智能交通系统范文

时间:2023-10-16 22:59:58

智能交通系统

智能交通系统篇1

关键词智能交通运输系统

智能运输系统(IntelligentTransportSystem)的主要思想是将传统的交通系统看成是人、车、路的统一体,运用计算机、通信、人工智能、传感器等领域的先进成果来彻底改变目前被动式的交通局面,使人在驾驶过程中可以随时通过GPS/GIS、广播、信息板等手段了解目前的交通状况,而交通管理部门则可通过道路上的车辆传感器、视频摄像机等设备随时了解各个路段的交通情况,并随时对各个交通路口的交通信号进行调整以及对外界进行信息,使整个交通系统的通行能力达到最大。

交通问题是世界各国面临的共同问题。交通拥挤造成了巨大的时间浪费,加大了环境污染。我国大多数城市的平均行车速度已降至20km/h以下,有些路段甚至只有7~8km/h;由于车辆速度过慢,尾气排放增加,使得城市的空气质量进一步恶化。交通问题也造成了巨大的经济损失,据研究报道,美国每年因交通阻塞造成的经济损失约410亿美元,日本东京每年因交通拥挤造成的时间损失相当于

1000多亿美元,欧洲每年因交通事故、交通拥挤和环境污染造成的经济损失分别为500~5000和50~500亿欧元。为了缓解经济发展带来的交通运输发面的压力,尽量的利用现有的资源,使其发挥最大的作用,各国都加大了对智能交通系统的研究和建设的力度。

1智能交通发展的现状

对智能运输系统的研究许多国家都投入了巨大的人力和物力,并成为继航空航天、军事领域之后高新技术应用最集中的领域。目前已形成以美国、日本、欧洲为代表的三大研究中心。

在美国,对ITS的研究虽然起步最晚,但由于投入较多,目前已处于该领域的领先水平。1991年,美国开始对ITS研究进行投资,仅1994~1995年就确定了104项研究项目,并成立了专门组织,着手制定ITS的研究开发计划,到1997年投资近7亿美元;1998年6月9日美国总统克林顿签署了“面向21世纪运输权益法案(TransportationEquityActofthe21thCentury)”。该法案的确定为美国公路系统的继续发展和重建带来了创纪录的投资。法案跨度为6个财政年度(1998~2003),拨款总金额为2178.9亿美元,其中有相当一部分用于支持ITS的进一步研究与开发。欧洲在ITS的研究方面采取整个欧洲一体化的方针,由政府、企业和个人三方面共同出资进行智能运输系统的研究,著名的项目有PROMETHEUS和DRIVE等,其中DRIVE工程是目前世界上交通运输界规模最大的合作研究计划,共有12个国家的700多个单位参加,经费达5亿欧元。日本从20世纪70年代就开始了对汽车交通综合控制系统的研究,并成立了全国性的ITS推进组织,是对ITS进行研究最早、实用化程度最高的国家。目前已建立了较为完备的交通控制、信息服务等综合体系,并基本完成了覆盖全国的电子地图的绘制工作,有400万台汽车导航仪在使用,其中120万台可接收信息。

我国在ITS领域的研究起步较晚,但随着全球范围智能交通技术研究的兴起,进入20世纪80年代,我国也加快了对智能交通技术研究的步伐。一方面,北京、上海、沈阳等大城市陆续从国外引进了一些较为先进的城市交通控制、道路监控系统;另一方面,国家加大了自主开发的步伐,如国家计委、科技委组织开发的实时自适应城市交通控制系统HT-UTCS,上海交通大学与上海市交警总队合作开发的SUATS系统等;1998年交通部正式批准成立了ISO/TC204中国委员会,秘书处设在交通智能运输系统工程研究中心,代表中国参加国际智能运输系统的标准化活动,现在正进行中国智能运输系统标准体系框架的研究。此外,我国将从今年起在全国36个城市实施以实现城市交通智能控制为主要内容的“畅通工程”,并逐步推广到全国100多个城市。

2中国发展智能交通的必要性和紧迫性

中国是一个经济持续发展的发展中国家,改革开放以来,城市化与汽车化发展十分迅猛。改革开放前,城市化水平不足19%,目前已经发展到超过30%,预测2010年将接近50%;机动车拥有量以每年10%以上的速度增长,预计2010年达到13亿多辆。中国城市交通的特点是混合交通,目前自行车拥有量超过1.8亿辆,如果公共交通服务水平不提高,城市交通结构不改善,自行车拥有量将会有增无减。

改革开放以来,中国道路交通设施及管理设施虽然有较大改观,但跟不上机动车增长速度。总体水平与发达国家有较大差距,特别是大多数城市路网结构不合理,道路功能不完善,道路系统不健全。交通管理设施缺乏,管理水平不高。即使各地都建立了交通控制中心,大多只是实现了监视功能,而远没有发挥控制功能的效应。

中国城市的大气质量恶化,已逐步由煤烟型污染转变为机动车尾气污染。其主要原因是交通拥堵、车速下降以及车况差、车辆技术性能低等,致使中国处在世界十大空气污染最严重的城市之中。同时,车辆状况差也直接影响到城市交通,并已成为制约我国城市交通的重要因素。

3中国发展ITS的主导思想

中国是一个发展中国家,与发达国家相比,我国在发展ITS的必要基础条件上还有较大差距,加上我国特有的混合交通特点,以及城市结构、路网结构、交通结构的不完善,因此要结合中国的国情来研究制定我国发展ITS的战略及发展框架。

中国交通运输正面临经济发展与资源制约的双重压力,因此也不能重复发达国家走过的老路,一定要立足本国实际,走中国ITS发展之路,以推动我国信息化进程及培育自己的ITS产业。

21世纪交通管理的发展趋势必将是管理体制集约化;管理设施现代化;管理手段网络化、信息化、智能化;管理效率高效化;管理方式社会化。因此,中国ITS的发展将带来一场交通管理体制与模式的变革,而这种变革将直接影响着ITS的发展。

4发展中国智能运输系统的对策

中国经过改革开放20多年来的建设,交通运输的发展取得了有目共睹的成就。全社会各种运输方式完成的客运量和旅客周转量、货运量和货物周转量有了较大幅度的提高,交通运输技术装备得到明显的改善,使得中国交通运输已从“限制型”向“适应型”过渡,已从满足“量”的需要向满足“质”的需要过渡,已经从“卖方市场”向“买方市场”过渡,并且公路运输发展成为交通运输的主力军。但与发达国家相比,仍存在着一些差距,如交通运输基础设施总量不足的矛盾依然存在;交通运输设施在技术装备、服务质量等方面还很不适应国民经济持续发展的需要,与国际水平相比差距较大;部分地区、部分运输方式和一些运输方向上存在着运力过剩、低水平恶性竞争的现象等。

纵观美国、日本等发达国家的交通运输发展经验,不同经济发展时期,其交通运输发展具有不同的特征,尽管世界各国情况不同,条件也有相当的差异,但这种特征却有着一定程度的共性。和发达国家相比,虽然中国目前经济发展水平尚有较大差距,但改革开放的政策使我们的发展速度较快,发达国家今天遇到的问题,我们已经或者今后必将会深刻地感受到,为使交通运输业适应21世纪的要求,我们应采取积极的对策,根据国情发展中国的智能运输系统。

4.1打好ITS发展基础,特别是应加强ITS基础理论的研究工作

目前,国际上ITS理论仍不完善,还处于发展时期,我们应积极加强与ITS开展较先进国家的交流,在国际ITS现有发展水平上结合中国特点,深入细致地进行理论研究,尽快接近或达到世界水平,以迎接21世纪ITS发展的挑战。否则将成为别国的追随者,成为他们不成熟技术的推广试验场。

4.2建立ITS协调组织机构

中国交通运输体制目前仍是条块分割状况,铁路、公路、民航、公安、建设等部门分头管理,现已出现了各自发展自身ITS的势头,这将造成中国资源上的巨大浪费。为此应尽快成立一个由国家统一领导的,有关部门、学者、企业和研究部门参与的“ITS中国”组织,类似于美国的ITSAmerica,日本的VERTIS及欧州的ERTICO组织,来统一制订中国ITS发展战略、目标、原则和标准,特别是制定有关ITS的技术规范和整体发展规划,实现ITS技术和产品的通用性、兼容性和互换性,加强政府的宏观调控,以减少局部利益的冲突和有限资金的浪费。

4.3注重人才的培养

随着ITS的进一步发展,21世纪交通运输将会发生重大变化,而与之相应的是对不同层次的专业人才需求情况与以往大不相同,为此应加强国内高校及科研单位交通运输领域与国外ITS的交流合作,派出人员学习培训,走出去、请进来,将最新的ITS技术溶入交通运输专业的教学内容和科研之中,以高素质的ITS人才去迎接新世纪的挑战。

4.4当前迫切需要解决的问题

作为资金不足的发展中国家,应根据中国现有条件,以ITS个别项目入手选择恰当的切入点,诸如ITS技术及其产品的标准化;ITS中的城市交通管理系统;先进的公共交通营运系统;车辆控制和安全系统;先进的物流管理系统等。从全国范围内看,由于中国生产力布局、资源分布、经济发展水平等因素不同,交通运输具有明显的区域不平衡性,即某些地区的发展(如东部、东南部),特别是大都市及其附近的交通运输已存在发展智能运输的潜在市场需要。

参考文献

1黎德扬.社会交通与社会发展[M].北京:人民交通出版社,2001

2王成刚.交通运输市场概论[M].北京:人民交通出版社,1995

智能交通系统篇2

关键词:智能交通;效益评估;个体收益;社会收益

中图分类号:F50 文献标识码:A 文章编号:1001-828X(2012)04-0-02

一、引言

过去二十年间,社会上车辆数量的快速增长带来了严重的交通问题,如日益严重的交通拥堵、交通事故以及环境污染等。在此前提下,公共交通服务提供的滞后与不足,不仅造成了巨大的经济损失,也严重影响了社会与经济的发展;而由于土地滥用、环境破坏及其他相关社会问题的备受关注,交通运输基础设施的进一步投资建设又难阻重重。因此,智能交通运输系统(ITS)应运而生。近年来的应用证明,ITS可大大提高道路通行率,为车辆和道路基础设施之间的种种冲突提供一个合理的解决方案。

现代交通系统的发展,不断为旅客们带来美好期望。如今,整个世界已经从工业时代迈入信息时代,人们也已不再满足简单地把货物或人从一个地方移动到另一个地方。传统的运输概念已经扩展为一种新的交通方式:安全、舒适和机动。为了满足这种日益增加的需求,20世纪80-90年代,ITS横空出世,为交通服务带来了革命性的变化,也使得这种新的交通方式变成了可能。目前,通过不断的创新以及技术的逐步普及,ITS应用已为大大提高道路通行率,解决交通问题方面做出了重大贡献。

二、ITS收益评估的框架

由于性质上,ITS项目与传统的道路工程项目具有明显不同 (Newman-Askins 等, 2003),因此,评价系统上,ITS也有其自身要求。在此共识基础上,本文从个体利益和社会利益两个角度出发,建立了ITS评估框架。

ITS收益,包括为用户、服务提供商的运营成本和社会成本的减少、提高的出行效率、安全舒适性,以及对环境改善和相关技术产业发展的促进作用。因为ITS系统通常使用的是,大量需要迅速更新换代的高科技设备,因此,用户或实施部门往往无法理解其技术扩散所产生的诸多好处,更很难了解其广泛应用带来的各种社会效益。由于人们对ITS项目与项目实施相关影响之间非正式的各种联系知之甚少,因此将各种收益归因于ITS项目也是不恰当的。此外,项目实施的各种相关影响的边界通常是模糊的,而且不同受益者的角色是混淆和重叠的。例如,旅客和ITS服务提供商都可以得到与安全相关的收益,如通过应用紧急事件管理系统(IMS)缩短了侦察/验证时间。这种情况下分析出来的结果和好处往往被重复计算。

与传统的道路工程项目相比,ITS项目有其自有特征,也有其独特的评估要求。ITS的经济特点在于其外部效应,这体现在两方面。一是使用者不能受益所有的运用收益,二是大多数的ITS服务也产生不同程度的正外部或溢出效应。在此认识基础上,我们从个体和社会利益的角度出发,建立ITS评估框架。

如下图所示,在ITS评论框架中涉及两个基本收益,即分处顶层和底层的个体收益和社会收益。个体收益代表消费者或私人,ITS服务提供商取得社会收益,这不仅有利于出行者,也以间接的方式利于其他社会成员。此外,虽然这两个收益的特点和评价方法完全不同,但他们具有共同的四个参数,即效率、安全性、舒适度和生产力。

如上图所示,评论框架中包含两块基本的收益,即上半部分和下半部分分别代表的个体收益和社会收益。个体收益指从ITS实施中获得的直接收益;社会收益不仅包括个人收益,同时以间接的方式给广大的社会群体带了收益。此外,虽然这两种利益的特点和评价方法是完全不同的,他们在上图中却能通过相同的四个参数来表现,即效率、安全性、舒适度和生产力。

(一)个体收益

在此评论框架内,我们用“个体收益”一词来指出行者或ITS运营者/投资者的直接收益,这通常由实际收入来衡量。

1.出行者(直接)收益

出行者(直接)的收益指从ITS设施的使用中所产生的惠益。从对出行时间和燃料费用的节省,并延长车辆的使用寿命来考虑可为出行者节省成本。上图中的浅色框显示的安全性和舒适度的好处这是指出行者和交通系统运营商共享的收益。效率和生产率的提高,分别对出行者和ITS运营者的收益产生影响。

用EPS简单举例。公路出行者并不需要在收费站停顿,这样可以节省排队时间,减少燃油消耗及车辆的机械磨损。此外,不但节省了通常的出行时间,并且由于交通事故的减少,也减少了这种极端情况下,车辆在收费站的等待时间。这样,可根据不同类型的意外伤害/死亡和经济损失率来计算安全性收益。由于在提高出行舒适度方面的信息有限,我们可以通过出行者问卷形式来采集在“减少紧张”和“轻松出行”方面的数据,最终评估生活质量的提高程度。

尽管各种ITS项目的建设目标不同,但有一点是肯定的:出行者(直接)收益是ITS实施的核心优势之一。用常规方法难以评估其全部收益,因为它与运营商/投资者的收益是重叠的,同时,外部的社会收益也是出行者群体收益的一部分。

2.运营商/投资者(直接)收益

智能交通系统篇3

智能化的社会是工业社会与信息社会相互融合的一个整体,体现着社会的更新和进步,产品和各个产业链条相互促进和更新,从而形成新的社会发展形态,其中协同、共享和融合是智能社会发展的主要特征。在智能社会中发展智能化的交通运输系统,能够逐渐丰富人们的出行方式,为社会打造一个高效、方便、安全的交通运输模式,从而不断满足人们日益增长的物质文化需要以及对于生产的需求。在发展智能交通系统的同时,也应该注重智能化技术的应用,从而逐渐更新社会交通运输系统,为整个社会的发展提供不竭的动力支持。

智能交通运输系统的主要内涵

智能交通系统,顾名思义,是未来的城市交通系统发展的主要方向,利用先进的互联网技术和大数据存储系统,其中包括数据的通信技术、人工智能化的手段以及电子控制理论,将这些先进的智能技术运用到交通运输的行业当中,促进整个地面交通的运输管理,使车辆和街道之间能够相互联系,从而建立一条完善的职能交通系统,促进整个城市交通运输的高效性和科学性,方便相关部门的管理和指挥。

同时。智能交通系统也是世界交通运输事业发展的前沿和热点,在现有的交通运输技术基础之上,利用现代的信息技术和控制等集成技术,以构建高效、绿色、便捷的交通运输系统为主要的目标,最大程度上满足人们的基本出行需求,使人们能够在最短的时间内达到目的地,加快现代化社会的构建步伐。智能化交通系统的建立,不仅是交通领域的革新,同时也是人们社会进步的一大体现,根据相关的指示文件的规定分析,截至到2045年为止,亚洲将建立电动巴士穿梭的系统,使无线充电的技术能够运用到运输行业当中。

中国智能化交通发展的现状。中国在智能化交通系统的建设中,已经取得了初步的成果,大多数城市中的交通运输行业已经得到了一定的智能化应用。例如高速公路电子收费系统ETC已经遍布全国各地,根据国家的建设标准以及覆盖了全国的29各省市地区,开设的数以千计的电子收费专业车道,覆盖的用户已经达到了一千多万。同时对于智能化交通的发展,政府也给予了大力的支持。移动互联网的出行活动模式和其产业的发展得到了不断的创新。云计算、大数据以及移动互联网的大规模投入,智能技术与互联网进行高度的融合,为城市交通智能化发展带来了新的机遇。例如滴滴打车和快车的广泛应用,人们出行叫车的服务领域已经覆盖了全国的三百多个城市,注册的用户多达两亿人以上,每天平台接受服务的订单已经超过了一千万以上。

随着电动车技术的应用和普及,我国逐渐开始用电动车代原来的柴油车,并逐渐开发出了不同技术类型的电动轿车以及电动公交车等,将其投入到交通运输的市场当中。电动车产业的发展和普及,为交通运输市场带来了广阔的市场前景和空间。面对国际化的交通运输模式,将清洁能源作为主要的发展依据,坚持独立创新,合作并存的发展机制,加快中国新能源汽车产业的开发和利用,使其能够在激烈的国际竞争中得到一席之地,从而促进智能化社会的发展和进步。

智能化交通的国际发展现状。随着新型技术的发展和革新,国际上越来越重视智能化和信息化技术的应用,尤其是在与人类生存息息相关的交通运输领域中。根据相关的法规规定,欧洲将实现汽车互联网技术与车辆自动化的革新和应用,制定五个战略主题,建立更加安全的道路和车辆管理技术,提升交通系统的运行效率。同时注重技术的开发和应用,将绿色环保的运输系统和高效节能的技术类型相互融合在一起,建立完善的公路网和交通网,使人们的出行更加便利和快捷。

在发达国家,智能化的交通运输技术已经得到的广泛的应用,例如车流的控制、自动信号灯的管理、可变车道、停车场自助缴费以及货运追踪等技术,逐渐重视交通运输技术的一体化,逐渐形成便捷高效的客运系统,使移动互联网技术和大数据分析技g能够得到普及和应用,进一步开发无人驾驶系统和个性化的运输理念。美国是最先研究无人驾驶技术的,已经测试驾驶超过了五十万千米。

智能化交通系统的关键技分析

大数据挖掘技术的应用。随着科学技术的发展和应用,大数据分析技术逐渐得到开发和应用,交通运输业也逐渐步入大数据时代。数据挖掘技术就是其中的一个方面,从大量的数据信息中寻找最关键的技术工具,即交通大数据挖掘技术,将互联网和交通应用有机的结合在一起。在数据分析的过程中,发现交通数据中的规律,使驾驶员能够及时、快速的寻找到交通信号,是决策者完成对整个交通运输系统的管理和评估。利用大数据挖掘技术,能够基本改变传统交通管理区域的限制,建立立体综合性的智能交通管理体系,能够实时监测到事故发生的区域和规模,做到科学的预警和管理,使交通运输更加便捷和安全,实现最优质的管理。

无人驾驶技术的应用。无人驾驶技术是将人工智能、组合导航、信息的融合以及自动控制技术有机的融合在一起,用于控制车辆的速度和方向,实现无人驾驶。采用车载激光技术,将视觉、红外灯信号传入到传感器中,与全球的导航系统结合在一起,感知车辆所在的位置、车身的信息以及障碍物的数据,利用计算机进行计算,从而控制车辆的转向、速度和启停,使车辆能够安全驾驶,减少资源的浪费。无人驾驶技术的应用,能够减少驾驶员的劳动强度,改善车身的性能和技术,即使在恶劣的条件之下,也能够促进车辆的安全驾驶,确保人员的安全。

同时。无人驾驶技术的应用也可以从多个角度来进行,例如无人驾驶飞机、无人驾驶潜水艇等等。确切来说,无人驾驶技术也是衡量一个国家经济发达程度的一项重要指标,是一个国家和经济体工业制造水平发展状况的一个重要体现。利用无人驾驶技术,能够对位置和视觉的情况进行感知,主动规避障碍物,实现科学是的导航,从而使车身环境和车外状况有机的结合在一起,实现信息的融合和管理,改善交通运输环境,从而促进交通运输的智能化和科学化,提升其交通运输的安全性能。

电动车辆技术的应用。电动车辆技术是以车载电源为基本动力,用点机驱动作为主要的技术类型,并符合道路交通以及安全规定。电动汽车技术的应用,能够减少汽车对于石油的消耗。如今由于工业技术的发展,石油的消耗造成大量汽车尾气的排放,从而造成暗中的空气污染,为人们的生活带来隐患,影响社会的可持续发展。因此,为了应对这一问题,国内和国际的汽车巨头纷纷研发新型的能源,用来代替石油的消耗,促进新能源开发和利用的同时,保护生态环境。因此在这样的环境背景之下,电动汽车的开发和研究成为历史发展的必然趋势,电动汽车的投入和生产,能够基本的降低能源的损耗,同时电力资源能够从多个渠道获得,例如太阳能、水能以及核能资源等等,降低了石油的损耗和支出,减少对于环境的污染,从而促进整个交通运输行业的发展,实现经效益。

车联网技术的应用。车联网的技术是根据车际网和车内网以及车载移动网络为基础,按照相关的交通协议和标准,在车、行人与互联网之间形成信息的交换和活动。坚持以人为本的基本策略,依靠云计算的技术平台,使保险行业、4S店、各大车行以及政府车队能够通力合作,为客户制定合理的应用和服务。车联网的技术是互联网技术与智能化交通运输系统相互协调的一种新型的技术类型,意图打造一个智能化的交通运输行业,实现更加科学化、合理化的管理和服务。建立完善的技术标准和开放平台,从而控制整个城市的交通文明,安全驾驶。

智能交通信息智能感知系统的应用和服务。想要促进城市交通系统的智能化和科学化,需要准确并实时地获取到交通信息,利用智能交通无联网感知技术、多层的传感器、二维码以及地理信息定位技术,采集到丰富的交通信息咨询,感知到车辆、道路以及行人等多方面的信息。在挖掘数据资源的基础上,能够打破跨行政区域的限制,使信息资源能够在阳光下运行,实现实时的资源共享,在组合与集成信息的基础上,从而建立综合性的立体交通信息系统。同时,在交通资源配置以及车辆安全、方面,智能感知交通信息技术,形成科学的数据计算体系,提升交通车辆的安全性。合理配置各项资源,提升交通运行能力。

智能交通系统篇4

[关键词]智能交通;系统维护;运行管理;商业化

一、前言

智能交通管理系统是计算机技术、通讯技术、信息技术、传感技术与控制技术的集成应用,系统包括了智能交通管理、平安城市监控、三台合一接处警、基于PGIS的集成管理平台四大部分功能,为现代化城市道路交通管理提供了便捷服务。虽然我国的城市道路基础建设取得了快速的发展,已经具备了相当规模的道路交通网络,但是,道路交通网络的建设仍然落后于交通量增长的需求。这就使得城市道路交通拥堵现象仍然十分突出,为了缓解这种交通现象频繁的交通设施维护和管理方式的加强,效果十分有限,而且还带来了成本浪费与环境污染。因此,为了提高城市道路交通运行效率,不仅仅是要扩建道路交通设施,而更重要的是要充分利用智能交通管理系统进行有效地控制管理,提高道路交通的效率,采取智能交通管理系统是解决当前交通拥堵、交通事故频发和环境污染严重的有效途径。而智能交通管理系统在建设和使用过程中,由于技术和应用管理的缺陷,运行维护管理存在很大难度,如何探寻出一条充分利用现有智能交通系统信息资源基础上,满足智能交通系统的正常运行维护的管理策略,降低政府财政支出,是智能交通系统可持续发展的基本保障。

二、智能交通管理系统运行情况

智能交通管理系统通常是由控制管理集成平台与智能交通各子系统两大部分组成,包括:高清电子警察子系统、超速检测子系统、道路监控子系统、高清智能卡口子系统、交通流量监测、交通信号控制子系统、事件监测子系统、交通诱导子系统、移动车辆定位子系统(GPS)以及交通管理信息子系统等部分,系统的核心是智能交通控制管理集成平台。随着经济发展和科学技术的进步,智能交通管理系统广泛应用于我国各大中城市,最大限度的发挥了智能交通管理的积极作用,使我国的交通管理实现了从经验型、科技型、体能型逐渐转变到智能型、管理型阶段,信息化建设和运行维护管理水平也进一步提高。随着新技术和控制技术的发展,动态导航仪、电子站牌、电子不停车收费系统逐步走向了人们的生活中,智慧道路系统、绿色智能交通、智能驾驶战略等智能交通管理应用也在不断得到了实践应用。在智能交通管理系统运行中,我国主要是采取了快速路网结构特点的交通控制技术、系统集成模式与技术、智能交通综合监控技术与实时动态交通流预测预报的信息技术,运行维护管理是采取了以政府为主体的维护管理模式。

三、智能交通管理系统运行维护管理存在的问题和不足

在智能交通管理系统的应用中,运行维护管理是一项重要工作,由于维护技术和管理模式的不一样,智能交通管理系统运行效率受到很大影响,在有些地方还存在着一些运行维护管理的问题和不足,主要表现在以下几个方面:

1)管理模式中主体单一。

我国的交通设施管理是以政府为主导的管理模式,政府主体角色作用明显,商业化运营存在政策障碍,这就使得智能交通管理系统的运行维护主体较为单一,工作效率偏低,缺乏责任落实和绩效考核机制的有效制约,这在很多地方导致了智能交通管理系统维护管理存在疏漏和拖延,影响了系统使用效率。

2)运行维护的管理缺乏规范完善的标准依据。

智能交通管理系统的运行维护社会参与度低,再加上政府运维受到资金限制的问题,在技术标准、建设标准和服务标准等方面缺乏规范依据,更缺乏组织或行业监督,也使得社会资金的商业化运营更加困难。

3)运行维护管理内容庞杂。

智能交通管理系统已经形成了庞大的网络数量,业务范围分布广,系统软件系统、硬件系统、数据采集设备、视频监控设备等数量非常大,在运行维护管理中存在很大困难,如果没有系统的运维管理界限划分,很难形成统一、有效的系统维护。

4)维护资金存在缺口。

智能交通管理系统的运行维护需要资金支持,由于运行维护模式、管理标准和制度建设等不完善,使系统维护过程中存在大量的资源浪费,就变相的增加了系统运行维护成本,使得系统维护资金单靠政府财政支出难以有效保障。

四、智能交通管理系统的运行维护管理策略分析

智能交通管理系统的运行维护作为系统应用的有效保障工作,需要从各方面采取措施,充分保障智能交通管理系统的正常运行。在系统的运行维护管理中,需要进行以下几个方面的管理措施:

1)推进商业化运行维护模式,解决资金与技术不足。

系统运行维护需要专业的技术和足够的资金,本身盈利性很弱,因此,如何开展商业化运行维护,还需要以政府为主体来进行开展与系统供应商签订试运行、正常运行期间的技术支持和费用分摊协商,根据政策要求鼓励和引导商业运维,优先考虑原系统供应商。通过商业化运维模式解决政府主导运维管理中存在的技术不足和资金困难问题,能够更加有效的保障系统运行效率和运行效益。

2)确定规范的系统维护内容及标准。

根据系统组成及运行要求,系统的运行维护要涵盖枢纽监控设备、通信网络设备、交通状态监测设备以及指挥中心软硬件系统的运行维护保养,设备完好率及平均无故障时间要达到指挥中心运行的最低要求,并根据运行需求进行系统的优化和升级,保障地理信息、图层更新与维护,从而保障运行管理效率。

3)公众出行交通信息服务的商业化操作。

通过移动终端及语音服务等公共网络平台,提供短信定制、WAP信息、语音信息、车载终端信息、互联网络、交通广播、电视信息等交通信息查询服务,进行商业化操作,既充分发挥智能交通管理系统的信息网络优势,又能够提高系统的运行效益,从而解决一部分系统的运行维护管理费用,这也是智能交通管理系统运行维护的一项内容。

4)建立智能交通管理系统运行维护的政策与组织保障体系。

系统维护管理的政策保障需要明确系统建设和运维管理的权利和义务,如信息资源共享的权利、义务与责任,并明确质量保障机制,明确考核管理,并根据系统发展和应用需要及时补充系统维护管理标准,为系统运营创造良好的环境。同时还要由相关交通部门建立统一的管理组织,统一信息共享、信息,从而拓展信息服务的有效渠道。

五、结语

智能交通管理系统的运行维护管理关系公众出行、交通安全等民生需求,需要全社会的参与,是保障顺利交通、有效利用社会资源的重要措施。因此,采取科学的技术管理手段,建立完善的智能交通管理系统运行维护管理体系,是现代化城市道路交通智能化综合管理的基本保障。

[参考文献]

[1]王志伟.交通信息系统运行维护管理[J].中国交通信息化,2011.

[2]鲁堃,李金峰,徐玉波.智能交通自动化检测与运维管理系统的应用与分析[J].中国安防,2011.

[3]王娟.智能交通系统在九寨沟景区管理中的应用探讨及运营评价[D].西南财经大学,2007.

智能交通系统篇5

关键词:智能交通、高速公路、安全

中图分类号:U412.36+6文献标识码: A 文章编号:

随着科学技术的发展, 特别是电子、信息、通信等高新技术的发展,为我们解决高速公路交通问题提供了新的思路和手段。建立以信息技术为核心的智能交通系统就是解决高速公路供需矛盾和交通畅顺、安全等问题的新途径。

1 智能交通系统

智能交通系统的前身是智能车辆道路系统,智能交通系统将先进的信息技术、数据通讯传输技术、电子传感技术、电子控制技术以及计算机处理技术等有效地集成运用于整个交通运输管理体系,而建立起的一种在大范围内、全方位发挥作用的,实时、准确、高效的综合运输和管理系统。它简称ITS,是通过人、车、路的和谐、密切配合提高交通运输效率,缓解交通阻塞,提高路网通过能力,减少交通事故,降低能源消耗,减轻环境污染。

2 我国的智能交通示范工程

在我国, 智能交通已逐步得到社会各界的广泛关注和认可,并已经成为交通领域的研究热点,社会各界对通过智能交通系统建设缓解日益严重的交通问题寄予了厚望。几年来,我国在智能交通领域取得了许多令人可喜的研究和建设成果, 其中包括建立了部级的智能交通系统工程技术研究中心,制定了中国智能交通系统发展战略和中国智能交通系统体系框架等。一些城市还编制了地方智能交通系统发展规划和体系框架,开发了各种智能交通应用系统,在某些关键技术和产品开发领域也取得了令人瞩目的成绩。

为了进一步推动智能交通技术在我国的发展,加速智能交通的工程化应用和产业化进程, 科技部在“十五”国家科技攻关计划中设立了“智能交通系统关键技术开发和示范工程”重大项目。其中在北京、上海、天津、重庆、广州、深圳、济南、青岛、杭州、中山等10个典型城市进行的试点示范工程已全面启动。

3 智能交通系统在高速公路中的应用

目前国内外高速公路智能交通应用主要包括 ETC 和非现金支付两方面:广东省高速公路的联网收费采用兼容电子不停车收费和人工半自动收费的组合式收费技术,采用非接触式IC卡作为全路网的通行卡,专门为非现金支付和ETC的应用发行了双界面CPU卡即粤通卡。在容易产生交通流瓶颈的收费站,设置专用ETC收费车道;在一般收费站仅设IC卡收费车道,允许司机从双片式 ETC 电子标签中拨出粤通卡以非接触操作的方式刷卡扣款。目前粤通卡发卡已近10万张,在使用粤通卡的用户中,有85%的用户同时使用ETC业务。

江苏省专用于高速公路通行费缴纳的预付卡“苏通卡”正式启用,用户可以采用非现金支付的方式支付高速公路通行费。浙江省沪杭甫、上三高速公路车主可以使用有银联标志的银行卡进行通行费结算绕开现金交易的诸多不便,即刷即走,大大提高了付费效率,减少了在收费口的停车时间,加快了收费道口的通过速度。

加拿大407高速公路采用自由流方式的自动电子收费制式,系统由安装在车辆前挡风玻璃上的电子卡和设于所有入口和出口匝道门架上的收费设备构成。经常行驶在407高速公路上的车辆可使用电子标签便于支付通行费用。城市智能交通应用主要包括对外服务和信息两方面:“北京公众出行网”开通,该网站为公众提供动态交通信息、交通基础设施信息、客运信息、交通黄页、出行常识等信息服务。市政交通一卡通已发行,可乘坐地铁、公共汽车、出租车等,还可用于北京高速公路通行费支付和 ETC 车道使用。

4智能交通系统的建设

4.1 加强领导,增加投人,成立研究协调机构

智能交通系统综合了各种高新技术,研究领域涉及面广,因此,必须有政府强有力的领导和支持。研究机构应由政府部门、交通管理部门、市政管理部门和有关研究机构组成。研究机构着重于协调、指导和推动研究工作的全面开展,制定研究与实施计划,确定智能交通系统的研究框架和研究原则、标准,明确重点开发目标,选择重点研究开发领域。重点领域的选择应坚持适度超前的原则,即应把眼光放在一个相对较高的层次上,避免重复研究和在低水平下的无计划开发。

4.2 重视高速公路基础设施建设

高速公路智能交通系统是信息、通信、网络、自动控制、交通工程等技术的综合应用系统, 只有相关部门有远见地提前做好通信线路、流量传感器、车辆传感器、交通安全设施等基础设施建设工作,才能为今后系统的发展和完善提供良好的基础。

4.3 建立一支高素质管理人员队伍

大力提高智能交通系统管理人员的素质。智能交通系统的发展除设施(硬件)先进可靠外,提高管理人员的素质是推动智能交通系统发展的重要因素。所以,在开发运营ITS的同时,要加快提高管理人员的素质,如提供教育培训的机会等,组织好产、学、研、用几个方面的结合,使软硬环境均适应ITS的要求。

4.4 注意事件处理的时效性

高速公路的交通事故相当大部分是驾驶人违法驾驶造成的,发现违法驾驶行为、对违法驾驶人进行警告、教育和处罚越及时,对减少交通事故越有利。高速公路是全封闭高速行驶道路,基于安全的考虑,非特殊情况不允许在高速公路上拦截车辆进行检查、纠违。在建立高速公路智能交通系统时,应注意事件处理的时效性,充分发挥信息通信技术的优势,及时检测超速、超载、逆向行驶等违法行为,及时通过信息系统、广播系统、车载终端等手段提出警告和在车辆的出入口进行告知和教育,使高速公路交通监控与执法系统成为相对实时的闭环系统,从而及时制止违法驾驶行为,预防交通事故发生。同样,提高事故预警和紧急处理与救援的反应时间,也对高速公路的交通安全起着重要的作用。

5 结束语

综上可知,在高速公路采用智能交通系统可以带来显著的经济效益和社会效益,对提高高速公路的自动化管理水平具有重要的作用。但由于该技术刚刚在我国新起,我国对其认识还不足,因此,还需要大家不断的努力,不断地创新,将其研制适合我国基本国情的交通系统。

参考文献:

[1] 樊进超.ITS在高速公路的应用及其评价研究[J].中国交通信息产业.2008(03)

智能交通系统篇6

关键词:轨道交通;低压配电系统;智能控制

1引言

随着国民经济的发展,城市规模在不断扩大,城市人口急剧增加,随之出现的交通拥堵问题日趋严重。城市轨道交通具有运量大、速度快、安全性高、节能环保等特点,作为新的交通运输方式以其不可比拟的优势快速发展起来,在城市公共交通中发挥着越来越大的作用,能够缓解城市交通的拥堵问题,是城市中重要的交通工具[1]。

2轨道交通低压配电系统

低压配电系统是轨道交通系统的重要组成部分,除轨道交通的牵引负荷外,低压配电系统提供轨道交通的其余所有设备的运营用电。低压配电系统根据其功能不同可以分为降压变电所低压系统与环控电控低压系统,用于向轨道交通系统中不同的设备供电[2],例如降压变电所低压系统用于向车站内的自动售票机、电动扶梯、监控系统、照明设备等供电,环控电控低压系统用于向通风空调系统中的各类设备供电。轨道交通系统中的低压配电系统因其应用环境的特殊性,在系统的集成性、安全性、可靠性方面要求更为严格。在集成性方面,由于车站内的空间有限,对低压配电系统的集成性要求较高,配电系统需要高度集成、所占空间小,提高车站的空间利用率;在安全性方面,轨道交通低压配电系统的安装环境复杂,配电系统应具备良好的安全性以应对不同的安装环境,例如在潮湿闷热的环境中安装低压配电系统,供电电缆需要具备良好的耐腐蚀性与绝缘性,降低低压配电系统的故障机率,保障交通轨道运行的安全性[3];在可靠性方面,轨道交通低压配电系统若是发生故障会影响轨道交通的正常运行,给轨道运营的经济效益与社会效益带来不良冲击,因此提高低压配电系统的可靠性与稳定性是轨道交通系统正常运行的重要保证。

3低压配电系统的智能化控制

低压配电系统的智能化控制通过实时采集系统整个工作过程中的参数数据,实时监测系统的工作状态,并不断比对系统正常工作状态与标准参数或对监测数据进行深入挖掘评估,对系统中存在的故障进行诊断与预测,提高系统故障预测与定位的准确率及故障抢修率,保障低压配电系统的正常工作。轨道交通低压配电系统的智能化控制系统一般由智能元件、现场总线、通信控制器等基本组件构成[4],智能元件是智能化控制系统的眼睛,用于实时监测系统的运行状态,实时采集系统运行时的各类参数指标;通信控制器用于控制监测数据的传输通信,现场总线用于连接智能元件与通信控制器,实现向通信控制器传输智能元件所采集数据或用于通信控制器向智能元件的指令传递。低压配电系统根据其功能不同可以分为降压变电所低压系统与环控电控低压系统,不同的低压配电由于面向供电对象不同,所采用的智能元件也有较大差异。

3.1降压变电所低压系统

对于降压变电所低压系统而言,其面向的供电设备为自动售票机、电动扶梯、监控系统、照明设备等。降压变电所低压系统借助智能化数字仪表、以太网网关、智能断路器、现场总线、可编程控制器等实现对三级负荷总开关、重要馈线回路与进线断路器等元器件的实时工作状态监测与远程遥控,其结构是当主电源正常有电时,主电源自动投入,备用电源备用;当主电源故障或失电时备用电源投入,如果主电源恢复正常时,自动停备用电源,再切换到主电源供电,从而保证了低压配电系统的持续供电与轨道交通系统的正常运营。

3.2环控电控低压系统

对于环控电控低压系统而言,其面向供电设备为通风空调系统,环控电控低压系统借助智能化数字仪表、智能断路器、现场总线、通信控制器、可编程控制器等实现对通风空调电动机的实时监测、远程控制与保护,其结构是过实时监测空调电动机的回路,实时采集通风空调设备的工作状态参数,在通信控制器对采集到的数据进行归纳整理分析,在对通风空调中存在的故障进行诊断预测后,由可编程逻辑控制器向通风空调的电动机下达工作指令,控制并调整空调设备的工作状态[5],实现对通风空调设备的自动化模块控制,保证空调设备的安全可控、正常运行。

4结论

低压配电系统是轨道交通系统中的重要组成部分,其稳定性与安全性直接关系到轨道交通系统的运营状态与社会效益,对轨道交通低压配电系统进行实时智能化监测,及时预测或发现系统中存在故障,一方面可以通过远程控制系统采取应急措施,保持轨道交通系统的正常运转,一方面可以提高故障的检修率,提高系统运营维护的便利性。本文对轨道交通低压配电系统的智能化控制进行了详细的分析,包括智能化控制的目标、智能化控制系统的构成等,对提高轨道交通低压配电系统的稳定性与安全性具有重要促进作用。

参考文献:

[1]侯红磊,黄建霞.城市轨道交通低压配电系统的设计总结[J].电子制作,2017(Z1):51-52.

[2]吕凯,姜芊宇,王琦,陈新春.低压配电系统的智能化节能控制方法研究[J].科技通报,2016(07):184-187+201.

[3]孙建新.城市轨道交通低压配电系统智能化管控终端设计[J].城市轨道交通研究,2016(05):40-43+48.

[4]吴延苗,曹国祥,鲁莹.城市轨道交通低压配电系统谐波治理措施[J].科技风,2015(24):53.

[5]靳忠福.上海轨道交通6号线港城路车辆段低压供配电系统设计[J].现代城市轨道交通,2010(02):26-27+30+80.

智能交通系统篇7

关键词:智能交通 ;预测 ;短时交通信息

中图分类号:U491文献标识码:A0

引言

智能交通(ITS)是将人工智能技术、自动控制技术、计算机技术、先进的信息通信技术及传感器技术等有效的集成,并应用于整个地面交通管理系统而建立的一种大范围、全方位发挥作用的综合交通运输管理系统,包括先进交通管理系统(ATMS)、先进的驾驶员信息系统(ATIS)、先进公共运输系统(APTS)、出行指导系统等[2,3]。

短期交通信息预测是对城市交通系统或高速公路系统中某条道路或某个交通网络在未来一段时间内(时间跨度通常不超过15分钟)交通流等信息的变化情况进行预测,其结果可以用于制订和实施交通管理,对交通流进行调节,实现路径诱导,也可以直接送到先进的交通信息系统和先进的交通管理系统中,为出行者提供实时有效的信息,以更好地进行路径选择,缩短出行时间,减少交通拥挤。目前,短期交通信息预测的研究越来越受到重视,已经成为智能交通领域的重点研究内容之一[3]。

本文对短时交通信息的几种主要预测方法进行了介绍,重点分析了时间序列、神经网络、非参数回归、支持向量机等几种预测方法的优缺点、应用场合,并对当前研究中的问题和未来发展趋势作了介绍。

1短时交通信息预测方法分类

短期交通信息的预测包括对交通流三大参数,即交通流量、车流速度和密度预测,以及对行程时间等其他信息的预测。从20世纪50年代中期开始,国内外的研究人员对交通系统的短时交通信息的预测方法进行了广泛的研究,从早期的历史平均法、指数平滑法、谱分析方法、时间序列分析,到近十几年发展起来的神经网络方法、小波分析方法、混沌预测、支持向量机、动态交通分配等预测方法,应用于智能交通领域的短时预测方法有几十种[10]。根据各种预测方法本身的性质和研究问题的角度不同,常见的预测方法可以分为两大类:一类是基于数据驱动的预测方法,结合统计经验进行分析,如神经网络、支持向量机等方法;另一类是基于机理的预测方法,即以交通理论的为基础,从交通工程上的供求关系角度进行分析,如动态交通分配法(DTA,Dynamic traffic assignment)[2][12]。常见的预测方法具体分类如图1所示。

交通流是一个时变过程,不同的空间位置环境其状态特征差异大,各种预测方法也都有各自的优缺点和相应的适用场合,因此对各种环境条件下的交通信息预测应当是一个综合运用各种方法相互补充的过程。一个成功的交通流预测过程应能正确反映被测过程及其环境变化并及时调整模型结构,使预测具有适应性。

图1 短时交通信息预测方法分类

2短时交通信息主要预测方法

2.1时间序列模型

时间序列分析主要指采用参数模型对观测到的有序随机数据进行分析和处理的一种数据处理方法。其预测原理是将预测对象随时间变化形成的数据序列看成一个随机时间序列,该序列的未来发展变化与对象历史变化存在依赖性和延续性,包括自回归模型(AR,Auto-Regressive)、滑动平均模型(MA,Moving Average)、自回归综合滑动平均模型(ARIMA,Auto-Regressive Integrated Moving Average)等[1]。其中单变量ARIMA是典型的时间序列方法,适用于短时交通信息预测,它实际上是用二项式差分消除了非平稳时序中的多项式趋向,从系统角度分析,就是分离出了系统中相同的一阶环节,从而可以按照平稳时序建模。ARIMA适用于稳定的交通流。但是时间序列方法的缺点是:1)交通状况变化时由于计算量大,该算法具有预测延迟的特点,且算法本身依赖于大量不间断的数据,若实际中数据遗失则预测精度变低,算法的鲁棒性差;2)模型是通过研究交通流过去的变化规律来外推或预测其未来值,只利用了历史数据,没有考虑其他影响因素,如相邻路段、天气变化影响等,所以交通状态急剧变化时,预测结果与实际情况差别很大;3)模型参数的求解一般是离线进行的,并且在预测过程中的模型参数是固定的,不能移植,不能很好的适应不确定性强的短时交通流动态预测要求[5][13]。与单变量ARIMA相似,多变量时间序列预测也得到了广泛研究,包括多变量时间序列模型包括向量ARIMA、空间时间ARIMA等,这些模型主要考虑交通网络中多个节点交通流之间的相互联系,一定程度上更能反映交通流的本质特征,但由于模型过于复杂,在实际中很难实现。

2.2神经网络模型

神经网络是一种并行的、分布式的智能信息处理方法,具有非线性映射和联想记忆功能,非常适合解决强非线性、时变系统的预测问题。利用神经网络对环境变化的较强的自适应学习能力和较好的抗干扰能力,可以克服传统交通信息预测方法的局限性,所以在智能交通系统得到了广泛的应用。目前,在交通信息预测方向的神经网络预测研究主要分为三个层次[18]:

1)将某一类神经网络方法直接用于短时交通信息预测的方法有:例如BP神经网络、RBF神经网络、时滞神经网络等;

2)将两种或多种神经网络相结合的混合预测模型:例如神经网络集成方法;

3)将神经网络与其他方法结合,进行综合预测的方法:例如模糊神经网络、粗神经网络、以及小波神经网络等。粗神经网络建立在粗神经元基础上,基于粗糙集理论和近似概念建立的粗神经元可以看作由两个存在重叠的常规神经元组成。粗神经网络中的常规神经元对应于确定性变量,如交通流量密度、速度以及行程时间,粗神经元用于描述不确定性变量或变量波动情况,如偶发事故、天气原因引起的交通流参数波动[3]。小波神经网络是在小波分析基础上提出的前馈网络,与传统神经网络的区别是隐含层节点激励函数不是Sigmoid函数而是小波函数。小波神经网络原理是:交通流在不同时间尺度上具有自相似性和多尺度特征,低频部分反映的是总体变化趋势,高频部分是随机性和不稳定性的表现,因此可以利用小波分析方法将交通信息中的高频部分和低频部分预测。

不过,将神经网络用于实际交通系统预测的难点是神经网络的训练时间较长,普适性差,交通状态变化时难以在线调整,不适用于大规模网络。

2.3非参数回归

非参数回归是利用模式匹配算法,找到一组与输入数据相对应的数据或相似的数据来预测[8],对应关系不需要精确的函数表达式,而是一个近似的关系。在每次模式匹配算法中,随着输入数据模式变化,这个近似的关系也会有变化,从而达到动态预测的目的[18]。非参数回归方法本质上是一种数据驱动的智能方法,认为系统所有因素之间的内在联系都蕴含在历史数据中,从大量的历史数据样本中找到所需的匹配数据,依赖匹配数据预测。

利用非参数回归进行短时交通流预测的原理是:对于固定的道路状况,车流的上下游因果关系是具有重复性的,同时这种因果关系也是随着时间变化的,由于交通流的时变性和非线性,寻找这种动态的具体映射关系是不现实的,采用基于数据驱动的非参数回归方法是一种较好的解决方法[21]。文[20]对非参数回归方法在短时交通预测中的可行性进行了分析。文[8]利用反馈机制对系统变量和输入变量进行动态调节,提高了非参数回归方法的预测精度,并通过北京市路网的交通流预报实例证明了这种方法的有效性。

非参数回归方法的优点是:1)不需要先验和大量的参数识别,不必确定任何模型参数,只需要足够的历史数据,寻找历史数据中与当前点相似的近邻,并用这些近邻预测下一时段的流量;2)应对突发事件能力强,预测准确性和误差分布较好算法原理清晰,鲁棒性好,尤其适用于交通状态不稳定时的系统预测。非参数回归方法的缺点是:存储的历史数据较多时查找近似点的效率就会降低,影响预测速度,另外交通环境变化时导致状态和流量的对应关系发生变化,需要更新数据库信息[18,19]。

2.4混沌预测

交通系统是一个复杂的大系统,它表现出来的非线性动力学性质之一就是混沌现象。实际上,在一个较短的时间段内(例如10分钟),每条道路的车流量、路口总体流量和交通控制网络流量的变化具有丰富的内部层次有序结构,有很强的规律可寻,是一种介于随机和确定性之间的现象,即混沌。具体来说,车辆间的非线性跟驰和交通系统的状态参数的变化都存在混沌现象。

基于混沌理论的进行交通信息短时预测主要以混沌理论、分形理论、耗散理论、协同理论、自组织理论等为基础,利用混沌理论中的相空间重构、奇怪吸引子、分形方法等建立预测模型[18]。研究可分为两个方面:基于交通流理论模型的混沌研究和基于实测交通流数据的混沌研究。混沌时间序列预测方法有:全域预测、局域预测、加权零阶局域预测、加权一阶局域预测、基于最大Lyapunov 指数的预测、自适应预测等方法。文[28]分析了短时交通流的非线性特性及其对预测的影响,并讨论了两个方面的问题,即交通流随着观测时间尺度不同时混沌和分形特征的变化情况及对交通流预测的影响。文[17]对交通混沌研究的现状进行了分析和展望。

从理论上利用混沌理论对非线性和不确定性很强的交通流进行预测是非常合适的,所以这种方法将有很好的应用前景。不过目前交通混沌预测的研究中也有许多问题需要解决,例如:1)短时交通信息的混沌预测对实时性要求高,因此需要研究快速判别混沌方法,解决样本数据和实时性之间的矛盾;2)应用混沌解释一些原来解释不了的交通问题相对容易,而应用混沌解决实际交通问题非常困难。即混沌预测的实用化方法还是一个难题。

2.5支持向量机

支持向量机(SVM)是机器学习的一个重要分支,也是模式识别、统计学习等领域研究的热点。SVM在智能交通领域的应用主要包括车辆检测、交通状况识别等,目前SVM越来越多的被应用在时间序列分析上,即支持向量回归(SVR,Support vector regression),具体包括有-支持向量回归机、-支持向量回归机和最小二乘支持向量回归机(LS-SVM,Least square SVM)等[4][24]。利用SVR预测短时交通信息包括交通流量预测和行程时间预测两个方面。

基于支持向量回归的交通信息预测思想在于:首先选择一个非线性映射把样本向量从原空间映射到高维特征空间,在此高维特征空间构造最优决策函数,利用结构最小化原则,同时引入损失函数,并利用原空间的核函数取代高维特征空间的内积运算。支持向量回归可以解决神经网络的一些固有缺点,在解决小样本、非线性和高维模式识别问题中表现出许多特有的优势[25]。与基于神经网络的预测方法相比,SVR的预测精度高,预测结果一般好于神经网络[11][14]。文[9]基于支持向量机对行程时间进行短时预测,并与BP神经网络的方法进行了对比,实验结果表明对于小样本和高维的数据集,SVM在行程时间预测中的效果较好, 误差较BP神经网络的方法小。文[22]利用在线支持向量机(OSVR,Online SVR)进行短时交通流预测,与BP神经网络预测相比,预测的精度、收敛时间、泛化能力都有提高。文[27]利用LS-SVM对行程时间指标(TTI,Travel time index)进行预测,LS-SVM与SVM区别是LS-SVM采用一组线性方程训练,SVM采用的是二次规划方法,所以LS-SVM的优点是快速收敛,精度更高,计算量小,预测性能更好。

但是基于支持向量机的预测方法缺点是训练算法速度慢,预测的实时性还难以保证,另外对核函数及其参数以及损失函数的选择也没有确定方法。

2.6 组合预测方法

由于短时交通信息预测的随机性和不确定性,单一的预测方法很难取得好的预测效果,各种预测方法都存在不同程度的缺点和相应的适用范围,如果将各种方法有机的结合起来,则可能会取得更好的效果,这也是组合预测方法的出发点。组合预测方法是指将两种或两种以上的预测方法在中间预测过程结合或者将最终的预测结果融合[7][18]。现在已有的组合模型包括:数学模型与智能方法的结合、时域方法与频域方法的结合等。如表1所示。

表1组合预测方法分类

组合模型 作用

数学模型

时域方法 智能信息处理方法

(模糊、神经网络、灰色模型等) 数据分类

频域方法(傅立叶变换、小波模型等) 数据分解、消噪

常用的一类组合模型是利用模糊方法、神经网络、灰色模型等智能信息处理方法对短时交通流的数据聚类,然后对每一组聚类数据用线性或非线性方法预测。文[26]利用组合方法进行交通流预测,目的是将不同模型的数据和知识结合起来,最大化的利用有用信息,将MA、ES、ARMA作为神经网络的输入,实验结果表明组合方法比单一预测方法精度更高。文[23]利用模糊神经网络进行城市交通流预测,提出了一种模糊神经模型(FNM)预测城市路网的交通流,首先利用模糊方法对输入数据进行划分,再利用神经网络建立输入输出关系,并在线滚动优化训练FNM,根据实际交通条件,通过模型系数自适应变化,提高预测能力。利用智能信息处理方法对交通信息进行分类可以减少预测时间,但是很难对不同的交通条件给出确切的定义,而且聚类处理可能破坏时间序列的内在机理,失去交通流原有的动态信息[12]。

另一类组合模型是用频域方法对数据先分解,再对分解后的数据再预测,典型的是基于小波分解的预测模型。通过小波分析,可以将信号逐层分解到不同的频率层次上,分解后的信号的平稳性比原始信号好的多,利用小波变化将交通流序列分解为多个分量,对个信号分量分别进行预测,可以极大的提高预测准确性。例如文[15] 提出基于小波分析与神经网络的交通流短时预测方法,把多维输入进行小波降维分解,预测由多个子网络独立完成,实验结果表明,该方法比典型的神经网络预测准确度更高。文[16]提出基于小波包和LS-SVM的交通流短时组合预测方法。小波分析的另一个应用是对交通原始数据进行消噪处理,文[6]将小波分析方法和ARIMA相结合,取得了更好的预测效果。文[23]利用离散小波变换(DWT)去除交通数据中的噪声后进行交通流量预测。DWT的多分辨率分析(MRA,Multi-resolution analysis)可以在保留交通流量快变特性的同时,消除噪声信息利用小波消噪,提高预测精度。缺点是每次分解信号样本减少一半,存在信息丢失,影响模型重构。

3结束语

通过智能交通中短时交通预测主要方法的归纳、分析、比较,可以看出无论是传统的时间序列预测方法还是神经网络、小波分析、支持向量机等智能预测方法都存在各自的适用范围和优缺点。交通流本质上时空函数,即从时间上看,短时交通流信息可以作为时间序列处理,同时,交通流也具有空间上的相关性,上下游的路段之间存在必然的因果联系,所以如何在现有预测方法的基础上融入更多的交通流的时空信息将是一个值得研究的方向,另外将其他工程、金融等领域的预测方法借鉴到智能交通领域,并将各种预测方法有效融合在一起,处理短时交通信息预测中的不确定性和随机性,提高预测的精度和可靠性,并保证实时性也是一个需要继续探索的方向。

参考文献(References)

[1]杨叔子.时间序列分析的工程应用(第二版)[M].武汉:华中科技大学出版社,2007.

[2]朱顺应,王红等.交通流参数及交通事件动态预测方法[M].南京:东南大学出版社,2010.

[3]许伦辉,付惠.交通信息智能预测理论与方法[M].北京:科学出版社,2009.

[4]陆海亭,张宁等.短时交通流预测方法研究进展[J].交通运输工程与信息学报.2009, 7(4):84-91.

[5]贺国光,李宇等.基于数学模型的短时交通流预测方法探讨[J]. 系统工程理论与实践.2000(12):51-56.

[6]窦慧丽,刘好德等.基于小波分析和ARIMA模型的交通流预测方法[J].同济大学学报(自然科学版).2009, 37(4):486-494.

[7]张益,陈淑燕等.短时交通量时间序列智能复合预测方法概述[J].公路交通科技.2006, 23(8):139-142.

[8]张晓利,陆化普.非参数回归方法在短时交通流预测中的应用[J].清华大学学报(自然科学版).2009, 49(9):1471-1475.

[9]姚智胜,邵春福等.支持向量机在路段行程时间预测中的应用研究[J].公路交通科技.2007, 24(9):96-99.

[10]刘静,关伟.交通流预测方法综述[J].公路交通科技.2004, 21(3):81-85.

[11]徐启华,杨瑞.支持向量机在交通流量实时预测中的应用[J].公路交通科技.2005, 22(12):131-134.

[12]王正武, 黄中祥.短时交通流预测模型的分析与评价[J].系统工程.2003, 21(6):97-100.

[13]韩超, 宋苏等.基于ARIMA 模型的短时交通流实时自适应预测[J].2004, 16(7):1530-1533.

[14]杨兆升,王媛等.基于支持向量机方法的短时交通流量预测方法[J].吉林大学学报(工学版),2006,36(6): 881-884.

[15]张晓利.基于小波分析与神经网络的交通流短时预测方法[J].信息与控制.2007, 36(4):467-470.

[16]姚智胜,邵春福等.基于小波包和最小二乘支持向量机的短时交通流组合预测方法研究[J].中国管理科学.2007, 15(1):64-69.

[17]王东山,贺国光等.交通混沌研究综述与展望[J].土木工程学报.2003, 36(1):68-73.

[18]王进,史其信.短时交通流预测模型综述[J].智能交通.2005, 1(6):93-98.

[19]李振龙,张利国等.基于非参数回归的短时交通流预测研究综述[J].交通运输工程与信息学报.2008, 6(4):34-39.

[20]张晓利,陆化普.短时交通流预测特性及实例分析[J].公路交通科技.2009, 26(S1):62-68.

智能交通系统篇8

关键词:智能交通;信号控制系统;设计

随着城市建设的发展,交通拥挤问题越来越严重。近年来,各种交通事故频发,与此同时,车辆排放的大量尾气对环境也造成了严重的污染。因此,建立智能交通信号控制系统是十分有必要的。智能交通信号控制系统是将先进的信息技术、自动控制技术以及通信技术等有效集成构造的地面运输管理系统。它不仅可以增加道路网络的通行能力,还可以减少能源的消耗。

一、我国城市道路交通控制系统现状以及发展趋势

(一)我国城市道路交通控制系统现状

我国的城市交通控制系统起步较晚,在七十年代后期北京市开始采用DJS―130型计算机进行了干道协调控制的研究。八十年代以来,城市道路交通问题越来越严重。国家一方面进行以改善城市市中心交通为核心的UTSM技术研究;另一方面采取引进与开发相结合的方针,建立了一些城市道路交通控制系统。如:北京引进了SCOOT系统,上海引进了SCAT系统,深圳市引进了日本的控制系统。在国家计委、国家科委的批准下,交通部、公安部、南京市完成了“七五”攻关项目,建成了南京城市交通控制系统。

(二)我国城市道路交通控制系统的发展趋势

综合考虑我国城市道路交通的实际情况,并结合国内外先进的城市道路交通控制系统与现代科学技术成果的使用情况,我国的城市道路交通控制系统的发展将会逐渐趋于多模式化、智能化以及规整化的方向发展。多模式化主要体现在:为了使系统结构与交通流的区域变化相适应,在控制范围内的各个区域采用可灵活转换的系统结构;为了有针对性的进行系统优化,对路口能力最大、总延误最小以及排队长度最短的目标进行筛选和组合,进而确定不同的系统目标;智能化主要体现在:在传统的可变情报板以及信息广播的基础上,在城市中建立集中式GPS诱导系统,该系统应与控制系统相协调,并与智能车辆公路系统相衔接;规整化主要体现在:对于任何一个控制系统来说,其都是立足于一定的道路与交通条件下的,所以在建立城市道路交通控制系统前,要根据道路的实际情况以及交通流的状况,制定道路使用方法和交通流疏导方案,并制定出相应的交通规则,使道路与交通更为规整。

二、信号机硬件设计

国内信号机主要分为两类:一类是采用8/16位单片机作为处理器,它的特点是功能简单、方案单一。此外,这类信号机主要采用RS232或RS485通讯方式,不易实现对区域交通的协调控制,无法满足现代化交通控制的要求;另一类是基于工控机或PC104,它的优势是功能强大。但是,由于工控机和PC104都是按通用计算机标准进行设计的,而不是专门针对信号机应用设计的,从而导致硬件结构复杂,成本较高。另外,传统的RS232/485通信方式对于远距离、大信息量的信号机联网数据传输已经无法适应,而S3C44B0X又缺少集成网络控制器,故选用NE2000兼容的以太网控制器芯片RTL8019对以太网进行扩展,以太网模块如图1所示。此外,信号机需要存放操作系统、引导程序和应用程序等数据,再加上系统启动后操作系统和程序运行需要更大的空间,因此应设计外存储单元,以实现存储空间的扩展,存储器模块包括8MB的SDRAM、2MB的NorFlash和16MB的NandFlash。

三、信号机软件设计

目前,现代智能信号机需要同时执行信号灯控制、通讯和车流量检测等多个任务,而在执行多个任务的同时会带来效率低下、程序结构混乱以及功能受限等问题,从而影响系统的正常运行。为了解决这些问题,就需要引入嵌入式操作系统,以支持多种文件系统、模块化设计和基于计算机网络的通信。嵌入式操作系统采用的是一种平板式的内存模型,去除了对MMU的依赖,改变了用户程序的加载方式,开发了运行于嵌入式操作系统的函数库。嵌入式操作系统内核可以完成内存管理、进程管理、设备控制、文件系统和网络实现等功能,该系统的内核采用的是模块化设计,且许多功能模块可以独立地添加和卸载,当对内核进行重新编译时,会选择嵌入式设备所需要的功能模块,而对多余的功能模块会进行删除。通过重新配置内核,可以减小系统运行所需要的内核,缩减资源使用量,从而显著减少系统运行所需的硬件资源。

四、结语

总的来说,在交通问题日趋严重的今天,智能交通信号控制系统的建立是十分有必要的,它对于缓解交通压力、降低能源消耗以及保护环境具有十分重要的意义。

参考文献:

[1]陶强,解锡霖,贾冰.智能交通控制系统的设计策略[J].南方农机,2017,03:87+93.

[2]柴干,赵倩,蒋珉.城市智能交通信号控制系统的设计与开发[J].浙江大学学报(工学版),2010,07:1241-1246.

上一篇:智能网范文 下一篇:预算编制范文