司,Motorola公司,日本的富士通,NTT,索尼等都有这种外延材料出售。生产型MBE和MOCVD设备的成熟与应用,必然促进衬底材料设备和材料评价技术的发展。

(2)硅基应变异质结构材料。硅基光、电器件集成一直是人们所追求的目标。但由于硅是间接带隙,如何提高硅基材料发光效率就成为一个亟待解决的问题。虽经多年研究,但进展缓慢。人们目前正致力于探索硅基纳米材料(纳米Si/SiO2),硅基SiGeC体系的Si1-yCy/Si1-xGex低维结构,Ge/Si量子点和量子点超晶格材料,Si/SiC量子点材料,GaN/BP/Si以及GaN/Si材料。最近,在GaN/Si上成功地研制出LED发光器件和有关纳米硅的受激放大现象的报道,使人们看到了一线希望。

另一方面,GeSi/Si应变层超晶格材料,因其在新一代移动通信上的重要应用前景,而成为目前硅基材料研究的主流。Si/GeSiMODFET和MOSFET的最高截止频率已达200GHz,HBT最高振荡频率为160GHz,噪音在10GHz下为0.9db,其性能可与GaAs器件相媲美。

尽管GaAs/Si和InP/Si是实现光电子集成理想的材料体系,但由于晶格失配和热膨胀系数等不同造成的高密度失配位错而导致器件性能退化和失效,防碍着它的使用化。最近,Motolora等公司宣称,他们在12英寸的硅衬底上,用钛酸锶作协变层(柔性层),成功的生长了器件级的GaAs外延薄膜,取得了突破性的进展。

2.4一维量子线、零维量子点半导体微结构材料

基于量子尺寸效应、量子干涉效应,量子隧穿效应和库仑阻效应以及非线性光学效应等的低维半导体材料是一种人工构造(通过能带工程实施)的新型半导体材料,是新一代微电子、光电子器件和电路的基础。它的发展与应用,极有可能触发新的技术革命。

目前低维半导体材料生长与制备主要集中在几个比较成熟的材料体系上,如GaAlAs/GaAs,In(Ga)As/GaAs,InGaAs/InAlAs/GaAs,InGaAs/InP,In(Ga)As/InAlAs/InP,InGaAsP/InAlAs/InP以及GeSi/Si等,并在纳米微电子和光电子研制方面取得了重大进展。俄罗斯约飞技术物理所MBE小组,柏林的俄德联合研制小组和中科院半导体所半导体材料科学重点实验室的MBE小组等研制成功的In(Ga)As/GaAs高功率量子点激光器,工作波长lμm左右,单管室温连续输出功率高达3.6~4W。特别应当指出的是我国上述的MBE小组,2001年通过在高功率量子点激光器的有源区材料结构中引入应力缓解层,抑制了缺陷和位错的产生,提高了量子点激光器的工作寿命,室温下连续输出功率为1W时工作寿命超过5000小时,这是大功率激光器的一个关键参数,至今未见国外报道。

在单电子晶体管和单电子存贮器及其电路的研制方面也获得了重大进展,1994年日本NTT就研制成功沟道长度为30nm纳米单电子晶体管,并在150K观察到栅控源-漏电流振荡;1997年美国又报道了可在室温工作的单电子开关器件,1998年Yauo等人采用0.25微米工艺技术实现了128Mb的单电子存贮器原型样机的制造,这是在单电子器件在高密度存贮电路的应用方面迈出的关键一步。目前,基于量子点的自适应网络计算机,单光子源和应用于量子计算的量子比特的构建等方面的研究也正在进行中。

与半导体超晶格和量子点结构的生长制备相比,高度有序的半导体量子线的制备技术难度较大。中科院半导体所半导体材料科学重点实验室的MBE小组,在继利用MBE技术和SK生长模式,成功地制备了高空间有序的InAs/InAI(Ga)As/InP的量子线和量子线超晶格结构的基础上,对InAs/InAlAs量子线超晶格的空间自对准(垂直或斜对准)的物理起因和生长控制进行了研究,取得了较大进展。

王中林教授领导的乔治亚理工大学的材料科学与工程系和化学与生物化学系的研究小组,基于无催化剂、控制生长条件的氧化物粉末的热蒸发技术,成功地合成了诸如ZnO、SnO2、In2O3和Ga2O3等一系列半导体氧化物纳米带,它们与具有圆柱对称截面的中空纳米管或纳米线不同,这些原生的纳米带呈现出高纯、结构均匀和单晶体,几乎无缺陷和位错;纳米线呈矩形截面,典型的宽度为20-300nm,宽厚比为5-10,长度可达数毫米。这种半导体氧化物纳米带是一个理想的材料体系,可以用来研究载流子维度受限的输运现象和基于它的功能器件制造。香港城市大学李述汤教授和瑞典隆德大学固体物理系纳米中心的LarsSamuelson教授领导的小组,分别在SiO2/Si和InAs/InP半导体量子线超晶格结构的生长制各方面也取得了重要进展。

低维半导体结构制备的方法很多,主要有:微结构材料生长和精细加工工艺相结合的方法,应变自组装量子线、量子点材料生长技术,图形化衬底和不同取向晶面选择生长技术,单原子操纵和加工技术,纳米结构的辐照制备技术,及其在沸石的笼子中、纳米碳管和溶液中等通过物理或化学方法制备量子点和量子线的技术等。目前发展的主要趋势是寻找原子级无损伤加工方法和纳米结构的应变自组装可控生长技术,以求获得大小、形状均匀、密度可控的无缺陷纳米结构。

2.5宽带隙半导体材料

宽带隙半导体材主要指的是金刚石,III族氮化物,碳化硅,立方氮化硼以及氧化物(ZnO等)及固溶体等,特别是SiC、GaN和金刚石薄膜等材料,因具有高热导率、高电子饱和漂移速度和大临界击穿电压等特点,成为研制高频大功率、耐高温、抗辐照半导体微电子器件和电路的理想材料;在通信、汽车、航空、航天、石油开采以及国防等方面有着广泛的应用前景。另外,III族氮化物也是很好的光电子材料,在蓝、绿光发光二极管(LED)和紫、蓝、绿光激光器(LD)以及紫外探测器等应用方面也显示了广泛的应用前景。随着1993年GaN材料的P型掺杂突破,GaN基材料成为蓝绿光发光材料的研究热点。目前,GaN基蓝绿光发光二极管己商品化,GaN基LD也有商品出售,最大输出功率为0.5W。在微电子器件研制方面,GaN基FET的最高工作频率(fmax)已达140GHz,fT=67GHz,跨导为260ms/mm;HEMT器件也相继问世,发展很快。此外,256×256GaN基紫外光电焦平面阵列探测器也已研制成功。特别值得提出的是,日本Sumitomo电子工业有限公司2000年宣称,他们采用热力学方法已研制成功2英寸GaN单晶材料,这将有力的推动蓝光激光器和GaN基电子器件的发展。另外,近年来具有反常带隙弯曲的窄禁带InAsN,InGaAsN,GaNP和GaNAsP材料的研制也受到了重视,这是因为它们在长波长光通信用高T0光源和太阳能电池等方面显示了重要应用前景。

以Cree公司为代表的体SiC单晶的研制已取得突破性进展,2英寸的4H和6HSiC单晶与外延片,以及3英寸的4HSiC单晶己有商品出售;以SiC为GaN基材料衬低的蓝绿光LED业已上市,并参于与以蓝宝石为衬低的GaN基发光器件的竟争。其他SiC相关高温器件的研制也取得了长足的进步。目前存在的主要问题是材料中的缺陷密度高,且价格昂贵。

II-VI族兰绿光材料研制在徘徊了近30年后,于1990年美国3M公司成功地解决了II-VI族的P型掺杂难点而得到迅速发展。1991年3M公司利用MBE技术率先宣布了电注入(Zn,Cd)Se/ZnSe兰光激光器在77K(495nm)脉冲输出功率100mW的消息,开始了II-VI族兰绿光半导体激光(材料)器件研制的高潮。经过多年的努力,目前ZnSe基II-VI族兰绿光激光器的寿命虽已超过1000小时,但离使用差距尚大,加之GaN基材料的迅速发展和应用,使II-VI族兰绿光材料研制步伐有所变缓。提高有源区材料的完整性,特别是要降低由非化学配比导致的点缺陷密度和进一步降低失配位错和解决欧姆接触等问题,仍是该材料体系走向实用化前必须要解决的问题。

宽带隙半导体异质结构材料往往也是典型的大失配异质结构材料,所谓大失配异质结构材料是指晶格常数、热膨胀系数或晶体的对称性等物理参数有较大差异的材料体系,如GaN/蓝宝石(Sapphire),SiC/Si和GaN/Si等。大晶格失配引发界面处大量位错和缺陷的产生,极大地影响着微结构材料的光电性能及其器件应用。如何避免和消除这一负面影响,是目前材料制备中的一个迫切要解决的关键科学问题。这个问题的解泱,必将大大地拓宽材料的可选择余地,开辟新的应用领域。

目前,除SiC单晶衬低材料,GaN基蓝光LED材料和器件已有商品出售外,大多数高温半导体材料仍处在实验室研制阶段,不少影响这类材料发展的关键问题,如GaN衬底,ZnO单晶簿膜制备,P型掺杂和欧姆电极接触,单晶金刚石薄膜生长与N型掺杂,II-VI族材料的退化机理等仍是制约这些材料实用化的关键问题,国内外虽已做了大量的研究,至今尚未取得重大突破。

3光子晶体

光子晶体是一种人工微结构材料,介电常数周期的被调制在与工作波长相比拟的尺度,来自结构单元的散射波的多重干涉形成一个光子带隙,与半导体材料的电子能隙相似,并可用类似于固态晶体中的能带论来描述三维周期介电结构中光波的传播,相应光子晶体光带隙(禁带)能量的光波模式在其中的传播是被禁止的。如果光子晶体的周期性被破坏,那么在禁带中也会引入所谓的“施主”和“受主”模,光子态密度随光子晶体维度降低而量子化。如三维受限的“受主”掺杂的光子晶体有希望制成非常高Q值的单模微腔,从而为研制高质量微腔激光器开辟新的途径。光子晶体的制备方法主要有:聚焦离子束(FIB)结合脉冲激光蒸发方法,即先用脉冲激光蒸发制备如Ag/MnO多层膜,再用FIB注入隔离形成一维或二维平面阵列光子晶体;基于功能粒子(磁性纳米颗粒Fe2O3,发光纳米颗粒CdS和介电纳米颗粒TiO2)和共轭高分子的自组装方法,可形成适用于可见光范围的三维纳米颗粒光子晶体;二维多空硅也可制作成一个理想的3-5μm和1.5μm光子带隙材料等。目前,二维光子晶体制造已取得很大进展,但三维光子晶体的研究,仍是一个具有挑战性的课题。最近,Campbell等人提出了全息光栅光刻的方法来制造三维光子晶体,取得了进展。

4量子比特构建与材料

随着微电子技术的发展,计算机芯片集成度不断增高,器件尺寸越来越小(nm尺度)并最终将受到器件工作原理和工艺技术限制,而无法满足人类对更大信息量的需求。为此,发展基于全新原理和结构的功能强大的计算机是21世纪人类面临的巨大挑战之一。1994年Shor基于量子态叠加性提出的量子并行算法并证明可轻而易举地破译目前广泛使用的公开密钥Rivest,Shamir和Adlman(RSA)体系,引起了人们的广泛重视。

所谓量子计算机是应用量子力学原理进行计算的装置,理论上讲它比传统计算机有更快的运算速度,更大信息传递量和更高信息安全保障,有可能超越目前计算机理想极限。实现量子比特构造和量子计算机的设想方案很多,其中最引人注目的是Kane最近提出的一个实现大规模量子计算的方案。其核心是利用硅纳米电子器件中磷施主核自旋进行信息编码,通过外加电场控制核自旋间相互作用实现其逻辑运算,自旋测量是由自旋极化电子电流来完成,计算机要工作在mK的低温下。

这种量子计算机的最终实现依赖于与硅平面工艺兼容的硅纳米电子技术的发展。除此之外,为了避免杂质对磷核自旋的干扰,必需使用高纯(无杂质)和不存在核自旋不等于零的硅同位素(29Si)的硅单晶;减小SiO2绝缘层的无序涨落以及如何在硅里掺入规则的磷原子阵列等是实现量子计算的关键。量子态在传输,处理和存储过程中可能因环境的耦合(干扰),而从量子叠加态演化成经典的混合态,即所谓失去相干,特别是在大规模计算中能否始终保持量子态间的相干是量子计算机走向实用化前所必需克服的难题。

5发展我国半导体材料的几点建议

鉴于我国目前的工业基础,国力和半导体材料的发展水平,提出以下发展建议供参考。

5.1硅单晶和外延材料

硅材料作为微电子技术的主导地位至少到本世纪中叶都不会改变,至今国内各大集成电路制造厂家所需的硅片基本上是依赖进口。目前国内虽已可拉制8英寸的硅单晶和小批量生产6英寸的硅外延片,然而都未形成稳定的批量生产能力,更谈不上规模生产。建议国家集中人力和财力,首先开展8英寸硅单晶实用化和6英寸硅外延片研究开发,在“十五”的后期,争取做到8英寸集成电路生产线用硅单晶材料的国产化,并有6~8英寸硅片的批量供片能力。到2010年左右,我国应有8~12英寸硅单晶、片材和8英寸硅外延片的规模生产能力;更大直径的硅单晶、片材和外延片也应及时布点研制。另外,硅多晶材料生产基地及其相配套的高纯石英、气体和化学试剂等也必需同时给以重视,只有这样,才能逐步改观我国微电子技术的落后局面,进入世界发达国家之林。

5.2GaAs及其有关化合物半导体单晶

材料发展建议

GaAs、InP等单晶材料同国外的差距主要表现在拉晶和晶片加工设备落后,没有形成生产能力。相信在国家各部委的统一组织、领导下,并争取企业介入,建立我国自己的研究、开发和生产联合体,取各家之长,分工协作,到2010年赶上世界先进水平是可能的。要达到上述目的,到“十五”末应形成以4英寸单晶为主2-3吨/年的SI-GaAs和3-5吨/年掺杂GaAs、InP单晶和开盒就用晶片的生产能力,以满足我国不断发展的微电子和光电子工业的需术。到2010年,应当实现4英寸GaAs生产线的国产化,并具有满足6英寸线的供片能力。

5.3发展超晶格、量子阱和一维、零维半导体

微结构材料的建议

(1)超晶格、量子阱材料

从目前我国国力和我们已有的基础出发,应以三基色(超高亮度红、绿和蓝光)材料和光通信材料为主攻方向,并兼顾新一代微电子器件和电路的需求,加强MBE和MOCVD两个基地的建设,引进必要的适合批量生产的工业型MBE和MOCVD设备并着重致力于GaAlAs/GaAs,InGaAlP/InGaP,GaN基蓝绿光材料,InGaAs/InP和InGaAsP/InP等材料体系的实用化研究是当务之急,争取在“十五”末,能满足国内2、3和4英寸GaAs生产线所需要的异质结材料。到2010年,每年能具备至少100万平方英寸MBE和MOCVD微电子和光电子微结构材料的生产能力。达到本世纪初的国际水平。

宽带隙高温半导体材料如SiC,GaN基微电子材料和单晶金刚石薄膜以及ZnO等材料也应择优布点,分别做好研究与开发工作。

(2)一维和零维半导体材料的发展设想。基于低维半导体微结构材料的固态纳米量子器件,目前虽然仍处在预研阶段,但极其重要,极有可能触发微电子、光电子技术新的革命。低维量子器件的制造依赖于低维结构材料生长和纳米加工技术的进步,而纳米结构材料的质量又很大程度上取决于生长和制备技术的水平。因而,集中人力、物力建设我国自己的纳米科学与技术研究发展中心就成为了成败的关键。具体目标是,“十五”末,在半导体量子线、量子点材料制备,量子器件研制和系统集成等若干个重要研究方向接近当时的国际先进水平;2010年在有实用化前景的量子点激光器,量子共振隧穿器件和单电子器件及其集成等研发方面,达到国际先进水平,并在国际该领域占有一席之地。可以预料,它的实施必将极大地增强我国的经济和国防实力。

本文限于篇幅,只讨论了几种最重要的半导体材料,II-VI族宽禁带与II-VI族窄禁带红外半导体材料,高效太阳电池材料Cu(In,Ga)Se2,CuIn(Se,S)等以及发展迅速的有机半导体材料等没有涉及。

光电材料篇8

在太阳能的有效利用当中,太阳能光电利用是近些年来发展最快,最具活力的研究领域,也是其中最受瞩目的项目之一。制作太阳能电池主要是以半导体材料为基础,其原理是:当太阳能电池受到阳光照射时,电子接受光能,向N型区移动,使N型区带负电,同时空穴向P型区移动,使P型区带正电。这样,在P-N结两端便产生了电动势,也就是通常所说的电压。如果这时分别在P型层和N型层焊上金属导线,接通负载,则外电路便有电流通过,如此形成的一个个电池元件,把它们串联、并联起来,就能产生一定的电压和电流,输出功率。(如图1)

根据所用材料的不同,太阳能电池可分为:硅太阳能电池、以无机盐如砷化镓III-V化合物、硫化镉、铜铟硒等多元化合物为材料的电池、有机功能材料制备的大阳能电池、纳米晶太阳能电池等。不论以何种材料来制作电池,对太阳能电池材料一般的要求有:半导体材料的禁带不能太宽;要有较高的光电转换效率;材料本身对环境不造成污染;材料便于工业化生产且材料性能稳定。

有机太阳能电池原理

提高转换效率和降低成本是太阳能电池制备中考虑的两个主要因素。基于硅等无机材料的太阳能电池,其光电转换效率已经超过了10%,并且早已商品化。然而无机太阳能电池只在高端科技和小型商品如卫星、计算器等中应用,并没有得到广泛的应用。其中最主要的原因是无机太阳能电池的生产需要高温(400~1400℃)、高真空和无数刻蚀步骤,在生产过程中也需要浪费大量的能源,其成本无法降低到可以广泛应用的程度,不能缓解日益紧张的能源问题。另外,无机材料的不可降解性也对环境产生不利的影响。有机太阳能电池的出现将在不久的将来改变这一现象。有机薄膜的导电性能使其在制造薄型轻质0电池、高分子聚合物电池方面有着极其广阔的应用前景。这种能够在多种材质表面“印制”的太阳能电池因具有成本低廉、制造容易、重量轻和易弯曲的特点而成为目前研究的热点。

有机太阳能电池是一种正在进行研究的新型电池,其原理是利用不同氧化还原型有机材料的不同氧化还原电势,在导电材料(电极)表面进行多层复合,制成类似无机P-N结的单向导电装置。其中一个电极的内层由还原电位较低的有机材料修饰,外层有机材料的还原电位较高,电子转移方向只能由内层向外层转移;另一个电极的修饰正好相反,并且第一个电极上两种有机材料的还原电位均高于后者的两种有机材料的还原电位。当两个修饰电极放入含有光敏化剂的电解波中时,光敏化剂吸光后产生的电子转移到还原电位较低的电极上,还原电位较低电极上积累的电子不能向外层有机材料转移,只能通过外电路通过还原电位较高的电极回到电解液,因此外电路中有光电流产生。由于有机材料柔性好、制作容易、材料来源广泛、成本低、产品形式多样等优势,从而对大规模利用太阳能,提供廉价电能具有重要意义。

有机太阳能电池的三种形式

有机太阳能电池有三种基本形式:萧特基型太阳能电池、P-N异质结太阳能电池、染料敏化太阳能电池。

1. 萧特基型太阳能电池

萧特基势垒型太阳能电池是早期有机太阳能研究的重点。电池的结构为:透明导电基片/染料/金属电极。入射光子被有机材料吸收后产生电子和空穴对,并分离成自由载流子而传输到电极的两边。受结构的影响,其光谱吸收的范围较窄;其欧姆接触是A1和In等形成的,造成稳定性差,光通过结构的效率低。常见的有机光电材料均可被制成萧特基型有机太阳能电池,如酞菁化合物、卟啉类、菁等,多为P型半导体。这些材料具有容易合成、价格便宜、光导能力强等优点,通过添加有机染料、合成新型材料和改进器件结构等方法,可以使它得到更广阔的发展。

2.P-N异质结太阳能

为了克服萧特基太阳能电池在载流子扩散过程中,因与杂质等陷阱复合而导致器件效率下降的缺陷,使用P-N异质结以提高光伏效率。电池的结构:透明导电基片/P型半导体(电子给体)材料/N型半导体(电子受体)材料/金属电极,或透明导电基片/P型半导体(电子给体)材料:N型半导体(电子受体)材料/金属电极。当光照射到P/N复合层时,光生电子和空穴发生扩散,电子向N型区域迁移,空穴向P型区域迁移,由于存在P-N异质结界面,电子和空穴不容易相互接近而复合,从而使电子和空穴顺利地通过P/N复合层中的互穿导电网络而传输,提高了太阳能电池能量转换效率。

由于有机材料所固有的性质,在电池中,激子、载流子、吸收光子等还有较大的损失,导致电池的能量转换效率低。目前对有机异质结太阳能电池的研究主要在以下几个方面:一是多功能材料的合成开发;二是器件结构的改进;三是器件制备技术即薄膜技术的改进。

3. 染料敏化太阳能电池

宽带隙半导体(如TiO2、SnO2)的禁带宽度相当于紫外区的能量, 因而捕获太阳光的能力非常差,无法直接用于太阳能的转换。研究发现,将这些与宽带隙半导体的导带和价带能量匹配的一些有机染料吸附到半导体表面上,利用有机染料对可见光的强吸收从而将体系的光谱响应延伸到可见区,这种现象称为半导体的染料敏化作用。

染料敏化太阳能电池的出现为光电化学电池的发展带来了革命性的创新,稳定性和光电转化效率都有了很大的提高。电池的结构为:透明导电基片/多孔纳米二氧化钛/染料敏化剂/空穴传输材料/电极。其工作原理是,染料分子吸收太阳光能后跃迁到激发态,但激发态不稳定,电子快速注入到紧邻的TiO2导带,染料中失去的电子则很快从电解质中得到补偿,进入TiO2导带中的电子最终进入导电膜,然后通过外回路产生光电流。

与无机太阳能电池相比,这种太阳能电池还存在寿命、效率、机理等未解决的问题。对这些问题的解决将是其研究的重点和发展方向。

有机太阳能电池的发展

早在上世纪70年代的能源危机时,世界上第一块有机太阳能电池便已经问世,它是萧特基型电池,但当时这种电池光电转换率只有0.1%。1986年,P-N异质结有机太阳能电池问世。之后,人们通过改进P-N结的结构,制作了P-N混合体异质结有机太阳能电池、多层P-N结有机太阳能电池,进一步提高了电池的光电转化效率。1991年,以瑞士洛桑高等工业学院M.Gratzel教授为首的研究小组采用高比表面积的纳米多孔TiO2膜作半导体电极,以过渡金属Ru以及Os等有机化合物作染料,并选用适当的氧化还原电解质研制出染料敏化太阳能电池,并很快将它的光电转化效率提高到10%~11%,接近了传统无机太阳能电池。

进入21世纪,有机太阳能电池又迎来了飞速的发展。德国西门子公司的研究人员利用导电塑料和碳-60分子制作的新型电池的光电转化效率达到10%。美国贝尔实验室利用并五苯等有机材料制备的电池的最佳光电转化效率也达到4.5%。普林斯顿大学的Forrest研究小组在美国的《科学》杂志上发表了他们利用放在有机材料上的“金属帽”提高光电转化效率的方法。

虽然在改善有机太阳能电池的性能方面取得了很大的进展,但在光电转换效率等方面与无机太阳能电池相比还有一定的差距。为了开发出能量转换效率高、生产成本低廉的太阳能电池,还要对有机太阳能电池设计的几个关键因素进行更深入的研究,即电池的运作机理、电池的材料设计和电池的制作工艺。

上一篇:材料科学与工程专业范文 下一篇:土工合成材料范文