新能源汽车电池范文

时间:2023-11-23 04:41:37

新能源汽车电池

新能源汽车电池篇1

新兴产业的关注焦点

新能源汽车作为国家战略第一次被写进政府工作报告,将进入实质性发展阶段,成为战略性新兴产业中世人瞩目的焦点。

发展新能源汽车具有重大意义,它是低碳经济与汽车产业相融合的一场技术革命。一方面是低碳经济的必然选择,另一方面也是我国汽车产业继续发展壮大的必由之路。该产业向现实生产力的转化,是我国经济转型在具体产业上的落实,不仅能满足居民巨大的汽车消费需求,推进经济增长,而且使低碳经济和节能减排目标在产业层面得以实现,还有利于增强我国汽车行业的国际竞争力。

根据我国政府的承诺,到2020年要实现单位GDP二氧化碳排放量比2005年下降40%到45%的目标。汽车作为主要的减排目标之一,需要制定更高的排放标准,新能源与汽车产业的结合成为必然。

目前市场上的新能源汽车主要有两种。一种为混合动力汽车,这类车型已经相对成熟,只是生产成本较高,相关政府部门只要给予一定的财政支持,就可以得到推广。另外一种是氢燃料电池汽车和电动车,但目前城市相关基础设施配套不完善,推广这部分新能源汽车需要各相关部门联动,在部分城市进行试点成功后才能推行。

从2009年开始,国家就谋划产业对接。去年3月份公布的《汽车产业调整和振兴规划》提到,计划到2011年形成50万辆新能源汽车产能,新能源汽车销量占乘用车销售总量的5%左右。同时,国家发改委从去年5月份开始,对新能源汽车的动力电池、电容、驱动电机和电动附件产业进行密集调研,了解行业整体技术水平和发展现状,筛选具有创新能力的核心零部件生产企业,确定政策支持对象。

去年,国务院总理在上海考察时,提出要大力支持电动汽车的发展。之后,国家发改委汽车专家组组长王书林也表示,新能源汽车发展规划已经上报国务院。新能源汽车在国家领导人的关怀和产业政策支持下,逐步进入发展的快车道。

关键在政策扶持

培育一个新兴产业,在重大技术研发、生产力转化和推广应用方面环环相扣,国家财政、金融等方面的政策支持起到关键作用,相关行业及细分行业标准的制定和完善都非常重要。

总理在政府工作报告中提出,积极推进新能源汽车“取得实质性进展”,着力突破新能源汽车的“重大关键技术”。而全国政协今年的一号提案就是发展低碳经济,新能源汽车成为政协委员的重点关注对象。

据悉,国家发改委将在3月底公布《新能源汽车发展规划》。“两会”期间,工信部部长李毅中表示,新能源汽车研发的一次性投入比较大,价格比较高,为了鼓励私人购买,工信部与财政部在协商补助政策,补助金额最高可能达到6万元。据预测,到2012年,国内示范运营的新能源汽车将达6万辆,财政部的专项补贴也将高达200亿元

国家在产业政策、推广政策不断落实的同时,今年多家央企也将启动充电站建设,新能源汽车的试点工作进入实质性阶段。中信证券预测,新能源汽车示范城市将从13个扩大到20个。

新能源汽车产业化过程中,相关行业标准和细分行业标准不可或缺。万向集团公司董事局主席鲁冠球提出了《关于制定新能源汽车国家标准的建议》,建议成立国家新能源汽车标准体系委员会,制定完善的产业标准。鲁冠球提出建立统一的关键零部件产业标准体系、制定锂离子电动汽车产业标准,加强与发达国家新能源汽车产业标准的接轨,制定出具有国际通用水准的新能源汽车标准体系。广汽集团总经理曾庆洪提出,电池使用寿命和充电时间制约着电动汽车的产业化,国家应尽快出台相关标准。

核心投资机会在电池业

新能源汽车行业面临着中长期的投资机会,全产业链都将受益,核心受益环节是电池业。同时,投资价值还在向电气系统、整车以及上游资源领域延伸。

电池行业是市场关注热点,在谈到新能源汽车时,几乎所有的投资和研究机构都将重点指向这一细分行业。汽车对电池的使用量巨大,一辆电动汽车可比4000台笔记本电脑,每台汽车平均使用正极材料50公斤、负极材料40公斤、电解液40公斤。2009年国内电解液需求为8000吨,仅汽车需求就增加50%。

目前锂电池渗透率较高,镍氢电池也有较好的发展前景。锂电池毛利率高,对相关企业业绩支撑大,正极毛利率为30%,负极20%,电解液40%,隔膜70%,六氟磷酸锂材料70%。

锂电池行业有较多的优质投资标的股。杉杉股份(600884.SH)是锂电池行业龙头,国内最大规模的锂离子电池材料综合供应商,其中锂电池正负极居国内第一,电解液全国第二,已经形成了“资源+技术+市场”的产业链优势。电解液属于高技术环节,江苏国泰(002091.SZ)是电解液行业龙头,国内第一,全球第三,占领中高端市场。该公司新建年产300吨六氟磷酸锂产品项目即将迎来中试,将进一步提升其在市场中的规模优势。中信国安(000839.SZ)是国内唯一大规模生产动力锂电子二次电池的厂家,其下属子公司还是国内最大的锂电池正极材料钴酸锂和锰酸锂生产厂家。隔膜生产商佛塑股份(000973.SZ)与比亚迪合作,正在增资扩建项目锂离子电池隔膜项目。

镍氢电池领域中,科力远、中炬高新等企业受到机构关注。其他核心零部件领域,中国南车(601766.SH)、万向钱潮(000559.SZ)、宁波韵升(600366.SH)卧龙电气(600580.SH)以及储能电容生产商法拉电子(600563.SH)等公司也值得关注。

新能源汽车电池篇2

关键词:嵌入式;Qt;ARM;Linux系统;电池监控系统

中图分类号:TP368 文献标识码:A 文章编号:2095-1302(2016)04-00-03

0 引 言

嵌入式系统以计算机技术为基础,软硬件可裁剪,具有体积小,功耗低,成本低,便于携带等优点并符合高要求的专用计算机系统,它主要以应用为中心。在现代科技日新月异的情况下,社会朝着高度智能化,信息化的方向前进已是必然。在这种情况下,新能源汽车的发展与开发有着巨大的潜力,针对新能源汽车的开发,我们提出了基于嵌入式Qt的新能源汽车电池监控系统的开发。

1 电池监控系统整体设计

目前,嵌入式系统在智能生活领域已成为人们不可分割的一部分。电池与新能源汽车密不可分,对于电池的监控和控制有助于我们更好的延长汽车寿命。该系统以ARM-Linux平台为方案,分为底层硬件部分,Bootloader引导内核,Linux-kernel内核及根文件系统,Qt/Embedded及数据库五部分,系统整体框图如图1所示。其中,图1中的Qt/Embeded在图形界面的设计中采用Qt Creator软件开发应用界面,完成对电池电流,电压容量,温度,充放电时间等重要参数的展示并使用MySQL数据库储存这些数据。

2 系统硬件的设计

电池监控系统的硬件是以ARM平台为基础,选用ARM920T和samsung的mini2440为CPU处理器。其内部晶振输入频率为12 MHz时,其处理器最高输出频率可达532 MHz。开发板带有内存为64 M的SDRAM和128 M的NAND Flash以及NOR Flash。LCD采用STN显示带有触目屏为电阻式类型的3.5英寸的液晶屏。系统支持NAND Flash启动和NOR Flash启动两种启动方式。为了方便,我们一般采用NAND方式启动。对于数据的收集与通信一般采用I2C总线接口进行。其系统硬件设计如图2所示。

3 软件平台的搭建

在PC机下安装VMware 10虚拟机。系统的开发环境需在虚拟机中安装Linux 14.04版本的操作系统。所搭载的交叉编译环境为arm-linux-gcc 4.4.3版本。该编译器可针对ARM平台进行特定的编译。配置tftp方便开发板与Linux系统间的通讯,用来下载和上传开发板与系统之间的资源。软件开发平台为 Qt Creator软件。系统所需的软件和资源包如表1所列。

在实际应用中可以根据自己的需求进行配置。在ubuntu软件中心可以在线下载Qt Creator软件并进行安装,非常方便。至此,系统所需的开发环境基本构建完成,图4所示是整个系统的开发流程。

4 应用程序的开发

应用程序开发分为初始化硬件及电池信息收集,应用层图形界面的设计与数据库的使用两部分。

对于电池信息状态的采集,用C语言开发控制ARM相关寄存器和I2C总线接口,初始化时钟,设置相关中断等,具体的软件流程图如图5所示。开发板上系统后,程序进行一些硬件初始化,配置振荡器,设置时钟源;清中断,使能中断优先级;初始化UART与GPIO端口。当然对于I2C主机初始化是必须的。I2C有硬件I2C和模拟I2C两种选择。我们选用的是硬件I2C,对I2C相关寄存器进行初始化设置。必要的硬件设置完成后开始参数初始化,将电池状态保存到E2PROM中。主程序中的while循环主要用来进行UART数据传输,根据LED灯指示的工作状态对电池进行保护控制,并根据获取的电池状态信息是否满足循环体条件来判断是否进行下一次循环。

硬件系统每隔500 ms完成一次数据采集,数据包括23串电压,4个温度节点,每1 s更新一次SOC值,在点火信号丢失2分钟后,系统自动关机,节省能耗。对于电池信息,I2C通信状态,温度及容量状态都有很好的监视作用,其中系统只带有欠压保护,高温保护等。应用层图形界面的设计主要用到基于C++的Qt库的开发。包括界面布局,接口设置,MySQL数据库的使用。相关函数通过信号与槽机制建立联系等。比如语句QOBJECT::connect(btnButton1,SIGNAL(clicked()),this,SLOT(maxBateryValueslot()));建立了btnButton1按钮与函数maxBateryValueslot()的联系。应用界面通过存储在E2PROM上的当前地址建立联系。这是底层开发完成后预留的与应用层进行通信的接口。应用程序开发完成后还需要移植到开发板上。在Qt Creator软件上使用MySQL数据库时需要用户自己编译数据库驱动。对于数据库驱动编译,首先应下载并安装MySQL数据库,注意安装时选择Custom Install定制安装,然后编译,在编译时注意数据库的lib文件和include头文件。最后再将生成的qsqlmysql4.dll,libqsqlmysql4.a,qsqlmysqld4.dll,libqsqlmysqld4.a这四个文件都复制到数据库驱动插件放置的目录。项目在编译链接通过后会在项目相应的一个release文件夹(如:chen-build-desktop-Qt_5_5_0_Qt-5_5_0_Release文件夹)中,比如.exe文件就在此。然后将此.exe文件通过tftp方法传到开发板的相应目录中。注意在提取应用程序时可能需要将Qt5.5.0的.lib文件(如imports, lib, plugins, qtc-qmldbg, qtc-qmlobserver, translations等文件)存放在开发板的相关目录下。最后在开发板的Linux终端输入相关命令:

#可执行文件名 Cqws 即可运行。

这时,系统已基本开发完成。从结果中可以看到,当图6中的Charge State为0时表示此时电池正在充电,图中的各个参数代表当时电池的电池容量,当前温度,充电时间等。图7表示此时电池正在放电,这时Charge State为1。

5 结 语

本文基于嵌入式Qt实现了对能源汽车的电池监控,使其在使用寿命上有了非常大的提高,符合节能减排的原则。应用嵌入式Qt开发操作界面使其更加简洁,这在控制成本方面也起到了一定的作用,非常符合设计需求。

参考文献

[1](英)Neil Matthew,Richard Stones.Linux程序设计[M].北京:人民邮电出版社,2010.

[2]贝尔.深入理解MySQL[M].杨涛,等,译.北京:人民邮电出版社,2010.

[3]韦东山.嵌入式Linux应用开发完全手册[M].北京:人民邮电出版社,2008.

[4] 俞辉,李永,何旭莉,等.嵌入式linux程序设计案例与实验教程[M].北京:机械工业出版社,2011.

[5]蔡志明.精通Qt4编程[M].北京:电子工业出版社,2011.

[6]华清远见嵌入式培训中心.嵌入式Linux应用程序开发(第2版)[M].北京:人民邮电出版社,2009.

[7]谭浩强.C语言程序设计(第2版)[M].北京:清华大学出版社,2009.

[8]杜春雷.ARM体系结构与编程[M].北京:清华大学出版社,2003.

[9](德)Michael Kerrisk.Linux/UNIX系统编程手册(上册) [M].孙剑,许从年,董健,等,译.北京:人民邮电出版社,2014.

新能源汽车电池篇3

亿纬锂能(300014)的21700电池成品在湖北金泉下线,2019年正式投放市场;智慧能源(600869)新增6条200PPM的21700产品生产线,达产后将形成超7GWh的生产能力。

【分红及业绩】

元成股份(603388):上半年净利翻倍 拟10转10

新光圆成(002147)半年报拟10转3派5元

诚益通(300430)半年报拟10转6

齐星铁塔(002359):上半年净利同比增一成 拟10转7

赢合科技(300457)半年报拟10转15股

安纳达(002136)上半年净利大增近19倍

精艺股份(002295)上半年净利润同比增逾7倍

安纳达(002136)上半年净利大增近19倍

西部材料(002149)上半年净利润同比增3倍

江山股份(600389)半年报增长1487%

驰宏锌锗(600497):铅锌 产品价格上涨 上半年净利润大增31倍

方大炭素(600516):上半年净利增逾26倍 证金公司退出前十股东名单

青山纸业(600103):上半年净利同比增逾20倍

众泰汽车(000980):上半年净利增近5倍 纯电动车 产销大增

首钢股份(000959):半年报净利同比增逾56倍

通威股份(600438)半年报扣非净利增两倍

理财投资收益大增 浪莎股份(600137)半年报增两倍

博威合金(601137)半年报扣非净利增两倍

广誉远(600771)半年报净利增两倍

博深工具(002282)上半年净利润同比增长253.03%

利亚德(300296):上半年净利同比翻倍 今年新订单 已接近去年全年

熙菱信息(300588)上半年净利润同比增长170.55%

超图软件(300036)上半年净利润同比增长143.62%

顺醋业半年报利润增两成

新文化(300336)上半年净利同比增26% 证金公司新晋第八大股东

新能源汽车电池篇4

关键词:新能源 汽车技术 技术原理 优缺点

中图分类号:U469 文献标识码:A 文章编号:1674-098X(2016)09(c)-0060-02

新能源汽车主要是相对于那些使用常规能源燃料作为主要动力来源的传统内燃机汽车而言的,新能源汽车积极使用了先进的驱动技术和车辆动力控制技术。积极发展新能源汽车,能够对能源消耗问题进行有效的控制,促进节能环保工作的顺利进行,促进现阶段低碳经济的良好发展。当前社会中新能源汽车主要能够分为燃料电池汽车(FCEV)、混合动力汽车(HEV)以及纯电动汽车(EV)3种。对新能源汽车的技术原理进行全面有效的分析和探讨,这样能够促进新能源汽车的良好发展。

1 新能源汽车的技术原理

新能源汽车技术在实际使用的过程中,由于不同种类的新能源汽车,所具体使用的技术原理也是有着一定差别的,需要从新能源汽车的具体情况出发进行分析,下面以混合动力汽车(HEV)、纯电动汽车(EV)和燃料电池汽车(FCEV)为例进行探讨。

1.1 纯电动汽车(EV)的技术原理

纯电动汽车(EV)主要使用的是电力驱动的方式,有的汽车将电动机安装在发动机的舱内,有的汽车直接使用电机驱动,还有的将车轮当做是电动机的转子进行运行,这其中的技术难点在于电力储存技术。纯电动汽车(EV)不会排放出一些污染大气的危害气体,并且由于发电厂一般建立在距离居住人群较远的地方,这样对人类产生的实际伤害就比较小。纯电动汽车(EV)在使用电力能源的过程中,可以充分利用晚间的用电低谷时期开展充电工作,这样能够使得纯电动汽车(EV)自身的发电设备在白天保持良好的运转效果。此外,纯电动汽车(EV)是通过消耗电力能源进行驱樱可减少能源消耗,降低其驱动过程中所产生的二氧化碳。

1.2 混合动力汽车(HEV)的技术原理

混合动力汽车(HEV)是当前新能源汽车技术的重要产物之一,对于降低能耗、促进社会经济发展具有积极作用和意义。混合动力汽车(HEV)主要使用的传统燃料,并将电动机或者发动机作为有效的辅助设备,有效改善低速动力输出和燃油的消耗。混合动力汽车(HEV)的技术原理分为以下3种:第一,串联式混合动力汽车。这种汽车需要依靠电池进行电量的调节工作,电池能够对电动机的输入功率和发电机的输出功率进行有效的平衡,从而有效实现对车辆动力控制系统的控制和管理工作[1]。第二,并联式混合动力汽车。这种汽车类型具有两种驱动类型,分别是电动机和发动机,两者能够通过动力耦合装置单独驱动车辆行驶,或者通过汽车本身的动力控制系统开展相应的协调工作。并联式混合动力汽车在驱动车辆行车的过程中,所必须消耗的能量之外能够在电机的作用下存储在电池内,这样能够有效保证汽车的良好运行。第三,混联式混合动力汽车,这种汽车将串联式和并联式两种汽车类型的结构特点进行有效的综合,根据车辆行车的具体情况能及时调整自身的工作状态[2]。

1.3 燃料电池汽车(FCEV)的技术原理

燃料电池汽车(FCEV)的动力来源主要是燃料电池本身的氢能和大气中的氧发生化学作用而产生一定的化学能量。在燃料电池汽车(FCEV)的动力系统中,能够发现其主要是依靠动力蓄电池、电机和燃料箱以及燃料电池发动机组成的,这样才能够有效促进车辆的前进。燃料电池汽车(FCEV)在当前社会的应用也较为广泛,能够充分利用清洁能源,从而促进低碳经济的良好发展[3]。

2 新能源汽车的优缺点

新能源汽车在发展的过程中,具有较为明显的优势,同时还表现出一定的缺点,以混合动力汽车(HEV)、纯电动汽车(EV)和燃料电池汽车(FCEV)为例,对新能源汽车的优缺点进行全面有效的分析和探讨,能够有助于不断改进新能源汽车的缺点,提升新能源汽车的优势。

2.1 混合动力汽车(HEV)的优缺点

混合动力汽车(HEV)在实际使用的过程中,具有的明显优势主要是:(1)混合动力能按照平常需要的功率进行确定,这样汽车的运行状态是污染较少并且油耗较低。(2)混合动力汽车(HEV)中的电池能够反复进行充电,这样能够保证混合动力汽车的良好运行;(3)内燃机能够对空调、取暖等纯电动汽车的常见问题进行有效的解决。(4)电池能保持在较为良好的工作状态中。混合动力汽车(HEV)的缺点主要是在长距离的高速行驶中不能够实现省油的目标[4]。

2.2 纯电动汽车(EV)的优缺点

纯电动汽车(EV)在实际使用过程中具有的优势主要是:(1)纯电动汽车(EV)使用的技术原理较为成熟,在制造的过程中能够有效克服纯电动汽车中的一些能源问题,促进纯电动汽车获得良好的发展。(2)纯电动汽车(EV)的使用十分简便。纯电动汽车(EV)只使用电力能源,因而只要在有电的地方就能够有效发挥纯电动汽车(EV)的作用,不会担心无法运行的状态出现。同时不容忽视的还有纯电动汽车(EV)的缺点:纯电动汽车(EV)在当前的使用中,蓄电池本身单位重量能存储的能量还较少,并且电动车本身使用的电池成本较高,没有形成稳定的经济规模,这样就会给纯电动汽车(EV)使用者造成一定的经济负担,同时纯电动汽车(EV)本身的购买价格较高,同等情况下的性价比不如其他类型的新能源汽车。

2.3 燃料电池汽车(FCEV)

燃料电池汽车(FCEV)的优点主要表现在以下几个方面:(1)接近于零排放的状态或者直接能够达到零排放的标准。(2)对于机油泄露产生的水污染问题进行有效的缓解。(3)能够有效降低温室气体的排放情况。(4)对于发动机的燃烧效率进行有效的提升。(5)燃料电池汽车(FCEV)在实际运行的过程中较为平稳,且没有多余噪声。燃料电池汽车(FCEV)主要是技术难度较高、成本较高。

3 结语

新能源汽车是当前社会中的重要汽车类型,对于便利人们生活、节能环保起到良好作用。混合动力汽车(HEV)、纯电动汽车(EV)和燃料电池汽车(FCEV)是当前新能源汽车的主要类型,对这些汽车的技术原理和优缺点进行全面有效的分析,能够为促进新能源汽车的良好发展起到一定理论支持。

参考文献

[1] 黄志峰.新能源汽车技术原理及相关技术[J].电力与能源,2014(4):505-508.

[2] 汪俊,陈金华.新能源汽车后面碰撞试验技术研究[J]. 新技术新工艺,2013(4):27-30.

[3] 王新旗.新能源汽车技术原理与维修(1)――新能源汽车的发展背景与历史(上)[J].汽车与驾驶维修:维修版, 2016(4):40-43.

新能源汽车电池篇5

起售价3.5万美元,一次充电可行驶344公里。这样的电动汽车是普通消费者比较能够接受的。

发展前景广阔的电动汽车迟迟未能进入寻常百姓家,最大的制约,一方面是价格高高在上,一方面是电池续航能力不济。

目前,人们都希望“终极电池”能够解决电动汽车续航能力不济的问题,从而促使电动汽车大幅降价。然而传说中的“终极电池”还要多长时间才能面世?未来电动汽车到底能跑多远?

充得慢、跑不远

电动汽车慢充一次6到8个小时,还不一定能找到合适电源。快充一次,一个半小时,却只能充满80%。

充得慢、跑不远,几乎成为制约电动汽车发展的魔咒。

“我有电池焦虑症。”家住北京石景山的王强调侃道,“电动车出门没多久,我就得算计着还能不能开回家,附近有没有充电桩。”

他新买的电动车,充电桩上快充一个半小时后,续航里程可达160公里,与传统汽油车相比还有差距。即使快充,有时也要在充电桩旁排队等很长时间。

买了电动汽车,电池焦虑症怎么解决?

人们首先想到的是增加充电设施。2015年10月,国家发改委、国家能源局、工信部和住建部联合印发《电动汽车充电基础设施发展指南(2015―2020)》,明确提出新增集中式充换电站超过1.2万座,分散式充电桩超过480万个,以满足全国500万辆电动汽车充电需求。

增加充电设施并不能解决电动汽车充电时间长的问题。电动汽车性能的改进,最终要依靠电池技术革命。只有电池续航能力增加了,电动汽车才能显示出汽油车无法比拟的优势来。

“电动汽车要跑得远就需要电池有高能量密度,要充电快则需要高功率密度。”中国科学院“长续航动力锂电池”项目首席科学家李泓说,提高电池的能量密度对于电动汽车来说具有重大意义。

他举国内一家企业的电动汽车所用锂电池为例说:“现在(锂电池)能量密度约180瓦时每公斤,续航里程约200公里。未来几年内,产业界目标是提高到300至400瓦时每公斤,加上相应改进措施,(电池)续航里程就可达到470和628公里,可以和汽油车相比拟了。”

北汽福田乘用车设计院副院长陈小江预计,2018年左右,全球主要电动汽车厂商都会陆续推出400至500公里续航能力的电动车。届时,电池性能指标会大幅提升,电动汽车价格将大幅下降。

德国奥迪汽车公司去年也宣布计划于2018年量产它的第一台纯电动汽车,续航里程可达500公里。

2018年,或许值得期待。

跑得远、充得快

据专家介绍,未来电池技术发展大抵经历三个阶段,首先是第三代锂离子电池,之后是固态锂电池,终极目标可能是固态锂空气电池。

在各类动力电池里,锂电池始终是动力电池中的主角,按材料的不同可以分为磷酸铁锂、三元锂、锰酸锂、镍酸锂等多种类型。对这些材料的不断改进,可以不断提升电池性能。陈小江说,与磷酸铁锂电池相比,三元锂电池的性能具有较大提升空间。

目前比较引人关注的是锂空气电池,各国也在竞相研究。锂空气电池被称为“终极电池”,它以锂金属为负极,导电碳材料为正极,放电时从负极出发的锂离子与空气中的氧气反应。从理论上计算,这种电池的能量密度是所有锂电池之最。

2015年10月底,英国剑桥大学的刘韬等科学家在《科学》杂志上报告说,开发出的锂空气电池模型的能量密度达约3000瓦时每公斤,是现有高性能锂电池的10倍多。这项成果也入选中国科学院、中国工程院两院院士评选出的“2015年世界十大科技进展”。

陈小江说,锂空气电池技术一旦成熟,有可能改变人们对充电的概念。当电池电量不足时,人们只需要更换电极材料,不再需要充电,更不需要长时间等待。

这种技术到底离我们还有多远?美国阿尔贡国家实验室科学家陆俊说:“锂空气电池基础研究进展很快,但锂空气电池还没有到商业化的阶段。我估计,它的商业化需要5到10年时间。”

也有企业在动力电池领域另辟蹊径。日本丰田汽车公司研制出的新型汽车MIRAI在测试中跑得远、充得快,它配备了新型燃料电池。这种电池以氢为燃料,加满一罐氢只需3分钟,续航里程可达650公里。由于氢的制备和加氢站建设难度大、成本高等问题,这一技术尚未普及。

“将来锂空气电池商业化了, 也不意味着其他电池技术就没有市场。”刘韬对记者说,“到底哪种电池技术能够在竞争中首先脱颖而出,我们拭目以待。”

机遇大、指导强

新能源汽车是新经济在工业领域一个标志性行业。许多国家和企业都想占领产业制高点。德国计划到2050年全面禁止生产汽油车和柴油车。丰田公司也表示将于2050年停止推出汽油车和柴油车。

中国不少汽车厂商也计划到2025年将新能源汽车占比提升至80%。“做电动车,比做传统燃油汽车的机遇要大。”福田汽车新能源技术中心系统开发部部长刘溧说。

各国对电动汽车尤其是动力电池的重视,决定着消费者的直接体验以及各国如何占领产业制高点。在中国,电池焦虑症、开电动车不敢远行等问题,受到了政府、科研界、企业前所未有的重视。

中国政府制定的《中国制造2025》规划中,有多处与电池有关的内容,对电动车动力电池系统、全新材料体系电池技术等方面都提出了具体指标要求。国家还对新能源汽车产业进行指导和扶持,极大促进了新能源汽车的普及以及电池的研发。

2016年2月24日总理主持的国务院常务会议,也确定进一步支持新能源汽车产业的措施。在会议提出的5项措施里,第一项就是加快实现动力电池革命性突破:“推动大中小企业、高校、科研院所等组建协同攻关、开放共享的动力电池创新平台,在关键材料、电池系统等共性、基础技术研发上集中发力。”

在电池革命这场世界性角逐中,中国的科研人员有冲到世界前沿的决心。“我们希望争一口气,用中国的材料和中国的装备,做出高水平的电池来。”李泓说,中科院启动了战略先导专项,研究如何将锂空气电池中的电解质从液态换为固态,从而获得更为高效和安全的“终极电池”。

在未来的新能源革命中,电池将是重要的助推力。“中国在这方面处于很有利的位置,将来可能做到领先。”李泓说。

据李泓介绍,从基础研究到产业链,中国正呈现出全方位发力的态势:国际公认的SCI数据库收录的锂电池领域的论文中,中国论文数量占全球总数47%,以绝对优势高居第一;中国拥有全产业链,即在锂电池产业里几乎没有一个材料需要依赖进口。而一些企业已经掌握了世界领先的高能量密度锂离子电池技术,并为国内外厂商生产电池。

在电池领域,企业的积极性也很重要。“我们的电池研发团队有1000多人,我们在研发几乎所有的电池技术。”比亚迪股份有限公司总裁王传福说。

2016年2月,美国大洛杉矶地区羚羊谷交通局宣布,比亚迪公司将提供85辆纯电动客车,助力羚羊谷建成全美首个全电动车公交系统。对于王传福来说,这意味着美国公交业界已经认可了比亚迪的电池技术和中国电动客车的技术。

新能源汽车电池篇6

随着我国汽车产销量突破1800万辆,成为世界最大的汽车产销国,私人交通的便利与国家能源之间的矛盾更加突出。2011年,我国交通用油呈持续快速上升趋势,石油进口量迅速增长,原油对外依存度超过55%(已超过美国的53.5%)[1]。另外,受资源环境约束,汽车行业的减排压力仍将持续增加。在这一背景下,我国把新能源汽车列为国家战略新兴产业之一,主要发展方向确定为插电式混合动力汽车(Plug-inHybridElectricVehicle,简称PHEV)和纯电动汽车(BatteryElectricVehicles,简称BEV)。同时,在国家新能源汽车发展规划草案中提出,计划到2020年,新能源汽车产业化程度和市场规模达到全球第一,其中新能源汽车保有量达到500万辆;以混合动力汽车(HybridElectricVehicle,简称HEV)为代表的节能汽车年销量达到世界第一[2]。然而,由于新能源汽车整车及电池成本难以下降,新能源汽车的市场表现一直“叫好不叫座”。对此,丰田汽车技术部长表示,让消费者接受新能源汽车,必须注重其经济效用。而从经济性看,如果燃料能减少到一定程度,对消费者会是比较有吸引力的。近年来,随着电池技术的不断发展,车用动力蓄电池已经由低存储能量密度的镍氢电池替代为锂离子电池,例如,日本的丰田普锐斯(Prius)混合动力汽车曾使用镍氢电池作为动力电池,配置容量约为1.3kWh。目前,新能源汽车已经开始使用能量效率更高的锂离子电池,2012年即将上市的日本丰田公司插电式混合动力电动汽车就是使用4.4kWh的锂离子电池作为动力电池。我国著名的汽车企业比亚迪公司多年来一直专注于电池储能以及基于磷酸铁锂电池的电动汽车研发,相继推出了双模电动车及纯电动汽车,引领着我国电动车行业的发展。比亚迪公司凭借电池领域的技术积累,在增加电动汽车续驶里程、提高经济性方面表现突出,为我国新能源汽车广泛推广奠定了基础。新能源汽车的经济性是消费者做出购买决策的最重要因素之一。因而,分析新能源汽车与传统燃油汽车的经济性对比,有重要的现实意义。目前的文献中,大部分是将传统燃油汽车与纯电动汽车的全生命周期成本进行了分析。消费成本是基于电价与油价不变的状态下进行计算的,因而,无法综合评价在资源、能源约束下,新能源汽车较传统燃油汽车的经济性。针对上述问题,本文首先考虑了汽油价格与电价的变化因素;其次,在将传统燃油汽车与纯电动汽车消费成本进行比较的基础上,结合插电式混合动力汽车的成本分析,建立了插电式混合动力汽车成本计算模型。另外,以国产新能源汽车-比亚迪车型为分析对象进行经济性对比分析,更具有现实意义。

1新能源汽车的类型及行驶特点

1.1新能源汽车的类型

新能源汽车是指采用非常规的汽车燃料作为动力来源,综合车辆的动力控制和驱动方面的先进技术,形成的技术原理先进、具有新技术、新结构的汽车。根据动力源的不同,新能源汽车主要分为3种:混合动力汽车、电动汽车、燃料电池汽车(FuelCellVehicle,简称FCV)。除此之外,新能源汽车还包括氢发动机汽车、其他新能源(如高效储能器、二甲醚)汽车等各类别产品。混合动力汽车按发动机和电机功率比的大小可分为轻度混合、中度混合和重度混合动力汽车。日本本田公司的Insight轻度混合动力汽车,实现了35km/L的低油耗和80g/km的低CO2排放量[3]。全球销量超300万辆的丰田Prius混合动力汽车,排放水平也已经达到了SULEV(超低排放水平)的标准,而且,综合油耗只有5.1L/100km,仅为同等排量内燃机汽车的2/3[4]。重度混合动力车型,一般情况下电机的峰值功率和总功率的比值大于30%,比起轻度混合、中度混合两种车型来,重度混合动力车在减少二氧化碳排放量和节油方面效果更明显。重度混合动力汽车燃油消耗量比同等效能的汽油发动机节省约30%~40%;而二氧化碳排放量减少则高达30%。因此,在纯电动车技术及配套设施完全成熟之前,混合动力汽车将是汽车节能减排的主要手段,尤其是重度混合动力汽车技术能够将节能减排工作落到实处。目前,我国重点发展的电动汽车主要包括插电式混合动力电动汽车和纯电动汽车。纯电动汽车指主要依靠蓄电池提供动力运行的电动车,需要配套的充电环境与蓄电池。与传统的燃油汽车相比,电动汽车在能效、排放和经济性上有较大的优势。由于电动汽车不用燃烧汽油、柴油等燃料,因而,在行驶过程中几乎是“零污染”,相对城市环境而言属于零排放清洁汽车。考虑充电电源结构,纯电动汽车的减排潜力大约为13%~68%。同时,纯电动汽车可以节省石油资源并提高能源效率,其能源利用效率比传统燃油高出46%以上,但存在一次充电后续驶里程较短等问题[5]。插电式混合动力电动汽车可以直接由外接电源充电(可以使用家用电源插座,例110V/220V电源),并且在行进过程中可以对混合动力系统中的储能电池充电。插电式混合动力汽车具有电动汽车的全部优点,例如低排放、低噪音、高能效等。而且,插电式混合动力汽车的续驶里程是纯电动汽车的10倍左右(纯电动汽车一次充电后的行驶里程大约为160km,插电式混合动力汽车的行驶里程为1600km以上)[6]。相比传统的混合动力汽车,插电式混合动力电动汽车不仅降低了有害气体、温室气体的排放,还提高了燃油经济性和动力性能。因而,插电式混合动力汽车的市场接受度可能相对高于纯电动汽车。燃料电池汽车也是电动汽车的一种,其电池能量是通过氢气、甲醇等化学反应产生电流而获得的。燃料电池车辆的能效比内燃机高2~3倍,而且全程无污染,因此,从能源利用和环境保护方面,燃料电池汽车是一种理想的车辆。清华大学牵头自主研发的燃料电池城市客车在北京2008年奥运期间以及在奥运之后在北京开展了为期1年的商业化载客运行,并成功完成了3万km的公交示范运行[7]。燃料电池汽车虽然存在成本及燃料供应的问题,但是由于其具有较好的新能源优越性,因此它仍将成为未来全球汽车行业的研究方向。

1.2新能源汽车的行驶特点

如表1所示,混合动力汽车、插电式混合动力电动汽车、纯电动汽车都需要依靠电动机驱动行驶。其中,混合动力汽车和插电式混合动力汽车需要两种动力来驱动,而纯电动汽车只需电池驱动。混合动力汽车采用内燃机和电动机两种动力,将内燃机与储能器件通过先进控制系统相结合,提供车辆行驶所需要的动力。两种动力系统可以使混合动力汽车续驶里程更长;电池单独驱动时,还可实现“零”排放。插电式混合动力汽车的运行模式大致可分为电量消耗模式、电量保持模式、常规充电模式(图1)。各模式之间可以根据功率需求和电池的荷电状态(StateofCharge,简称SOC)进行无缝切换。插电式混合动力汽车是由混合动力汽车进化而来的,但是传统混合动力汽车以内燃机为主,电动为辅,而插电式混合动力车是以电动为主,在电池电力耗至使用临界点,无法及时充电时才以内燃机为辅。混合动力汽车采用内燃机和电动机两种动力,将内燃机与储能器件通过先进控制系统相结合,提供车辆行驶所需要的动力。两种动力系统可以使混合动力汽车续驶里程更长;电池单独驱动时,还可实现“零”排放。插电式混合动力汽车的运行模式大致可分为电量消耗模式、电量保持模式、常规充电模式(图1)。各模式之间可以根据功率需求和电池的荷电状态(StateofCharge,简称SOC)进行无缝切换。插电式混合动力汽车是由混合动力汽车进化而来的,但是传统混合动力汽车以内燃机为主,电动为辅,而插电式混合动力车是以电动为主,在电池电力耗至使用临界点,无法及时充电时才以内燃机为辅。

2新能源汽车的经济效果分析

本文以比亚迪燃油车F3、双模电动车F3DM(插电式混合动力汽车)、纯电动汽车E6为分析对象,研究未来10年,新能源汽车与传统燃油车购买成本与运行成本比较;试图考虑未来10年期间油价变化、电价变化等因素,分析传统燃油汽车与新能源汽车的总成本变化趋势及经济效果。

2.1模型建立

前面已对各类型新能源汽车行驶原理做了简单介绍,燃油汽车和纯电动汽车只需依靠燃油驱动或电池驱动即可。而混合动力汽车和插电式混合动力汽车具有燃油驱动、电驱动、油电混合驱动等多种运行模式,计算其油电成本相对复杂。因此,本文为计算插电式混合动力汽车的行驶成本,提出了下列各成本计算模型。(1)PHEV的年耗电成本计算模型假设每天对PHEV充电1次(在PHEV的纯电动模式下比亚迪F3DM的1天最大行驶公里数为60~100km),基于年均行驶公里数、电池容量以及电价,纯电动模式下的年耗电成本可基于下式(1)计算:式中:Cyearelec为纯电动模式下的年耗电成本,元;Dyearelec为1年中纯电动模式下的等效行驶天数,d;Myearelec为整车年均行驶公里数,km;MdayBEV为纯电动模式下1天行驶公里数(取值应小于或等于PHEV在纯电动模式下可续航里程),km;Pelec为电价,元/kWh;EbatBEV为MdayBEV所对应的电池使用电量。(2)PHEV的年耗油成本计算模型基于上述假设以及年均行驶公里数、燃油价格,混合电动模式下的年耗油成本可基于式(2),(3)计算。即,根据PHEV的行驶原理,①当日平均行驶里程小于或等于纯电动模式下1天可行驶公里数时,PHEV的年耗油成本为0;②当日平均行驶里程大于纯电动模式下1天可行驶公里数时,PHEV将启动油电混合动力模式,以保证正常行驶路况需要。此时,基于下式(3)确定PHEV的年耗油成本。(3)PHEV的年耗油电成本计算模型结合上述,PHEV的年耗油成本计算模型和年耗电成本计算模型,本论文基于式(4)确定PHEV的年耗油电成

2.2电价与油价计算方法

计算未来10年(2012~2021年)燃油汽车与新能源汽车的燃料成本时,首先需对未来10年年平均燃油价格与电价进行预测。关于未来10年电价情况,本文依据中国电力企业联合会的《电力工业“十二五”规划研究报告》进行计算。报告中指出,当前平均电价约为0.6元/kWh,未来10年中国电价年均增长3%[8]。关于未来10年汽油价格,本文依据国际油价走势和我国近10年平均汽油价格数据进行计算。目前,我国成品油价格主要取决于国际原油价格的变化。而国际油价主要取决于对原油的需求变化、美元指数的涨跌、债务危机、地缘政治与天气等多种影响因素的变化。但是,无论影响因素怎样变化,油价总体将呈上升趋势。国际能源署(IEA)署长田中伸男曾在第2届全球智库峰会上表示,由于需求的增长速度可能会超过生产的速度,因而,今后10~20年国际油价将持续攀升。而且,国际能源署还警告说,由于对石油生产投资不足,国际油价可能很快(在2015年)升至创纪录的每桶150美元[9]。在这一背景下,本文以近10年我国平均汽油价格为基数,进行油价趋势的回归分析与预测(图2)。分析得出2021年汽油价格约为12.93元/L,而当前93#汽油价格约为7.65元/L。

2.3比亚迪ICEV,PHEV及BEV的参数配置

本文以国产汽车-比亚迪传统燃油汽车与新能源汽车为研究对象,其参数配置如表2所示。比亚迪F3(2009款1.6智能白金版自动挡)燃油汽车排量为1.6L,价格为8.08万元;比亚迪双模电动车F3DM低碳版系插电式混合动力汽车,排量仅为1.0L,16.98万元是厂商指导价(补贴前价格);而比亚迪纯电动汽车E6的厂家指导价格为36.98万元(补贴前价格),由于电池容量为60kWh,汽车重量达2295kg。

3结果分析

本文分别计算了年均行驶里程为1.5万、3万、4万km时,传统燃料汽车与新能源汽车10年期的使用总成本(根据北京交通发展研究中心的数据,北京私人小汽车年均行驶里程约为1.5万km。公车年均行驶里程为3万~4万km)。同时,本文还对新能源汽车政府补贴前后的经济性进行了比较。根据补贴办法,纯电动车每辆最高补贴6万元;插电式混合动力汽车每辆最高补贴5万元;1.6L及以下节能车补贴3000元。深圳市政府还宣布,在国家为插电式混合动力车每辆最高补贴5万、纯电动车每辆最高补贴6万元的基础上,为两类车型分别最高追加3万元和6万元补贴,即最高可获8万元和12万元补贴。另外,国家还出台了对新能源汽车减免车船税等措施,未来也可能收取碳税,这都将增加新能源汽车的经济性,但本文在比较中只考虑实际补贴的部分。

3.1案例1

案例1中,首先,探讨并对比分析了比亚迪F3燃油汽车和比亚迪F3DM的成本计算结果。图3为年平均行驶里程1.5万km、且无政府补贴时的两种车型经济性比较结果图。如图3所示,不考虑政府补贴时,由于传统燃油汽车(InternalCombustionEngineVehicle,简称ICEV)的购买成本较低,一直保持着较高的经济性,而随着使用年限的增多,燃料成本逐渐增加,2020年时,ICEV的“购买+使用”的总成本与PHEV持平。也就是说,年均行驶1.5万km的消费者以当前市场价格购买ICEV和PHEV,2020年时方能体现出PHEV的相对经济优势。但是,如果考虑目前我国对新能源汽车购买补贴金额(即国家对PHEV补贴5万元/辆),4年之后(即2016年)PHEV的经济性便会显现出来。图4、图5显示了年均行驶里程分别为3万km和4万km时,ICEV与PHEV的经济性比较结果。如图4所示,年均行驶里程越多,PHEV越能体现其相对经济性。不考虑国家补贴的情况,年均行驶3,4万km的消费者,到2016年PHEV便可体现其经济性;而对于年均行驶1.5万km的消费者,到2020年才会体现相对经济性(图3)。如果考虑国家补贴,对于年均行驶3万km的消费者,购买PHEV不到两年便可体会带来的相对经济性;而对于年均行驶4万km的消费者,购买第1年便可体会其经济性(补贴5万后,F3DM价格为89800元,与ICEV的价格相近)。对于纯电动汽车,虽然行驶过程中无需耗油成本且电价相对低廉,但是,由于最初的购买成本较高,因此,相对经济性并不明显。在年均行驶1.5万km时,即使购买补贴达到12万元(按照深圳市对购买新能源汽车的补贴办法计算,PHEV补贴8万元、BEV补贴12万元),成本依然很高。而在年均行驶里程达到3万km,且购买补助达到12万元时,到2018年,BEV对ICEV的相对经济性才可体现出来。图6为年平均行驶里程达到4万km并考虑政府补贴时3种车型的经济性比较。如图6所示,2018年以前,传统燃油汽车与新能源汽车的经济性比较结果为PHEV>ICEV>BEV;而车辆使用年限超过7年后,BEV的经济性要优于ICEV。因此,通过数据与图表分析发现,对于年均行驶里程较多,并且可享受国家补贴的车辆消费者来说,PHEV是非常有吸引力的。而且,一些地方政府为促进新能源汽车推广,实施高额补贴政策。这些举措将增加电动汽车的市场需求。其中,PHEV将会越来越多地被私人家用汽车市场所接受,并逐渐替代传统燃油汽车。而电动汽车虽然具有节能减排的优点,但是,如果不降低电池及整车成本,被消费者接受还需要一个发展过程。

3.2案例2

在案例2中,集中探讨不同电池容量配比下的比亚迪E6纯电动汽车的经济性比较结果。如前面所述,比亚迪E6的车载电池容量约为60kWh,电池充满状态下可行驶300km。而对于一般家庭用私人轿车而言,每天行驶里程通常不足300km,且不超过60km的较多。因而,如果消费者可以根据自身需求,对车载动力电池容量进行选择,那么不仅可以提高纯电动车的经济性,还可以实现车辆轻量化。目前,锂离子电池价格约为4.5元/Wh[10]。表3为以4.5元/Wh的电池价格所计算的不同电池配比下的车辆成本。如表3所示,减少车载电池容量,可使购车成本下降。如果日平均行驶里程在100km以内,可以选购电池容量搭载较低的电动汽车。例如选择车载电池容量为20kWh的纯电动汽车,不仅可满足100km行驶需求,车辆价格也相对降低。因而,可大大提高纯电动汽车的经济性以及利用率。

4结论

通过对比亚迪ICEV,PHEV,BEV等3种代表性车型进行经济性比较和分析,结果表明,电动汽车运行成本远低于燃油汽车,但根据燃油价格变化以及政府补贴与否,电动汽车总成本可能会高于燃油汽车。

(1)新能源汽车的经济性在行驶里程多的情况下,更为显著,尤其是PHEV,即使在没有政府补贴的情况下,依然有较高的相对经济性。在年均行驶里程为1.5万km时,2020年时,ICEV与PHEV的总成本持平,PHEV运行10年的总成本略低于ICEV;而在年均行驶里程达到3万~4万km的情况下,2016年,PHEV对比ICEV的相对经济性便可体现,因而,对于消费者而言,有较大的吸引力。目前,在我国电动汽车市场呈现有效需求规模不足的情况下,有必要以汽车利用率高、行驶里程多的消费群为切入点进行推广、普及。

(2)政府补贴政策使新能源汽车的经济性更加突出。在国家及地方政府补贴的情况下,PHEV的购车价格几乎与ICEV相同,大大提高了PHEV的经济性,有利于增加对新能源汽车的市场需求。经济性分析结果表明,政府的支持和补贴非常重要,是新能源汽车大规模走向市场的重要因素。

新能源汽车电池篇7

新能源汽车的动力电池性能会随着使用次数的增加而衰减。随着中国新能源汽车数量的增加,达到使用寿命的动力电池组将会大量淘汰,动力电池能否有效回收利用将直接影响新能源汽车产业的可持续发展。目前我国已经开始加强对动力电池回收利用工作的技术指导和规范,通过建立上下游企业联动的动力电池回收利用体系,防止走其他废弃物治理走过的“先乱后治”的老路。不过虽然政策的大方向已明,但动力电池回收利用的市场则比较迟缓。其中在回收技术水平和回收体系建设上,我国应加快速度向国外企业学习。

动力电池回收将成为重要问题

发展新能源汽车是大势所趋,中国各家汽车企业也纷纷进军新能源汽车领域。去年,我国新能源汽车产量已跃居全球第一,全年汽车生产340471辆,销售331092辆,同比分别增长3.3倍和3.4倍,可以说我国新能源电动车产业已迎来生产的高峰期。进入2016年,行业相关人士也估计预计新能源汽车将会翻倍增长,新能源汽车产量也会持续扩大。

毫无疑问,发展新能源汽车有很多优点,大多数人一提到新能源汽车,总能说出诸如节能、环保等一系列优点,但是发展新能源汽车可能带来的弊端,知道的却寥寥无几。从汽车的使用寿命来看,一个严肃的问题已经摆在了现实面前,那就是再过几年,第一批在中国面世的新能源汽车电池即将面临着更新换代,那么淘汰下的废旧电池如何安全处理将成为重要的问题。

据悉,从新能源汽车的成本构成来说,价格为30万的新能源汽车的电池成本在10万元左右。虽然动力锂电池的使用寿命大概是20年,但是用于汽车,其寿命一般只有5-8年,因为它的容量衰减到初始容量80%以下时,电动汽车的续航里程就会明显减少。其中磷酸铁锂材料电池性能剩余70%时,就需要退役,如果性能剩余50%则直接进行拆解;三元锂电池性能在70%时同样需要退役。所以汽车动力电池在5年左右就需要更换。

行业相关的数据则更给出这个不容忽视的现实。

据行业内估计,2015年我国新能源汽车电池累计报废量约为2―4万吨,该数字将以每年2万吨左右的数量递增,到2020年,仅锂电池年报废量就将达到12―17万吨。这些电池如果不及时地进行回收和处理,将会对环境造成二次污染。数据显示,20克的手机电池可使1平方公里土地污染50年左右,那么几吨重的电动汽车动力电池废弃在自然环境中,势必会对环境造成更大的污染。

与此同时,我国新能源汽车电池产业的产能也在快速增加。其中2015年电池产业投资大概是1千亿元,在建、核建的产能1800亿瓦时。这么大的电池产能,五六年之后就进入大规模淘汰期,谁来回收?回收产业在哪里?都成为目前亟需解决的问题。

而且作为“静脉产业”的一种,我国对动力电池的回收利用尚没有成熟的经验。根据国外的资料,电池回收的技术路线相当复杂,比如在对废锂电池的处理上,首先要对其进行预处理,包括放电、拆解、粉碎、分选;拆解之后的塑料以及铁外壳可以回收;然后再对电极材料进行碱浸出、酸浸出,多种程序之后然后再进行萃取。这套程序工艺复杂,且成本较高,如何让企业能够进入该行业并取得一定的利益也都成为潜在的问题。

国家明确:不走“先乱后治”的老路

过去三十年来,中国的经济发展实际走的还是“先污染后治理”的老路。中国以出口为导向的经济,除去钢铁、煤炭,水泥、造纸、化工、纺织、印刷、材料等等行业,基本全是污染大户,这种遍地开花式的污染态势,已经让中国的土地在极短的时间内承受了大量污染之殇。

新一届的政府已经明确,未来中国不走“先乱后治”的老路,因为严重的空气污染、水体和土壤污染已经导致国家巨大的经济损失。所以我们看到最近两年来,反腐败之外,反污染成为考察官员的又一个重要抓手。

今年1月4日,被称为“环保钦差”的中央环保督察组正式亮相,首站选择河北进行督察。今年5月3日,中央环保督察组向河北省反馈了此前进驻督察情况。其中“河北省对环境保护工作的重视程度和工作力度,与中央要求和群众期待仍有较大差距”、“原省委领导对环境保护工作不是真重视,没有真抓”……这些毫不留情的批评直指问题要害。这是中央环保督察组的首次亮剑。通过严格落实环境保护主体责任,强化“党政同责”和“一岗双责”,破除环境治理积年顽疾,环保督察被寄予厚望。

对于新能源汽车的动力电池的回收利用,国家也没有懈怠。

2016年1月,工信部、发改委、环保部、商务部、质检总局五部委联合下发《电动汽车动力蓄电池回收利用技术政策(2015年版)》(简称《技术政策》),这是在2015年9月出台的征求意见稿基础上,正式下发的关于新能源汽车动力电池回收利用的指导性政策。尽管这一政策并非强制性政策,但五部委联合下发还是足以说明政府对于这一问题的重视程度。科技部部长万钢也在1月23日举办的“中国电动汽车百人会2016”上明确表示:“我们要高度关注一件事,要加快研究动力电池的回收和再利用。”

发改委有关负责人表示,《技术政策》出台的主要目的,就是加强对动力电池回收利用工作的技术指导和规范,明确动力电池回收利用的责任主体,指导相关企业建立上下游企业联动的动力电池回收利用体系,此举有助于培育良好的再利用体系,防止走其他废弃物治理走过的“先乱后治”的老路。

值得注意的是,为了构建起电池回收再利用的可追溯体系新版,《技术政策》明确提出将建立动力电池编码制度。据悉,具体编码工作由生产企业负责,国家汽车标准化主管部门将尽快制定动力电池产品编码标准;动力电池生产企业(含进口商)要对所生产(或进口)的所有动力电池产品进行编码,并建立可追溯系统。

此外,为了提高新能源汽车废旧动力蓄电池综合利用水平,工业和信息化部还制定了《新能源汽车废旧动力蓄电池综合利用行业规范条件》和《新能源汽车废旧动力蓄电池综合利用行业规范公告管理暂行办法》,自2016年3月1日起施行。

企业布局刚刚开始

虽然政策的大方向已明,但动力电池回收利用的市场的启动则相对缓慢。由于我国在电池再利用技术上还有一些障碍,特别是由于动力电池重量体积大、材料种类繁多、电池单体一致性差以及寿命预测评估复杂等特点,车用动力电池不仅回收利用技术难度大,而且尚无创造回收利润的能力。所以整个回收产业现在还处于散、小、乱、差的程度。

总体而言,动力电池回收在中国还是一块“难啃的骨头”,油水很少。如果没有国家政策的牵头、没有补贴,那么一定难以形成气候。很多人士估计,不排除在未来,国家会制定对这一特殊领域的补贴政策和支持性政策,另外国家也对回收技术研发准备了大量的专项资金以吸引企业投资,所以一些公司开始布局动力电池回收利用的市场。

比如新三板公司鼎端装备就在今年4月公告,称与清华大学核能与新能源技术研究院签署“新能源汽车废旧动力蓄电池回收设备研制”合作与开发协议。据悉,二者具体合作内容为:新能源汽车动力用锂离子电池的回收设备的研制;新能源汽车动力用金属氢化物镍电池的回收设备的研制;新能源汽车动力用超级电容器的回收设备的研制。而合作期间清华大学核能与新能源技术研究院不得与第三方进行同样内容的合作。

据了解,清华大学核能与新技术研究院徐盛明教授团队于2002年开始从事锂离子电池回收项目研究,多次承担和参与国家自然科学基金项目。经过多年的不断钻研,在锂离子电池回收领域积累了丰富的技术储备。

在美上市的豪鹏国际集团旗下子公司赣州市豪鹏科技有限公司的“废旧镍氢、锂电池回收利用项目”则在不久前获得了国家发改委2015年中央预算内投资计划节能循环经济和资源节约重大项目资金。此次专项资金的下达,是国家部委对赣州豪鹏在新能源汽车动力电池回收及无害化处理领域的重大支持。

据悉,赣州豪鹏年处理10000吨各类废旧电池、电池极片等原料的废旧电池回收利用项目已在江西省赣州市开始实施,项目主要针对新能源汽车动力电池和各类电子产品的报废电池,利用先进的环保工艺和设备进行无害化处理,目前已和国内多家新能源汽车工厂建立战略合作伙伴关系,同时与上百家政府、企业单位签署废旧电池及废弃电子产品定点回收处置协议,共同推进废旧电池绿色回收体系的建设。2015年,公司与中国科学院过程工程研究所签署合作协议,开始共同推进新能源汽车动力电池梯次利用及回收处理。

南都电源则在其2015年年报中表示,公司未来将逐步开展锂电、电子类产品领域的回收业务,打造循环经济领域的产业平台,为公司向系统集成、运营服务战略转型奠定产业基础,进一步提升产业链优势。

中国开采“城市矿山”企业格林美也在年报别指出,公司将在原有优势的废旧电池回收体系与报废汽车回收处置体系基础上,积极拓展动力电池回收模式,开展动力电池梯级利用体系建设,与比亚迪公司合资设立储能电站(湖北)有限公司,推动构建“材料再造---电池再造---新能源汽车制造---动力电池回收利用”的新能源产业价值链与循环产业链。

福建著名的新能源电池生产企业宁德时代具备动力和储能电池领域完整的研发、制造能力,目前也在研究三元电池的回收利用工作。

另外,为鼓励生产企业回收动力电池,不少地方政府已开始积极探索。比如上海政策显示,车企回收动力电池政府将补助每套1000元;深圳则建立动力电池利用和回收体系,每卖一辆车厂商拿出600元、政府拿出300元,用于回收动力电池,初步建立电池回收的机制。

从各个企业的发展动向来看,中国处置废旧动力电池的关键还是突破技术瓶颈,找到一条既环保又经济的可行路径。相关企业是否能够成功,还在于能否通过开发可行的商业模式,为今后大规模处置提供解决方案。

日本和德国的经验可供参照

在废旧动力电池的回收上,日本和德国车企不仅成功实现了动力电池中的多次利用,还在全球建立了梯次回收产业链,值得国内企业学习。

比如丰田(含雷克萨斯)自2000年起,到目前已经在欧洲累计销售了100多万辆混动车,比目前我国的新能源汽车保有量还要大。2011年,丰田在本土启动回收镍氢电池的项目。

丰田与住友金属合作,借助后者世界一流的高纯度提取技术,丰田实现了混合动力车动力电池中镍的多次利用,该项业务可回收电池组中50%的镍;同时,丰田化学工程和住友金属矿山配置了每年可回收相当于1万辆混合动力车电池用量的专用生产线;而2012年,本田则与日本重化学工业公司合作配置了类似的生产线,这条生产线可以回收超过80%的稀土金属,用于制造新镍氢电池。回收电池虽然是责任所在,但日企主要依靠回收金属(包括对日本来说极为宝贵的稀土元素),作为回收产业驱动力。

同时,为了延长动力电池的使用寿命,避免处理高峰的产能限制。丰田还推进动力电池梯次利用项目。2015年,丰田将凯美瑞混合动力车的废旧电池用于黄石国家公园设施储能供电。日产也与住友合作利用电动车聆风的废旧锂电池开发蓄电池系统,作为太阳能发电的辅助储能系统,用于在夜晚和光照不足天气下的独立供电。住友商事与日产合资成立的4REnergy公司,以电动车EV废旧锂电池的商业再利用为目标,其公司成立5年来,已经成为商业上最成功的锂电池回收企业。

德国戴姆勒早在2007年其第一代电动版smart就已问世。到了2015年6月已经推出了第三代smart fortwo electric drive电动版。由于动力电池的梯次利用一方面可以实现节能,另一方面梯次利用得到普及还会极大地降低新能源汽车的成本。基于这一想法,德国戴姆勒就联合多家相关背景的企业成立了合资公司,着手建立全世界最大的退役电池储能电站,用于平衡整个德国的电网压力。预期打造的储能电站容量13兆瓦时,储能装置全部来自退役的smart电动版的动力电池。

美国也面临着动力电池安全回收利用的问题。目前美国主要由政府推动建立电池回收利用网络,采取附加环境费的方式,由消费者购买电池时收取一定数额的手续费和电池生产企业出资一部分回收费,作为产品报废回收的资金支持,同时废旧电池回收企业以协议价将提纯的原材料卖给电池生产企业。据报道,美国废旧电池回收企业Toxco在液氮环境下低温冷冻电池,然后拆解电池,提取其中的有用材料,如锂成分被转化为碳酸锂以原材料形式出售给电池生产企业。

新能源汽车电池篇8

国际能源署整理的各国规划显示,全球2015年将销售约200万辆电动汽车/插电式混动汽车,到2020年销售大约440万辆。美国、日本和欧洲是主要市场,中国市场也在积极成长。而2012年全球新能源汽车销量仅为120万辆,且以混合动力为主。

电池、电机和电控为产业链核心部分。电池方面,锂电池是目前公认最安全、产业化后成本最有可能为消费者所接受的汽车动力电池。电机方面,目前高端车型(Tesla)采用交流电机,而从经济及性能考虑,永磁同步电机为主流发展方向。

发展新能源汽车成战略选择

新能源汽车包括纯电动汽车、插电式混合动力汽车、非插电式混合动力汽车和燃料电池汽车等。2013年之前,全球新能源汽车发展较缓慢,一方面由于新能源汽车开发成本居高不下,相关车企大多亏损,另一方面也没有代表性车型吸引消费者;2013年初开始,特斯拉成为新能源汽车领域最大亮点,Model S荣登一季度北美豪车销售榜首位,并且实现盈利,成为全球迄今为止最成功的新能源汽车。

发展新能源汽车是大势所趋。从国家战略高度思考,在化石能源紧缺,环境污染愈加严重的今天,发展新能源汽车已成为降低化石能源消耗、减少环境污染的有效举措,各国政府扶持新能源汽车产业发展的意图十分明显。而中国面临着严重的环境污染问题、原油对外依赖度居高不下、汽车产业发展也落后于发达国家,发展新能源汽车是中国国家战略的必然选择。

20世纪末,高涨的油价和人们对气候问题的担忧,使电动车受到广泛关注。欧美日各系厂商都开始在电动车领域发力。1993年,美国政府制订了PNGV计划,三大整车厂纷纷推出以内燃机为基本动力源的混合动力概念车(轻混),这些概念车型由于采用了制动能量回收技术而更加节能,在降低油耗和排放方面都有十分出色的表现。尽管过高的成本未能使这些概念车实现商业化,但这个计划在美国掀起了一波汽车新技术研潮。大众、丰田等车厂也推出了各自的混合动力车,其中,丰田Prius获得了巨大成功。

如今,插电式混合电动汽车(重混)和纯电动车已成为电动车发展方向。目前插电式混合动力汽车的性能已经基本可以满足消费者的日常需求。纯电动车方面,Tesla Model S最高续航已经超过500公里,部分性能甚至超过了传统汽车。

为了促进新能源汽车的发展,全球各主要经济体均制定了电动汽车的发展规划或目标。根据国际能源署的统计,如果所有这些国家公布的目标都能够实现,到2015年会销售大约200万辆电动汽车/插电式混合电动汽车,到2020年将销售大约440万辆。

2012年美国国内电动汽车销售总量为5.3万辆,其中纯电动汽车销售14687辆,仅为全年汽车销售量的0.1%。2013年这一数据有了明显的改善,2013年电动汽车的销售总量为9.6万辆,其中纯电动车销售量为4.8万辆,是2012年的三倍之多。整个销量呈上升趋势,纯电动汽车的贡献较大。相较于美国,欧洲更青睐零污染的纯电动汽车。在新能源车的推广过程中,最为成功也是最为著名的一款车型是EV版标志106。该车型在欧洲各国的政府部门当中拥有大量的用户。可以预见,未来市场将更偏向于消费纯电动汽车。

“十一五”期间中国新能源汽车扶持政策密集出台,且对于产销量、补贴政策等进行了更为明确、细致的规划,为行业发展提供了基础与动力。这标志着中国新能源汽车进入实质性、快速发展阶段。

2013-2014年,财政部、科技部、工信部、发改委公布前两批新能源汽车推广应用城市名单,涉及40个城市、区域。这40个城市、区域中,以经济发达地区居多,亦包含城市群形式联合申报的二三线城市,各个地区对于新能源汽车推广具有较高积极性。

随着中国新能源汽车进入实质性发展阶段,中国新能源汽车呈现产销两旺的格局。2010-2013年中国新能源汽车产量复合增速51.78%,销量复合增速55.01%。2013年,中国新能源汽车产销量分别达1.75万辆、1.76万辆。

从车型结构来看,2013年,新能源汽车以纯电动汽车为主,2012-2013年该车型销量占比88.93%、82.78%,混动车型占比11.07%、17.22%。

截至2013年底,中国新能源汽车产销量累计约5.6万辆。根据《节能与新能源汽车产业发展规划(2012-2020年)》,规划到2015年,纯电动汽车和插电式混合动力汽车累计产销量力争达到50万辆;到2020年,累计产销量超过500万辆。中国新能源汽车产业在未来数年将迎来快速增长阶段,“十三五”期间市场容量约450万辆。

与储能对接推动锂电成本下降

电池技术路线(燃料、镍氢、超级电容等)一直有争议。而Tesla千兆锂电池工厂的开工,至少说明Tesla对锂电池中期发展有信心。尽管可能会有企业跳出Tesla的框架另起炉灶,但不可否认的是,更多的国家和企业(尤其是中国)会作为跟随者和模仿者参与其中,而产业的进步速度往往与参与者的数量正相关。我们认为技术路线的基本确定,会加速产业的集群,产业集群会加速技术进步,并且由于锂电池的产业链已经比较成熟,而且分工明确,成本下降空间大。

在技术路线确定,产业竞争加速成本下降的过程中,不仅是新能源汽车,储能的需求也会快速甚至爆发式增长。电动车的电池可与储能天然紧密对接。电动车对锂电池的质量要求高,而储能则不然,待新能源汽车市场启动后,可以将置换或者淘汰的车用电池用于储能(充电桩或者家用的系统),这样多次利用,成本会大幅摊薄;锂电池的成本下降不但会带动电动车,也会带动光伏自发自用的需求。

电解液、隔膜、正极材料和负极材料被称为锂电池的四大材料。

相较于锂电纷繁复杂的技术路线选择,锂的需求非常明确,只要是“锂电池”就需要锂,不论是碳酸锂、氢氧化锂,甚至是金属锂。当前全球锂资源供给呈高度垄断态势,三大卤水厂商SQM、Rockwood、FMC合计占据了全球锂市场45%的份额,锂精矿供应商Talison依托中国强劲需求成功二期扩产,市占率2012年跃居首位,高达35%。三份卤水+一份矿合计供应了全球80%的市场。

全球锂供给与需求基本持平。基于对电动汽车增长的预期,不论是原有四家寡头,还是新进入者,均有产能扩张计划。但是,由于资源品位不同、自然环境差异、融资进展以及开发工艺试验等方面的不确定性,新进入者规划的产能并不能迅速转化成产量,因此在中短期内,供给仍主要由四家寡头控制。

正极材料方面,目前锂离子电池正极材料选择方向很多,主流材料包括钴酸锂、锰酸锂、磷酸铁锂、三元材料等方向。正极材料约占整个电池成本的30%-40%。

负极材料方面,技术相对最成熟。通常将锂电池负极材料分为两大类:碳材料和非碳材料。其中碳材料又分为石墨和无定形碳,如天然石墨、改性石墨、石墨化中间相碳微珠、软炭(如焦炭)和一些硬炭等。其他非碳负极材料有氮化物、硅基材料、锡基材料、钛基材料、合金材料等。

隔膜方面技术壁垒较高。锂电池隔膜主要功能是使电池的正、负极分隔开来,防止两极接触而短路,同时允许电解质离子于其间通过;在电池过热时,通过闭孔功能来阻隔电流传导。

目前隔膜的发展有两条路线,对消费电子类电芯而言,为了迎合美观、便于携带的要求,轻薄化和提高能量密度是发展趋势,一般采用单层PP、PE隔膜;对动力电池而言,由于主要应用在电动自行车、汽车、储能电站上,因此更注重安全性,通常采用多层功能性复合隔膜。

预计2014-2016年全球锂电池年需求增速在25%-30%左右,到2016年,全球锂电池隔膜市场将达到86亿元左右,国内隔膜市场规模在13亿元左右。未来若电动汽车、储能电站需求爆发,隔膜市场更有望大幅增长。

电解液由锂盐(六氟磷酸锂)、溶剂、添加剂组成,其中六氟磷酸锂是电解液成本最重要的组成部分,约占到电解液总成本的43%。

2011年之前,国内可实现量产的六氟磷酸锂生产企业仅日本森田化学(张家港)和天津金牛两家,本土的天津金牛2010年产能仅250吨,六氟磷酸锂几乎全部依赖日本,当时Stella Chemifa、关东电化学工业、森田化学等几家日本企业垄断了全球90%的市场份额。

六氟磷酸锂原本是电解液产业链条中技术壁垒最高的产品,但随着国内厂商技术的突破,多氟多、九九久为首的国内厂商快速扩张产能,使得原本具有高壁垒高毛利率的六氟磷酸锂盈利能力大幅下滑。

目前全球动力电池主要朝向三个方向发展:三元材料(NCA、NMC)、磷酸铁锂材料(LFP)以及锰酸锂材料(LMO),主要为兼顾能量密度、成本和安全性。其中三元材料具有较好的能量密度和功率密度,但安全性能较低,成本相对较高;磷酸铁锂安全性能较好,成本较低,但能量密度以及功率密度较差;锰酸锂综合性能较为均衡,无突出优势和劣势。

以当前新能源汽车厂商选择路径来看,一种是以美国、中国为主的磷酸铁锂为正极的电池路线,另外一种是以韩国、日本为主的三元材料、锰酸锂为正极的电池路线,目前还未确认哪种技术路线会成为最终的选择,但因主流汽车生产厂商多为日系及美系汽车,而美系汽车锂电池较多的由日韩锂电企业供应,因此动力锂电池更多是在三元以及锰酸锂材料之间选择。

此外,就电池单体容量发展方向看,除Tesla使用小容量18650电池单体(单体容量3.1Ah)外,更多的是专注于大容量锂电单体研发,如为日产Leaf提供配套电池的AESC公司,PHEV、EV用锂电池多为单体容量33.1Ah的锂电单体。但因大电池单体市场研发尚处于初级阶段,成本较高,以Tesla Model S与日产Leaf为例,Leaf所用锂电池单位储能成本约为Tesla Model S的两倍左右。使得市场上大多电动汽车在电池组容量不大的情况下(约20Kwh)仅锂电池成本就高达2-3万美元。从而在成本上限制了电动汽车的电池组容量,进而限定了整车的动力性能。Tesla的成功将为整个动力锂电产业树立标杆,改变研发资源的配置路径,锂电池将会从专注于大容量单体的研发改为小容量单体、电池管理系统的研发,从而缩短电动汽车革命的进程。

核心产业链逐渐完善

新能源汽车是在传统汽车产业链基础上进行延伸,增加了电池、电机、电控系统等组件,其与传统汽车最大区别在于动力系统。这些环节再加上充电桩、零部件等组成了新能源汽车的重要产业链。

新能源汽车电机取动机并在电机控制器控制下,将电能转化为机械能来驱动汽车行驶。驱动电机的性能将直接影响整车运行性能。

目前电动汽车主要配备交流感应电机和永磁电机。前者欧美使用较多,特点是成本低,但转速区间小,效率低;后者受日系车青睐,转速区间和效率都有所提升,但需要使用昂贵的稀土永磁材料钕铁硼。日本资源匮乏,面对日益升高的稀土价格,日本正在潜力开发开关磁阻电机,这种电机在性能上不输给永磁电机,重要的是摆脱了对稀土的依赖。由于中国稀土储量极大丰富,而且电机工艺已经接近世界先进水平,预计永磁电机将在较长时间内占据新能源汽车的电机市场。根据赛迪经智预计,“十二五”末中国新能源汽车驱动电机整体市场规模将达到250亿元左右。

目前全球主要存在两类新能源电机供应商:第一类是具有整车或者零部件制造背景的企业进入电机及电驱系统领域。这一类企业的优势是具有整车或零部件的制造经验,便于电驱系统与之相试验相结合,如本田、丰田、上汽集团、一汽集团等。第二类是专业的电机电控企业,如大洋电机、江特电机、上海电驱动等。

从产业链角度看,钕铁硼(磁材)是永磁电机的上游原料,随着新能源汽车的普及发展,将刺激稀土磁材需求。钕铁硼的磁性能高,性价比高,不足之处是工作温度较低;目前国内及日本车用永磁电机一般采用钕铁硼永磁材料。

未来新能源汽车和变频设备是磁材发展的主要领域。对于新能源汽车而言,如果混动汽车使用永磁同步电机,单位需要磁材2.5千克/辆;而纯电动汽车若永磁同步电机,其单位需要磁材会更多,具体的用量按照电机个数倍增。

永磁电机的原材料钕铁硼虽然造价高,但仅占电机成本10%。其余主要材料是铜材(漆包线)和钢材(硅钢片、冷轧钢板)价格下跌空间有限。如果按照90Kw车用电机,功能密度1.5KW/Kg计算,1辆轿车的驱动电机重量大概60千克。因此电机的降价还是来自于量产后规模效应导致折旧摊销等成本的下降。

电机零部件配套市场是在近20年全球工业发展的历次变革过程中逐步从电机整机行业分离并发展完善的。各大电机整机制造商在实行规模化精益生产过程中,逐渐降低电机零部件自制率,致力于电机核心技术研发、终端销售和品牌塑造,零部件主要依赖外部独立的供应商,涉及定子、转子、继电器等。

新能源汽车电控系统主要包括电池管理系统、电机控制系统、能量回馈系统、电动助力转向系统等环节。

配套服务方面有充电站及充电桩。充电模式主要分为:慢速充电和快速充电。慢速充电运用32A、63A等水平的电流连续充电5-8小时,可利用电价较低的夜间时间,节约充电成本,但难以满足电动汽车应急充电需求。快速充电运用75-400A电流短时间充电20分钟-2小时,高效快速,但电流较大,对安全性亦提出更高要求。

从成本构成来看,充电机、充电桩为充电站核心设备,占充电站总成本的45%-55%。充电桩成本主要由桩体、电能计量装置等构成,预计国网集采后较小的慢充电桩价格4000元左右,毛利率约30%。

截至2013年底,国家电网累计建成400座充换电站、1.9万个充电桩。南方电网公司在深圳共建设运营充、换电站7座,197个中速直流充电桩,2273个慢速交流充电桩。分区域来看,北京、上海、浙江城市群、广东充电站、充电桩建设推进较快。

根据《电动汽车科技发展十二五专项规划》,中国规划到2015年底,在20个以上示范城市和周边区域建成由40万个充电桩、2000个充换电站构成的网络化供电体系。

3月19日,国网启动2014年第一批电动汽车充换电设备招标。直流充电设备招标383套,交流充电设备招标156套,换电系统招标8套。我们预估交直流充电桩、充电屏招标金额约5000万元。

招标节奏方面,预计2014年国网共进行五次招标。2014年初国网规划充换电站投资约39亿元,近期根据各省网公司上报的数据,预计未来国网充换电站投资将达到600亿元,其中充换电设备投资120亿元。

目前发改委、国网对于快充、慢充充换电设备的建设持全面放开的态度,若相关企业、个人获得政府批准,国网即积极支持,提供接电等配套服务,甚至考虑与车企联合合作,为车企提供充电桩等产品。

上一篇:节约能源法范文 下一篇:新能源公司范文