电力电子器件论文范文

时间:2023-10-02 01:15:03

电力电子器件论文

电力电子器件论文篇1

论文摘要 在人类所利用的能源当中,电能是最清洁最方便的;电气传动无疑有着很大的意义,随着电力电子技术、计算机技术以及自动控制技术的迅速发展,电气传动技术也得到了长足的发展。本文在对大量国内外文献分析的基础上,总结和论述了我国在电力电子和电力传动系统领域的研究现状。

从学术的角度来看,电力电子技术的主要任务是研究电力电子器件(功率半导体)设备,转换器拓扑结构,控制和电力电子应用,实现电力和磁场的能量转换、控制、传输和存储,以便实现合理和有效使用的各种形式的能源,高品质的人力的电力和磁场的能量。

1 电力电子的研究方向

就目前情况而言,我国电力电子的研究范围与研究内容主要包括:1)电力电子元器件及功率集成电路;2)电力电子变换器技术的研究主要包括新的或电力能源的节约和新能源电力电子,军事和空间应用等作为特殊的电力电子转换器技术的智能电力电子变换器技术,控制电力电子系统和计算机仿真建模;3)电力电子技术的应用,其研究内容包括超高功率转换器,在能源效率,可再生能源发电,钢铁,冶金,电力,电力牵引,船舶推进应用,电力电子系统的信息化和网络;电力电子系统的故障分析和可靠性;复杂的电力电子系统的稳定性和适应性;4)电力电子系统集成,其研究内容包括标准化电力电子模块;单芯片和多芯片系统设计,集成电力电子系统的稳定性和可靠性。

2 我国电力电子发展中存在的问题

当前的主要问题是:中国的电力电子产品和设备目前生产的大部分是也主要是晶闸管,虽然它可以创造一些高科技电子产品和电气设备,但他们都使用电力电子外国生产设备和多组分组装集成的制造方法,尤其是先进的全控型电力电子器件全部依赖进口,而许多关系到国民经济和国家安全,在一些关键领域的核心技术,软件,硬件和关键设备,我国的外资控制和封锁。特别是在关系国民经济和国家安全,更多先进水平的核心技术差距的关键领域,这种情况正在迅速变化的挑战和我们的道德律令。

在过去,虽然我国国民经济的各个部门,先后引进了国外先进技术,已开始注意到国内突出的问题,从表面上看,虽然对引进技术的绝大多数可以在几年后达到国产化率70%的要求,但只要仔细分析,不难发现,并最终拒绝外国公司转让技术和关键部件,都涉及到高科技的电力电子技术和动力传动产品在核心技术。

目前国外和问题的主要区别是:电力电子器件的全面控制,不能制造国内制造的高功率转换器,低技术,设备可靠性差,电力电子数字控制技术水平仍处于初级阶段;应用程序的控制技术和系统控制软件的水平较低;缺乏经验的重大项目等。高性能高功率转换器设备几乎全部从国外进口。

3 电力传动系统的发展现状分析

目前我国电力传动系统的研究主要围绕交流转动系统展开,随着交流电动机调速理论的突破和调速装置(主要是变频器)性能的完善,电动机的调速从直流发电机-电动机组调速、晶闸管可控整流器,直流调压调速逐步发展到交流电动机变频调速。交流传动系统之所以发展得如此迅速,和一些关键性技术的突破性进展有关。它们是功率半导体器件(包括半控型和全控型)的制造技术、基于电力电子电路的电力变换技术、交流电动机控制技术以及微型计算机和大规模集成电路为基础的全数字化控制技术。为了进一步提高交流传动系统的性能,国内有关研究工作正围绕以下几个方面展开:

1)输入电流为正弦和四象限运行开辟了新的途径

高性能交流驱动系统电压型PWM逆变器中的应用日益广泛,PWM技术的研究更深入。 PWM功率半导体器件采用高频开启和关闭,成为一个在一定宽度的电压脉冲序列法律的变化,为了实现频率,变压器,有效地控制和消除谐波的直流电压。 PWM技术可分为三类:正弦PWM,优化PWM及随机PWM。正弦PWM的电压,电流和磁通正弦PWM计划的目标包括。正弦PWM普遍提高功率器件的开关频率将是一个非常出色的表现,在中小功率交流驱动系统等被广泛使用。但为大容量的电源转换设备,高开关频率将导致大的开关损失,以及高功率设备,如GTO的开关频率仍不做的非常高的在这种情况下,在最佳的PWM技术只是满足的需求该设备。

2)应用矢量控制技术、直接转矩控制技术及现代控制理论

交流电机交流驱动系统是一个多变量、非线性、强耦合、时变控制对象,变频调速控制,电机控制的稳定状态方程的研究动态控制非常令人满意的结果的特点。 70年代初提出研究交流电机的控制过程的动态,不仅要控制每个变量的振幅,而控制的阶段,为了实现交流电机磁通和转矩的解耦矢量变换方法,促使高性能交流驱动系统逐渐向实际使用。高动态性能的电流矢量控制变频器已成功应用于轧机主传动,电力牵引系统和数控机床。此外,为了解决系统的复杂性和控制精度之间的矛盾,但也提出一个新的控制方法,如直接转矩控制,方向控制电压,特别是与微处理器控制技术,现代控制理论在各种控制方法也得到了应用,如二次型性能指标最优控制和双位模拟调节器控制,可以提高系统的动态性能,滑(滑模)变结构控制可以提高系统的鲁棒性,状态观测器和卡尔曼滤波器可以得到状态信息不能测量,自适应控制能够全面提高系统的性能。此外,智能控制技术,如模糊控制,神经网络控制,也开始在交流变频调速驱动系统用于提高控制精度和鲁棒性。

3)广泛应用微电子技术

随着微电子技术的发展,数字式控制处理芯片的运算能力和可靠性得到很大提高,这使得全数字化控制系统取代以前的模拟器件控制系统成为可能。目前适于交流传动系统的微处理器有单片机、数字信号处理器(Digital Signal Processor——DSP)、专用集成电路(Application Specific Integrated Circuit——ASIC)等。其中,高性能的计算机结构形式采用超高速缓冲储存器、多总线结构、流水线结构和多处理器结构等。核心控制算法的实时完成、功率器件驱动信号的产生以及系统的监控、保护功能都可以通过微处理器实现,为交流传动系统的控制提供很大的灵活性,且控制器的硬件电路标准化程度高,成本低,使得微处理器组成的全数字化控制系统达到了较高的性能价格比。

4 结论

虽然我国电力电子与电力系统传动系统技术得到了长足的发展,但与发达国家相比仍然存在较大差距,许多关键技术有待突破,关键部件还长期依赖进口的局面还没有打破。

参考文献

[1]孔秋林.电力传动系统的应用分析[J].机械论坛,2008(2):12-13.

电力电子器件论文篇2

论文首先介绍了电力电子技术及器件的发展和应用,具体阐明了国内外开关电源的发展和现状,研究了开关电源的基本原理,拓扑结构以及开关电源在电力直流操作电源系统中的应用,介绍了连续可调开关电源的设计思路、硬件选型以及TL494在输出电压调节、过流保护等方面的工作原理和具体电路,设计出一种实用于电力系统的开关电源,以替代传统的相控电源。该系统以MOSFET作为功率开关器件,构成半桥式Buck开关变换器,采用脉宽调制(PWM)技术,PWM控制信号由集成控制TL494产生,从输出实时采样电压反馈信号,以控制输出电压的变化,控制电路和主电路之间通过变压器进行隔离,并设计了软启动和过流保护电路。该电源在输出大电流条件下,能做到输出直流电压大范围连续可调,同时保持良好的PWM稳压调节运行。 开关电源结构

以开关方式工作的直流稳压电源以其体积小、重量轻、效率高、稳压效果好的特点,正逐步取代传统电源的位置,成为电源行业的主流形式。可调直流电源领域也同样深受开关电源技术影响,并已广泛地应用于系统之中。

开关电源中应用的电力电子器件主要为二极管、IGBT和MOSFET。

SCR在开关电源输入整流电路及软启动电路中有少量应用, GTR驱动困难,开关频率低,逐渐被IGBT和MOSFET取代。在本论文中选用的开关器件为功率MOSFET管。

开关电源的三个条件:

1. 开关:电力电子器件工作在开关状态而不是线性状态;

2. 高频:电力电子器件工作在高频而不是接近工频的低频;

3. 直流:开关电源输出的是直流而不是交流。

根据上面所述,本文的大体结构如下:

第一章,为整个论文的概述,大致介绍电力电子技术及器件的发展,简单说明直流电源的基本情况,介绍国内外开关电源的发展现状和研究方向,阐述本论文工作的重点;

第二章,主要从理论上讨论开关电源的工作原理及电路拓扑结构;

第三章,主要将介绍系统主电路的设计;

第四章,介绍系统控制电路各个部分的设计;

第五章,集中在系统的仿真与调试。对系统的整体性能做出评价,指出系统的优缺点。

电力电子器件论文篇3

电子科学与技术(以下简称“电科”)专业是以培养具备微电子、光电子、集成电路等领域宽厚理论基础、实验能力和专业知识,能在电子科学与技术及相关领域从事各种电子材料、元器件、集成电路、电子系统、光电子系统的设计、制造、科技开发,以及科学研究、教学和生产管理工作的复合型专业人才为目标的工程专业。作为电科专业教育中重要内容的光电子技术,不仅是当代信息技术两大支柱之一,而且随着现代科学技术的发展持续焕发着生命活力。而让光电子技术保持如此强劲发展势头的主要原因之一,正是光电子材料与器件的广泛应用,例如激光器与新型光电探测器的应用的人你还。另外,诸如纳米光电材料与器件、光子晶体及相关器件、超材料及相关器件与表面等离子体激元及器件等新型光电子材料与器件的研究与应用,是目前国际上光学与光电子学研究领域的前沿热门方向。由此可见,学习光电子材料与器件的相关知识,不仅对电科学生知识体系的构建与就业方向的确定具有积极的影响,也为那些将来希望从事新型光电子材料与器件科研工作的学生,提供了坚实的理论基础与知识储备。然而,根据笔者的调研,虽然国内许多重点大学的电科专业都开设了光电子技术课程,但很少有大学专门开设光电子材料与器件这门课程。而由于光电子技术的内容多、涉及知识面广,教学课时又往往有限(一般为32或48个学时),因此在光电子技术的实际教学过程中,讲授教师往往重视光电子技术基本概念与理论知识的教学,而轻视光电子材料与器件的教学。该文从光电子材料与器件的研究内容、应用及发展等方面说明其在电科专业教育中的重要性,并结合自身光电子材料与器件课程的教学经验,研讨电科专业中光电子材料与器件的教学方法。

1 光电子材料与器件简介

光电子材料是指能产生、转换、传输、处理、存储光电子信号的材料。光电子器件是指能实现光辐射能量与信号之间转换功能或光电信号传输、处理和存储等功能的器件。自1960年美国科学家梅曼发明世界上第一台红宝石激光器以来,光电子材料与器件如雨后春笋般发展迅速。在短短的50多年里,光电子材料与器件经历了从红宝石激光器的发明,到半导体激光器、CCD器件及低损耗光纤的相继问世;从各种光无源器件、光调制器件、探测与显示器件的小规模应用到系统级集成制造实用化阶段;从大功率量子阱阵列激光器的出现再到光纤激光器、光纤放大器和光纤传感器的诞生。光电子材料与器件从未停止过发展的脚步,并正在不断深刻影响着人类社会的方方面面。在实际需求的引导下,各种新型光电子材料与器件层出不穷,性能也不断提高。尤其是近年来,随着微米及纳米级加工技术的成熟,新型的微纳光电子材料与器件的研究异常活跃。纳米光电材料、光子晶体、超材料、表面等离子体器件等领域的研究成果丰硕,为未来光电子器件的微型化、集成化发展奠定了坚实的基础。

综上所述,光电子材料与器件在当代信息产业与科学技术中具有极其重要的地位,因此,光电子材料与器件这门课程不仅应当单独作为一门课程独立教学,而且应该作为重视工程教育的电科专业的核心课程。

2 光电子材料与器件课程教学研究

2.1 光电子材料与器件课程的教学形式、课时安排与教材选择

光电子材料与器件课程不仅包含丰富的理论知识,例如光电子材料的物理特性以及光电子器件的工作原理等,而且与实际应用结合精密,因此,本课程宜采取理论教学与实验教学相结合的教学形式。

在课时安排方面,作为电科专业的一门核心专业课程,光电子材料与器件课程的总课时应不低于32学时(2学分),理论课学时不低于26学时,实验课不低于6学时。

另外,在教材选择方面,由于光电子材料与器件是光电子技术中的一部分内容,而目前国内关于光电子技术方向的参考书籍很多,其中亦不乏一些光电子技术课程的经典教材,例如西安电子科技大学安毓英主编的《光电子技术》[1],西安交通大学朱京平主编的《光电子技术基础》[2]等。虽然这些光电子技术参考书中或多或少都会介绍与光电子技术相关的材料与器件,但是,目前专门介绍光电子材料与器件方向的教科书却是少之又少,市面上仅有国防工业出版社2012年出版的侯宏录主编的《光电子材料与器件》[3]一书。加之,该书中所涉及的理论知识较深,基础浅薄的本科生很难驾驭。由此可见,对于光电子材料与器件这门新兴课程而言,设立统一的教材并不合适。因此,笔者建议该课程的讲授教师根据理论教学与实验教学的内容,自行编写该课程的讲义与课件。

2.2 光电子材料与器件课程的理论教学

按照电科专业的专业定位以及培养目标,光电子材料与器件课程的理论教学也应该突出“工程”内容。传统的光电子技术教学中所重视的原理、定律与规律等内容,在光电子材料与器件教学中要弱化;而传统光电子技术教学中往往被弱化乃至忽视的光电子材料与光电子器件的相关知识,要在光电子材料与器件课程教学中占主体地位。如此才能保证在有限理论课时的前提下,让学生对光电子材料与器件有一个全面的认识。

在教学内容的设置方面,由于光电子材料与器件主要应用于光电子技术之中,因此,为了便于学生的理解与知识体系的构建,笔者建议光电子材料与器件课程理论教学的章节设置按照光电子技术的章节设置进行。以笔者讲授光电子材料与器件理论课程(共26学时)为例,该理论课程共被分成了绪论(2学时)、激光原理与典型激光器(5学时)、太阳能电池(4学时)、光通信器件与材料(5学时)、光探测器件(5学时)、光电显示器件(3学时)与光存储器件(2学时)等七个章节,这七章内容基本囊括了光电子技术中光产生、光转化、光传输、光探测、光显示以及光存储等各个重要环节中最为典型的器件以及所用到的材料。另外,在每章内容的设置上,也尽可能突出“工程”内容,弱化“理论”知识。下面,笔者将详细介绍笔者在光电子材料与器件教学中各章的教学内容。

第一章绪论主要包括光电子材料与器件课程简介以及光电子技术的基本知识简介。在光电子材料与器件课程简介中,向学生介绍课程设置的目的和意义、课程的主要内容、教学与考试方式与参考资料等。通过这部分内容的介绍,让学生对本课程的意义、内容、侧重点有一定的认识。在光电子技术基础知识简介中,重点向学生介绍光电子材料与器件与光电子技术的关系,并通过对光电子技术的概念、特征、发展等方面的介绍,让学生对光电子技术以及光电子材料与器件有一个整体的认识。

第二章激光原理与激光器重点介绍几种典型激光器的材料、结构与工作特性,其主要内容包括三个部分:激光原理简述、典型激光器与激光器的应用。在激光原理简述部分,由于多数电科专业在学习光电子材料与器件课程之前已经修过激光原理等类似课程,所以该部分内容为简略介绍的内容,主要帮助学生回顾激光的特征、历史与光辐射理论等知识点。而第二部分内容典型激光器是本章内容的重中之重,在该部分内容中,将依次向学生介绍固体、气体、液体与半导体这四大类激光器中的典型激光器的结构、特征与工作特性等知识。由于发光二极管与半导体激光器结构与工作原理上的相似,在介绍完半导体激光器后,可以顺理成章地介绍发光二极管的结构与特征。另外,本章最后还简单介绍了激光器的几种常见应用。

太阳能电池虽然是光电探测器中光伏效应的一种特殊应用,但是由于它在现如今光电子技术产业以及光电子器件中的重要地位以及良好的发展趋势,该部分内容被独立成一章。在第三章太阳能电池中,主要分两小节给学生介绍,第一小节介绍当今能源与环境问题以及太阳能的开发和利用,让学生了解当今能源资源的现状以及新能源研究与应用的迫切需求,然后介绍太阳能利用的历史以及发展趋势;第二小节正式介绍太阳能电池的工作原理、结构以及特性等知识。

第四章光通信器件与材料主要介绍的是光通信系统中所用到的有源与无源光器件。本章内容共分为两小节:第一小节介绍光纤通信的基础知识,包括光纤通信的定义,光纤的结构、导光原理、发展历史,以及光纤通信系统的组成与特点。第二小节正式介绍光纤通信系统中所用到的各类光电子器件以及构成这些器件的核心材料。在光纤通信中,最重要的器件当属光纤,所以,本节开始就着重介绍光纤的相关知识,包括它的结构、原理、分类、特征参数与传输特性。然后,又将光纤通信系统中的其它光电子器件分为有源与无源器件两类,并分别介绍了这两类光器件中的代表器件:掺铒光纤放大器与波分复用与解复用器。最后,在本章结尾还介绍了光纤通信系统中其它几种常用光器件,例如光耦合器、光衰减器、光环行器等。

第五章光探测器首先介绍了光电探测器的物理效应、性能参数、噪声;其次,按照光电探测器物理效应的不同一一介绍了几种典型的外光电效应探测器(光电管与光电倍增管)与内光电效应探测器(光电导、光电池与光电二极管)。教学的重心仍然放在对探测器结构、工作原理以及特性等方面。

第六章光显示器件重点介绍四种光显示器:阴极射线管、液晶显示器、等离子显示器与电致发光显示器。

第七章光存储器件主要介绍了现如今最常用的一种光存储系统―― 光盘系统以及其中最总要的器件光盘。

2.3 光电子材料与器件课程的实验教学

光电子材料与器件实验课程的教学要与理论教学紧密相连,并重点介绍理论课上讲解过的光电子材料与器件,实验课程的学时应不低于6学时,开设的时间最好在理论教学完成之后,以保证学生在实验前已对实验器件与实验原理有一定的了解。在实验项目的设定方面,既要保证与理论课程内容的相辅相成,又要尽量避免与其它课程实验项目的重复,造成资源的浪费。例如,许多大学的电科专业都已经将激光原理一课作为该专业的核心专业课程,并配备了相应的激光器实验。在这种情况下,如果在光电子材料与器件实验教学中再次引入激光器的实验内容,不仅消耗了宝贵的实验时间,实验效果也会大大降低。

下面跟大家简单介绍笔者在光电子材料与器件实验教学(6学时)中的实验安排。

(1)实验内容:共包含六个实验项目,它们分别是:光控开关实验、光照度计实验、红外遥控实验、PSD位移测试实验、太阳能充电实验与光纤位移测量系统实验(每个实验1学时)。各实验中都应用到了一个或几个核心光电子器件,这些光电子器件基本涵盖了学生在理论课程中所学到的最为重要的几类器件,例如光控开关实验应用到了光电探测器中的光敏电阻作为核心元器件;而红外遥控实验中用到了发光二极管光源与红外探测器等光电子器件。

(2)实验要求:以往的光电子技术实验往往重视现象的观察与定性分析,但经笔者调研,这种实验方法很难最大限度激发学生的求知欲与动手能力,因此,在对原有的实验指导书进行改良后,笔者自行编写了实验的指导书,并在每个实验项目中加入了一些测量与定量分析的实验内容。例如太阳能充电实验,原来的实验指导书只是观察太阳能充电的效果,但是,在新改良的实验指导书中,要求同学测量不同光源照射下太阳能电池的输出电压与输出电流,并要求学生分析比较其差别。通过这种方式,充分调动学生的实验积极性,在具体的实验教学中也取得了很好的效果。

(3)实验方式:分组实验,共同撰写实验报告。这样,不仅提高实验效率,还能够锻炼学生的团队协作意识。

(4)考核方式:根据每位学生实验完成的情况与实验报告撰写的情况综合评分。

3 结语

电力电子器件论文篇4

【关键词】EWB;电子课程; 仿真

【中图分类号】G642.421 【文献标识码】B 【文章编号】2095-3089 (2012)02-0239-02

EWB英文全称为Electronics Workbench (电子工作平台),是加拿大Interactive Image Technologies Ltd.公司开发的一种电子电路计算机仿真设计软件。该软件设计功能完善,操作界面友好、形象,非常易于掌握。尤其方便的操作方式,直观的电路图和仿真分析结果显示形式,非常适合于电子课程的辅助教学,有利于提高学生对理论知识的理解和掌握,有利于培养学生的创新能力。

1 EWB仿真软件及应用优势

1.1 集成化、一体化的设计环境。 可任意地在系统中集成数字及模拟元件,完成原理图输入、数摸混合仿真以及波形图显示等工作。当用户进行仿真时,原理图、波形图同时出现。当改变电路连线或元件参数时,波形即时显示变化。

1.2 界面友好、操作简单。 单击鼠标,用户可以轻松地选择元件;拖动鼠标,可将元件放入原理图中。调整电路连线、改变元件位置、修改元件属性也非常简单。此外,EWB还有自动排列连线的功能,使画原理图更加美观、快捷。

1.3 真实且准确的仿真平台。 虚拟电子仪表设备齐全,包含万用表、示波器、信号发生器、扫频仪、逻辑分析仪、数字信号发生器、逻辑转换器等.仪器的控制面板外形和操作方式与实物相似、便于操作,可以实时显示测量结果。利用EWB进行仿真,过程非常接近实际操作的结果。

1.4 分析方法多而强。 提供多种分析功能,包括直流分析、交流分析、瞬态分析、温度扫描、参数扫描、传递函数分析等。利用这些分析功能、用户不仅可以了解电路的工作状态、还可以测量电路的稳定性和灵敏度。

1.5 可以安全地进行故障分析。 EWB是一种全新的虚拟实验环境,在这种环境下学生可以进行无障碍性实验,不必担心安全问题。例如电路的电阻或电容出现开路、短路、漏电时对电路造成的影响等,只需改变元器件的参数就可以模拟出元器件出现故障时的情况,针对不同故障可以观察电路的各种状态,从而加深对概念原理的理解,这在实际实验中很难做到。

2 仿真步骤

EWB利用计算机强大的计算功能来完成对电路的仿真和分析。使用者在电子工作台上创建了一个电路图后。启动电子工作台的电源开关或选择了分析方法.就可以从示波器等虚拟仪器(或分析显示图)看到仿真结果。使用EWB对电路进行设计和实验仿真的基本步骤是:

单管共射放大电路如图2所示,电路中静态工作点的调整会引起不同的失真,我们运用EWB仿真软件,在函数信号发生器中输入10mV,60Hz的正弦波信号,在单管共射放大电路中设置不同的R1的数值,在R1取值为500 kΩ和100 kΩ时,在虚拟示波器上看到了出现最大不失真和饱和失真的两种输出波形,如图3、图4所示。这与因R1的数值变化会引起IB的变化,从而改变静态工作点的位置,引起输出波形失真的理论是完全相符的。

4 用555定时器组成多谐振荡器的仿真实例

555定时器组成多谐振荡器如图5所示,通电后输出高电平,同时电源通过R1,R2向电容C充电,当电容C充电到电源电压的2/3时,内部比较电路使得输出变为低电平,电容开始C放电,当电容C放电输出到电源电压的1/3时,内部比较电路使得输出变为高电平,这样循环往复电容两端电压在电源电压的1/3与2/3处振荡,输出产生方波如图6所示。

根据周期公式T=T1+T2=(R1+2R2)C2计算得到振荡周期为2.961mS,占空比公式D=(R1+R2)/(R1+2R2)计算得到占空比为0.6。

用鼠标拉出虚拟示波器屏幕左、右角的小三角读数指针到如图7所示位置,从屏幕下方“T2-T1”栏的数据可以知道该多谐振荡器的振荡周期为2.955mS,占空比为0.6.由此可见仿真具有高度的准确性。

5 结论

5.1 应用EWB在教学中的优点。 电子类专业的很多课程理论抽象、实践性很强,学生理解和接受都很困难。教学过程中应用EWB仿真软件辅助教学,将静止的、纸上谈兵的理论教学变成动态的、可视的一体化教学,激发了学生的学习兴趣。将其适当地引入到理论教学过程中,将理论与实验过程较好地结合起来,这样既验证了课程的基本理论知识,又活跃了相对严肃沉闷的课堂气氛,改变灌输知识的教法为引导学生自己去获取知识的教学方法,极大地提高学生的学习积极性和参与意识。

5.2 应用EWB存在的问题。 EWB是对传统实验教学方法的充实与改进,虽然有很多优点,但在锻炼学生动手能力方面还不能完全代替传统的实验。因此把传统的实验室实验与计算机仿真实验相互结合.两者互相补充.互相借鉴。这种实验教学模式不仅有利于培养学生的动手能力和创新能力.还有利于实验教学质量的提高。

参考文献

[1] 袁宏.电子设计与仿真技术[M].北京:机械工业出版社,2005.

[2] 张学军、马彦芬.EWB仿真在实验教学中的应用[J].河北:河北工程技术高等专科学校校报,2011年3月第1期.

电力电子器件论文篇5

关键词 multisim 教学改革 数字电子技术

中图分类号:G420 TP710 文献标识码:A

0引言

数字电子技术是理工科专业中一门核心的专业基础课,与高等数学、模拟电子技术和电路分析基础等理论课程联系紧密,且研究问题抽象难懂。该课程实践性强,在电子类实践课程中应用广泛,数字电子技术课程的教学质量直接影响着后续课程的学习。因此,研究数字电子技术教学改革是非常必要的。

传统的数字电子技术教学,主要是先进行理论教学,再通过实验教学让学生更好的理解和掌握理论知识,锻炼学生的动手实践能力。然而,在进行理论学习时,由于教学内容抽象难懂,学生不容易掌握,且不能通过实验现场演示帮助学生通过直观观察辅助理解抽象的理论知识。因此,基于传统的教学缺点,今将multisim软件引入数字电子技术课程教学中,进行教学改革,在多媒体理论教学中,通过实时的multisim软件现场教学仿真演示,学生直接的观察和分析学习抽象的理论知识,有助于学生对理论知识的理解和掌握。

1 multisim软件在数字电子技术课程教学改革中的应用优点

1.1 有效的解决传统教学中存在的问题

在理论教学中引入multisim软件,打破了传统直接理论分析,能够在课程教学过程中实时演示。在各类逻辑电路的应用中,传统的教学知识通过电路图的理论跟分析,让学生掌握逻辑电路的应用,然而由于问题抽象,学生不容易理解和掌握,通过multisim软件进行仿真现场演示,帮助学生理解和掌握,效果良好。

图1 74LS160构成六进制计数器

以时序逻辑电路中的计数器为例,集成十进制同步计数器74LS160和74LS162应用广泛,因此,74LS160和74LS162的应用是重点内容,传统教学是给出应用电路图(如图1所示为利用74LS160构成六进制计数器),理论分析其输入输出。在教学中引入multisim软件进行现场演示,生动直观,学生容易理解掌握。

1.2实验教学中的应用优点

在实验教学中,由于实验条件的限制,传统实验大部分是验证性实验,综合性和设计性的实验较少,在实验教学中,验证性实验主要是利用实验箱,操作简单,不利于学生创新能力和动手能力的培养,引入multisim软件后,学生可以通过软件中丰富的虚拟仪器和元器件设计综合性和创新性实验,培养提高学生的创新能力。

1.3学生自学能力培养中的应用优点

由于知识的更新换代非常快,在当代大学中,培养学生的自学能力是非常重要的,因此,学生的自学设计能力的培养也是大学的重要任务,既有利于学生对知识的巩固和应用,又促进学生创新能力的培养。尤其对于民办高校来说,应用型人才培养是重中之重,引入multisim软件后,学生在课后根据自兴趣和爱好设计仿真自己感兴趣的小制作,培养提高学生的创新和动手能力。仿真软件中有比较全面的模拟仪器和元器件,学生可以在节约支出的情况下,进行电子设计,为参加全国电子设计大赛打下坚实的基础。

2结论

如何提高数字电子技术的教学效果是教学中的重点,在数字电子技术教学过程中引入multisim软件,既有利理论学习的掌握,又培养提高了学生的创新能力和动手能力,为后续的专业课程打下了坚实的基础。

参考文献

[1] 江晓安,董秀峰,杨颂华.数字电子技术[M].西安:西安电子科技大学出版社, 2008:138-180.

[2] 杨志忠,卫桦林.数字电子技术[M].北京:高等教育出版社,2008:222-226.

[3] 尹勇,李林凌.Multisim电路仿真入门与进阶[M].北京:科学出版社,2005:125-228.

电力电子器件论文篇6

关键词:EDA Multisim 数字电子技术 创新

中图分类号:G4 文献标识码:A 文章编号:1673-9795(2014)03(b)-0136-02

《数字电子技术》是目前我国高校电子信息类专业的重要专业基础课,它内容涵盖广,实践性强。这门课程一方面能够构建学生电子技术领域的基本理论、基本技能及培养学生应用与创新能力;另一方面将为后续专业课程的学习奠定基础,为深入专业领域的研究成为可能。目前随着计算机技术、电子信息技术的快速发展,高校《数字电子技术》的教学与实验环境和形势在不断地变化,传统的教学方式将面临新的机遇和挑战。电子设计自动化(Electronic Design Automation)即EDA,是随着集成电路和计算机技术的飞速发展应运而生的电子设计自动化工具。而其中的Multisim是由美国NI公司开发的最新一款基于window平台的直观、精确、高效的电路教学与设计仿真软件。将Multisim应用到《数字电子技术》教学中将极大地提高教学质量与教学效果,特别是在提高学生的实践能力方面起到不可估量的作用。

1 传统教学方式的存在问题

在传统的课堂教学中,老师只是将数字电子技术的理论知识传授给学生,学生往往对生硬的原理与结论死记硬背,缺乏生动形象的实际电路的操作与演示。虽然有实验课程作为理论课程的补充,但是由于高校的生源越来越多,而实验条件往往不能及时改善,陈旧不足的实验设施已经不能满足学生的实验与电路设计的要求。而且目前各高校的数字电子技术实验,往往是在课堂理论教学下的验证性实验,缺乏创新性实验内容与条件,因而已经远不能胜任目前数字电子技术教学的要求。对于那些有志于深入研究电子技术的学生来说,这种传统的理论与实验教学更是难以满足他们如饥似渴的专研需求。

2 Multisim用于数字电子技术教学的优势

(1)Multisim的引入使传统的教学更为高效生动。

Multisim不仅为电子技术设计人员提供了新的设计理念,同时也为教学提供了科学而便捷的平台。

将这款仿真软件引入课堂理论教学,会使原本枯燥的理论讲解变为直观的演示教学、更容易激发学生的学习兴趣,使课堂单方面的讲解变为双向的互动。一些难以理解的电子原理和抽象的物理意义也将在生动的多媒体演示下变得形象、有趣,令人印象深刻。抢答器、密码锁、交通信号灯、病房医患间的呼叫系统等等应用电路均可以在完成理论教学后,在课堂上给学生进行演示,就连难以理解的竞争与冒险现象也可以通过仿真来形象地展示给学生,这样原本晦涩难懂的基础理论知识变得直观、形象便于理解与记忆。同时可以在学完每一章节后,给学生留一些设计性的题目如:循环彩灯控制器、不同进制计数器的设计等,鼓励学生利用课下时间在Multisim上进行设计和仿真,已达到学以致用的目的。

大学教育的基本宗旨是发展学术、追求真理,而课堂是实施以培养创新精神和实践能力为核心的素质教育的主阵地。将Multisim软件引入课堂就是要将教学和研究相结合,让学生早日参与科学研究活动,培养学生主动学习、独立思考解决问题、勇于实践、不断创新的能力。

(2)Multisim的引入将极大缓解高校实验条件的不足。

自1999年高校扩招以来,全国各高校的在校生人数激增,而与此同时学校的办学条件和办学设施并没有得到相应的改善,许多高校的实验室经常在“超负荷”运行,实验设备和器件损坏严重,甚至得不到妥善的维修,原来的一人一组的实验项目往往要几个人一组来共同完成。这样的教学效果必将大打折扣,而对于学生十分重要的手动实践的机会也越来越少,而目前国外不少高校的实验室早已经对学生全天候的开发了。这种不利现象,将随着Multisim的引入教学而带来彻底地改变。

Multism软件可以安装在每一台电脑中,这样学生可以在自己的电脑上搭建起自己的实验室,只要经过短期的学习就能够掌握这种软件的使用技巧。经过课堂上老师的指导,学生可以在自己的电脑上完成实验项目,并进行电路设计。这将极大地提高学生的学习效率和学习兴趣,这必将使实验室的仪器设备的损耗大幅度的降低,节约大量的实验室的资金。

(3)Multisim将有助提高学生的创新能力的培养。

①传统电子设计的缺点与不足。

要把一个电子产品从设计图转化为实物,传统的制作方法是先制作印刷电路板,然后将选用的电子器件按电路设计焊接好之后,再验证设计的正确性。在这个过程中,往往会出现以下问题:设计图的正确性和元器件的参数选择。

一个电子产品的设计是否正确,对于学生来说,验证的方法就是将设计图付诸于实践,然后通过实物的执行过程来看结果。对于没有经济来源的学生来说,一旦设计图出现问题,那么所有的工作都将付之一炬。

对于较精密的电子产品来说,元器件的参数精度要求是非常高的,选择的参数是否合适、元器件的延迟时间会不会影响设计结果,这些问题在传统的电子产品制作过程中都是无法验证的。

以上这两个问题往往限制了学生们的一些想法,使得他们的设计只停留在设计图纸阶段。如果能够很好的解决这些问题,将会极大地调动他们学习《数字电子技术》的积极性,鼓励他们的创造性,从而培养出理论知识过硬,实践动手能力强的高技术人才。

②Multisim为设计者设计提供高效便捷的服务。

应用Multisim就可以完全解决这些问题。Multisim软件不仅提供了电路原理图输入和硬件描述语言输入的接口和比较全面的仿真分析功能,同时还提供了一个庞大的元、器件模型库和一整套虚拟仪表(包括示波器、信号发生器、万用表、逻辑分析仪、逻辑转换器、字符发生器、波特图绘图仪、瓦特表等),可以满足对一般的数字逻辑电路、模拟电路以及数字-模拟混合电路进行分析和设计的需要。Multisim可以实现逻辑编译、逻辑化简、逻辑分割、逻辑综合与优化以及逻辑布局布线、逻辑仿真,完成对特定目标芯片的适配编译、逻辑映射,编程下载等工作,最终形成集成电子系统或专用集成芯。对于一些喜爱专研的学生,Multisim更是提供了得天独厚的舞台,学生们可以在老师的指导下,充分发挥想象力利用Multisim设计各类型电路、仿真。如果仿真结果不理想,还可以任意调换元器件及调整电子元件的参数,进而对不同电路进行仿真和对比分析,而完全不需要考虑资金和耗材的问题,这无疑将大大地缩短设计周期、提高设计效率,必将极大地激发学生的学习兴趣与创新实践的动力。

综上所述,有效利用EDA技术进行数字电子技术教学,将弥补传统教学中的不足,提高课堂教学效率,增强学生的学习兴趣,缓解高校实验条件不足的压力,激发学生创新意识并提高学生的创新能力的培养。

参考文献

[1] 罗忠恒.浅论《数字电子技术》课程的教学改革[J].中国电子商务,2010(7):154.

[2] 陆艳.以项目为载体的《数字电子技术》课程改革与实践[J].湖南科技学院学报,2010,31(8):24-29.

[3] 卢艳红.基于Multisim10的电子电路设计、仿真与应用[M].北京:人民邮电出版社,2009.

电力电子器件论文篇7

关键词:Multisim仿真软件;数字电路;电子技术实验教学

作者简介:郑宽磊(1981-),男,湖北仙桃人,武汉工程大学电气信息学院,讲师;陈柳(1979-),女,湖北丹江口人,武汉工程大学电气信息学院,讲师。(湖北 武汉 430205)

中图分类号:G642.423 文献标识码:A 文章编号:1007-0079(2014)08-0166-02

随着电子技术和计算机技术的迅猛发展,社会对高校工科电子类专业学生的创新思维和实践能力的要求越来越高。尤其对“数字电子技术”这门理论性和实践性都很强的电子类专业重要专业基础课而言,其对学生实践能力的要求尤其高。实验教学是该课程的重要环节,通过理论联系实际能够有效地训练、提高学生的动手能力。传统的纯硬件实物电路实验教学由于存在诸多弊病,不少学校已经着手改革这种实验教学模式,采用仿真设计与硬件实物电路相结合的实验教学模式,将虚拟电子仿真软件Multisim应用于电子技术的实验教学中,为学生提供更加灵活方便的实验环境,以此激发学生的创造性,提高学生的综合动手能力和创新设计能力。

一、Multisim 软件的特点

Multisim是一个原理电路设计、电路功能测试的虚拟仿真软件,是美国国家仪器公司(NI,National Instruments)电子线路仿真软件EWB(ElectronicsWorkbench,虚拟电子工作台)的升级版。[1]它界面友好,简单直观,软件易学易用。它将原理图的创建、电路的测试分析、结果的图表显示等全部集成到同一个电路窗口中。可以仿真模拟电路、数字电路和模数混合电路,具有和真实环境一致的可视化界面,整个操作界面就像一个实验工作台,与实际操作几乎相同,深受广大教师、科研人员及电子设计工作者的喜爱。Multisim的基本特点有:

1.采用直观的电路图输入方式

绘制电路图所需元器件以及仿真所需仪器仪表均是由软件方法虚拟,可直接从图形界面的工作平台上选取,实现了“软件即元器件”、“软件即仪器”。

2.提供丰富的元器件库

同时用户也可以根据从生产厂商产品使用手册中查到的元器件参数新建或扩充已有的元器件库,因此也很方便地在工程设计中使用。

3.强大的虚拟仪器功能[2]

不仅提供有一般实验用的通用仪器,如万用表、函数信号发生器、双踪示波器、直流电源等,而且还有一般实验室少有或没有的仪器,如波特图仪、字信号发生器、逻辑分析仪、逻辑转换器等。并且所有仪器都与实物相似,所有仪器都可以多台同时调用,为电路的仿真提供了强大的保证。

4.完整的分析方法

提供了电路瞬态和稳态分析、时域和频域分析、器件线性和非线性分析等十几种电路仿真分析方法,这些分析方法基本能满足一般电路分析设计的要求。

二、数字电路的设计性实验举例

一般来说,对一个设计性实验电路进行设计和仿真前,首先需要对电路的工作原理有初步了解,明确实现该实验电路所描述逻辑功能所需要的模块电路、每个模块的具体功能,以及模块之间的信号传输关系等等,了解这些后根据参数指标选择适当的元器件通过Multisim 软件完成各模块电路初步设计,然后经过仿真观察分析,边选择边测试,边修改边比对,不断从仿真的测试现象中分析判断,直到设计出符合要求的电路。该实验电路要求设计一个在时钟脉冲控制下实现8位并行数据输入到串行输出的转换电路,具体来说分两步来实现:

1.绘制电路原理图

整个电路分为三个功能模块:LMC555定时器构成多谐振荡器产生时钟脉冲模块、4位二进制加法计数器74LS163构成的计数器模块以及数据选择器74LS151构成的并转串电路模块。电路设计采用模块设计的方法分块设计。

第一个模块,可根据其设计指标要求,选择数字模拟混合型的中规模集成电路LMC555定时器,在其配上标称电阻R1=4.7K、R2=5.1K、标称电容C1=0.1μF构造一个多谐振荡器产生时钟脉冲信号,[2]根据理论公式T=0.7(R1+2R2)C1计算其振荡频率约为1KHz。

第二个模块,要求在时钟脉冲控制下将8位并行输入的数据串行输出,控制8位数据的脉冲信号很明显是以8个时钟脉冲为一个循环周期,因此可以设计一个8 进制的计数器,可选计数器很多,这里选择一款常用4位二进制同步加法计数器,其输出端QDQCQBQA的状态从0000~1111可以看成两组,分别为0000~0111和1000~1111,只需取其低三位QCQBQA作为输出时即可构成一个8进制的加法计数器。将555定时器所产生的时钟脉冲信号送入到74LS163 芯片的时钟脉冲输入端,则其低三位QCQBQA计数从000~111共8 种计数状态输出到下一个模块中。

第三个模块,要实现8位并行数据输入到串行输出的转换,选用八选一的数据选择器74LS151显然是最合适的,将第二个模块74LS163输出的低三位QCQBQA分别与数据选择器74LS151的3个地址输入端(通道选择信号)CBA相连,即可实现整个电路是在时钟脉冲控制下,计数器的低三位QCQBQA循环产生从000~111这8种状态,74LS151的地址输入端CBA在接收到这循环的8种状态后,可以将8个并行输入的数据通道上的数据从D0~D7(10100010)依次送到151的输出端Y,实现了在时钟脉冲控制下,将8位并行数据输入转换为串行输出。

以上三个模块的分步设计完成后,整个电路原理图的设计就完成了。有了原理图,利用Multisim丰富的元器件资源就可以很快找到所需器件,排放好元器件后对各元器件进行连接,修改必要的元器件参数及属性,并标注相应元器件标签,电路原理图如图1所示,即完成了原理图绘制。

2.完成电路的仿真分析

Multisim软件提供了充足的虚拟仪器对电路进行仿真分析,在数字电路仿真设计中常用到示波器、逻辑分析仪、字信号发生器和逻辑转换器等等。本实验可以分两部分仿真:第一个模块部分,为加深对555定时器构成的多谐振荡器的原理的理解和学习,这里可以用双踪示波器观察555定时器的充放电电容C1两端波形,以及其输出的脉冲方波信号波形,示波器仿真波形图如图2所示。由图可见,方波信号的频率约为1ms,周期约为1KHz,充电时间大于放电时间,仿真波形与理论分析及公式计算一致。

第二个模块计数器和第三个模块数据选择器,可以使用逻辑分析仪对计数器的时序波形和数据选择器串行输出的波形一起观测,逻辑分析仪仿真时序图如图3所示,设定数据选择器74LS151的8位并行数据输入端D0~D7=10100010。由图3可知,在时钟脉冲作用下,计数器74LS163的低三位QCQBQA循环计数产生000~111这8种状态,假设计数初始状态为000时,即151的通道选择信号CBA=000,此时D0被选通,151的输出Y=D0=1,来一个CP脉冲上升沿后,计数状态加1变为001,CBA=001,此时D1被选通,151的输出Y=D1=0。同理,依次第7个脉冲到来后,计数状态变111时,此时D7被选通,151输出Y=D7=0,由仿真时序图可以明显看出151的八位并行输入的数据10100010在时钟脉冲控制下,来一个时钟脉冲上升沿送出一位数,8位并行输入的数据一个接一个的串行送出来,当第7个脉冲到来时8位数据全部送出来,实现了数据并行输入到串行输出的转换。

通过Multisim软件平台仿真设计的并转串电路满足设计要求,接下来按照仿真连线在实验箱或者面包板上进行接线,采用这种先仿真后硬件实物电路相结合的实验教学模式可极大地节省试验时间,提高实验效率。

三、Multisim应用于数字电子技术实验教学的优点

与基于Multisim仿真软件的这种虚拟电路设计方法不同,学生在进行传统的纯硬件实物实验时,这种设计性实验一般都需要事先大量查找资料,理解原理,按照电路指标要求估算元器件的具体参数,画出粗略的硬件电路图,在面包板或者实验箱上直接搭建硬件实物电路,同时也只能用实验室有限的示波器、频率计和万用表等仪器仪表进行观察分析,实际操作中这样的设计性实验连线一般较多,若所选用芯片不合适,电路设计本身就存在问题,或者哪个芯片有问题,又或者哪一根线不通,有时候很难检查出具体问题,即便检查出来可能硬件电路设计也要推到重来,那么在四个学时内实验结果很难做出,通过本校最近几年数字电子技术设计性实验开设的情况观察发现,不少学生往往会为了完成实验任务直接照搬其他同学的电路设计或者要求老师直接给出可行的电路图,然后只是机械按照硬件电路图连线,最后实验结果是出来了,但大多这样的学生即便实验做完了,可电路工作原理却完全不懂,根本达不到通过开设设计性实验锻炼学生实际动手能力、培养他们分析问题和解决问题能力的目的。

相反,如果先用仿真软件仿真,学生只需在了解基本原理后就可以选择元器件在仿真软件工作平台上直接搭建电路,可以大胆实践任意选择芯片而不必理会材料消耗、实验室经费不足或是元器件损坏和老化等故障问题,可以把元件的所有可能的连接方式全部试验并通过仿真分析把所有可能的结果直观呈现出来,通过在计算机上反复地实验,不断实时得到不同的实验结果仿真观察和对比分析,选择符合要求的元器件,设计出满意的仿真电路,然后再在实验箱或面包板上搭建硬件实物电路,通过实物电路验证最后的实验结果。这种虚拟电路的仿真设计方法给了学生更大的创造自由度和设计空间,同时也节省了实验时间,让学生可以把更多的时间用在电路的具体设计、仿真、纠错和创新等方面,帮助学生更快、更好地理解和掌握数字电路的基本概念和基本原理,弥补传统数字电路实验教学纯硬件实物实验的诸多不足,大大提高了学生的学习兴趣,锻炼了他们综合分析和设计的能力、排除故障的能力,培养了他们创新的能力和应用开发的能力。

四、结束语

从以上设计和仿真分析过程可以看到,利用Multisim仿真软件可以为数字电路实验教学的改革带来极大的帮助。将Multisim仿真软件引入到数字电子技术实验教学中起到了打通理论教学与实践教学的桥梁作用,通过这种先仿真后实物硬件电路相结合的实验教学模式不仅可以使学生能更好地掌握电子技术的基本理论和技能,还能够充分发挥学生学习的主观能动性,最终达到提高学生实践能力和培养创新思维的目的。[4]但虚拟仿真也有其局限性,仿真软件设计的虚拟电路仍需实物电路的验证,因而在进行电子技术实验时除了需要将“虚拟”与“实物”相结合,还需遵循“理论导入,虚实结合,仿真设计,实物验证”的实验步骤。此外,Multisim仿真软件还可以用在电工电子类课堂教学、电子技术课程设计以及毕业设计等方面,对提高学生实际动手能力和培养科技创新意识都有积极的促进作用。

参考文献:

[1]黄智伟.基于NI Multisim的电子电路计算机仿真设计与分析[M].北京:电子工业出版社,2011.

[2]郭文川.Multisim在电子类课程教学中的实践[J].中国电力教育,2006,(4):351-357.

[3]康华光.电子技术基础(数字部分)[M].第五版.北京:高等教育出版社,2005.

电力电子器件论文篇8

关键词:课程改革;工作任务;课程项目;技术情境;教学导航

作者简介:陈丽茹(1962-),女,辽宁开原人,哈尔滨电力职业技术学院信息工程系,副教授;刘莲秋(1964-),女,辽宁盖州人,哈尔滨电力职业技术学院信息工程系,副教授。(黑龙江哈尔滨150030)

中图分类号:G712     文献标识码:A     文章编号:1007-0079(2012)12-0093-02

随着我国科技和经济的迅猛发展,社会对人才的需求正在发生着深刻的变化,教育行业受到各方面的重视。在教育部和财政部实施的国家示范性院校建设政策鼓舞下,高等职业技术学院以服务为宗旨,以就业为导向,以培养高级应用型、技艺型人才为目标。这类人才主要是在不同行业、企业的工作和生产过程中负责管理、监督、检测、分析、技术服务等几项工作。因此,高等职业技术学院正进行较大规模的专业建设和课程改革,要求高职专业的学生除了具备必要的基础理论、专业技术知识外,还必须具有解决工作生产中实际问题的能力,以适应今后的工作。

“电子技术”分为模拟电子和数字电子两大部分,在教学中从职业岗位工作任务分析着手以掌握知识和技能为根本、以工作方向为培养目标、以工作过程为导向,强调把完整的工作过程及其操作要求作为课程内容。当工作过程导向课程运用项目载体设计学习情境时,这一工作过程实际上就成了完成具体项目的自始至终的步骤。通过课程分析和知识、能力、素质分析,打破传统的教学模式,构建了“以工作任务为中心、以课程项目为主体的教学方法”。在教学中掌握课程技术原理及应用方面知识体系的完整性是非常重要的,使学生在完整的工作过程中培养应对复杂技术情境的能力。在教学中以典型电子电路制作的工作任务为中心,以多模块应用为切入点,引入对学生创新能力的培养,让学生在具体应用电路的制作过程中开发创新思维,完成相应工作任务,并构建相关的理论知识,发展职业能力。

一、模拟电子技术教学导航

模拟电子技术是研究对仿真信号进行处理的模拟电路的学科。它以半导体二极管、半导体三极管和场效应管为关键电子器件,包括功率放大电路、运算放大电路、反馈放大电路、信号运算与处理电路、信号产生电路、电源稳压电路等研究方向。

理论知识:基本半导体知识、放大电路、集成运算放大电路、直流稳压电源。

技能训练:常用元件的识别与测量、放大电路性能分析、集成运算放大电路基本应用。

1.模块1:半导体器件

(1)知识重点:半导体基础知识;半导体二极管外部特性;晶体三极管外部特性。(2)知识难点:半导体PN结。(3)教学方式:从半导体PN结入手,简单介绍半导体的基本结构与工作原理。结合实践教学,重点掌握半导体的外部特性。(4)技能要求:二极管与三极管的简易测试。

2.模块2:放大电路

(1)知识重点:放大电路的基本组成;放大电路的分析;多级放大电路的极间耦合;负反馈对放大电路的性能的影响。(2)知识难点:放大电路的分析;放大电路的负反馈。(3)教学方式:从基本放大电路入手,介绍放大电路的静态与动态分析、多级放大、电路反馈;结合实践教学,重点掌握放大器的外部特性。(4)技能要求:放大电路静态工作点的调整与动态参数测试。

3.模块3:集成运算放大器

(1)知识重点:集成运放的结构和特点;基本运算电路;集成运放的线性应用电路。(2)知识难点:集成运放的线性应用电路。(3)教学方式:从理论集成运放条件入手,掌握各基本运算电路和电压比较器的功能;结合实践教学,重点掌握集成运放的外部特性。(4)技能要求:电路的调整与测试。

4.模块4:直流稳压电源

(1)知识重点:整流与滤波电路;稳压电路;开关电源。(2)知识难点:开关电源。(3)教学方式:从二极管整流特性、电容器充放电入手,讲解整流、滤波电路;稳压电源重点讲授集成稳压电路和开关电源。(4)技能要求:电路的调整与测试。

二、数字电子技术教学导航

数字电子技术主要研究各种逻辑门电路、集成器件的功能及其应用,逻辑门电路组合和时序电路的分析和设计、集成芯片各脚功能。随着计算机科学与技术突飞猛进地发展,用数字电路进行信号处理的优势也更加突出。为了充分发挥和利用数字电路在信号处理上的强大功能,可以先将模拟信号按比例转换成数字信号,然后送到数字电路进行处理,最后再将处理结果根据需要转换为相应的模拟信号输出。

理论知识:集成门电路与组合逻辑电路、时序逻辑电路、波形产生与整形电路、中规模集成电路应用。

技能训练:组合逻辑电路应用、时序逻辑电路应用、逻辑电路限定符号识图。

1.模块1:数字电路基础

(1)知识重点:数字脉冲信号;二进制与8421BCD码;基本函数与逻辑运算;逻辑函数的化简和变换。(2)知识难点:逻辑函数的化简和变换。(3)教学方式:从二进制与逻辑函数基本规则入手,学习逻辑运算规则、逻辑函数化简与变换。(4)技能要求:逻辑函数的化简和变换。

2.模块2:组合逻辑电路

(1)知识重点:基本逻辑符号及意义;门电路的逻辑功能和基本特性;组合逻辑电路的分析常用组合逻辑电路的逻辑功能。(2)知识难点:基本逻辑符号及意义;组合逻辑电路。(3)教学方式:从基本原理与逻辑符号读解入手,重点介绍电路的逻辑功能与外部特性。(4)技能要求:基本逻辑符号读图;门电路和组合逻辑电路。

3.模块3:触发器

(1)知识重点:各类触发器的逻辑功能;触发器限定符号及其意义。(2)知识难点:触发器之间的转换关系。(3)教学方式:借助限定符号意义读解,帮助理解各种触发器的逻辑功能与控制方式;结合实践教学,重点掌握电路的外特性。(4)技能要求:触发器的逻辑功能测试。

4.模块4:时序逻辑电路

(1)知识重点:时序逻辑电路的特点;时序逻辑电路的限定符号及其意义;寄存器;集成计数器应用。(2)知识难点:集成计数器应用;限定符号及其意义。(3)教学方式:从触发器入手,由D触发器构成寄存器;由T和T触发器分别构成同步和异步二进制计数器。借助限定符号的意义来理解时序逻辑电路的逻辑功能。结合实践教学,重点掌握电路的外特性。(4)技能要求:常用的相关集成电路的应用。

5.模块5:波形产生与整形电路

(1)知识重点:555定时器;多谐振荡器与单稳态电路;施密特触发器;石英晶体振荡器。(2)知识难点:555定时器;多谐振荡器。(3)教学方式:以555定时器为重点,介绍多谐振荡器、单稳态电路和施密特触发器的功能。重点掌握电路的外特性。石英晶体振荡器从阻抗频率特性入手。(4)技能要求:常用的相关电路的应用入手。

三、电路组装、测量与调试教学导航

电子电路组装、测量与调试在电子工程技术中占有重要的地位,任何一个电子产品都是由设计焊接组装调试形成的,焊接是保证电子产品质量和可靠性最基本环节,调试是保证电子产品正常工作的最关键环节。

理论知识:常用电子仪表、电路的装配、调试与测量知识。

技能训练:常用电子测量仪表的使用、常用电路元件与数字集成电路测量、电路的装配与调试。

1.模块1:常用电子仪器知识重点

(1)知识重点:双踪示波器;半导体管特性图示仪;毫伏表;信号发生器;集成电路测试仪。(2)知识难点:双踪示波器;半导体管特性图示仪。(3)教学方式:重点讲授电子仪器的操作和使用方法。(4)技能要求:仪器的基本操作方法;半导体特性测量。

2.模块2:电子元器件的识别与简易测量

(1)知识重点:电子无源元器件;电子有源元器件;表面安装元器件。(2)知识难点:表面安装元器件。(3)教学方式:重点讲授各种电子元器件的识别与选用方法。(4)技能要求:元器件的识别与选用方法、常用数字集成电路测试。

3.模块3:电路的装配、调试与测量

(1)知识重点:装配、焊接工艺;电路测试与测量。(2)知识难点:电路测试。(3)教学方式:介绍电路装配工艺,分析电路测试与测量基本方法,结合实训进行教学。(4)技能要求:电路装配、测试与测量。

四、电子电路仿真教学导航

电路仿真技术是近十年来在电子技术研究领域的一场革命。设计人员利用计算机及其软件的强大功能,在电路模型上进行电路的性能分析和模拟实验,从而得到准确的结果,然后再付诸生产,极大地减少了实验周期和试制成本,提高了生产效率和经济效益,受到了电子生产厂家的一致欢迎。现在,电子仿真技术已成为电子工业领域不可缺少的先进技术,因此为了确保电路设计的成功,消除代价昂贵并且存在潜在危险的设计缺陷,就必须在设计流程的每个阶段进行周密地计划与评价。电路仿真给出了一个成本低、效率高的方法,能够在进入更为昂贵费时的原型开发阶段之前,找出问题所在。

理论知识:EWB与Multisim平台基本知识,Multisim在电子仿真实验中的应用。

技能训练:模拟电路电子仿真和数字电路电子仿真。

模块:电子电路仿真。

(1)知识重点:Multisim平台的使用;Multisim在电子仿真实验中的应用。(2)知识难点:Multisim软件的使用。(3)教学方式:从电子实验实例入手,学习Multisim软件的使用,在学会使用的基础上,结合电子知识,完成电子实验的仿真。(4)技能要求:用Multisim进行电子仿真的方法。

五、综合实训项目――有源多媒体音箱的设计与制作

1.知识要求

掌握模拟电子技术和数字电子技术的综合应用思路;掌握电子产品综合设计的基本思路。

2.技能要求

能进行电子电路的综合制作调试;能有条理地撰写设计说明书;能对设计项目进行总结展示。

3.教学任务

通过有源多媒体音箱的设计、制作及测试,掌握电子产品的设计流程及注意事项,学会元器件的特性测试和电路组装、测试,熟悉电子产品组装的工艺要求及生产过程。

4.教学活动设计

(1)通过让学生利用图书馆、上网等手段查阅相关资料,在教师指导下对有源多媒体音箱进行设计,掌握电子产品的设计流程及注意事项。

(2)在校内生产线的工作岗位上,根据所设计电路选择元器件,进行元器件的性能、参数测试。规划电路板,进行元器件的布局和印制电路板的制作。完成各部分电路的焊接、组装,对已经组装的电子产品进行参数测试及调试,使其达到设计要求。

(3)要求学生撰写实践报告及产品说明书。

5.相关知识

(1)理论知识。元器件的识别、测试方法;印制电路板的制作,元器件的布局;焊接工艺、电路调试方法;产品说明书的撰写。

(2)实践知识。元器件的选择、测试;印制电路板的规划和制作;元器件的焊接、组装;电路的调试及参数测试;实践测试报告的编写。

“电子技术”课程的教学改革就是以职业为导向,以提高学生就业竞争能力为目的,以市场需求为运作平台。因此应将该课程实训的内容和电子元器件及电路的研发实验、生产流程与企业结合到一起,通过校企合作,学生以一个普通职业人的身份,真正达到工学结合的课程改革。

参考文献:

[1]教育部关于加强高职教育人才培养工作的意见[Z].教高[2000]2号.

[2]教育部关于以就业为导向深化高等职业教育改革的若干意见[Z].教高[2004]1号.

[3]李卫民.高校电子技术实践教学的探索与实践[J].文教资料,2006,(4).

上一篇:继电保护技术论文范文 下一篇:通信电缆技术论文范文