数字逻辑论文范文

时间:2023-11-03 14:14:29

数字逻辑论文

数字逻辑论文篇1

关键词:教学改革;数字逻辑电路;C语言

中图分类号:G642 文献标识码:B

文章编号:1672-5913(2007)10-0090-03

引言

数字逻辑电路课是高等学校计算机科学技术专业的一门必修基础课。在计算机专业基础课程中,它是微机原理与应用、微机接口技术、计算机组成与系统结构等课程的前导课程,有着承上启下的重要地位。该课程从电子计算机的基本硬件组成及数字电子技术着手,对计算机的组成部件的基本电路工作原理展开讨论,使学生掌握有关计算机硬件方面的基础知识,尤其是各数字逻辑电路的基本功能,构成整机数字系统的技术,为培养学生对硬件系统的分析、设计、开发和使用能力打下最基本的基础知识。

数字逻辑电路这门课程学习结果的好坏将对计算机专业的后续课程的学习产生很大的影响。数字逻辑电路是学好计算机专业基础课的必要途径,因此应该重视这门课程教学方法的改进。为了改革目前的数字逻辑电路课教学方法,我们探索了新的数字逻辑电路教学方法,即基于计算机高级语言的数字逻辑电路教学方法。本数字逻辑电路教学方法的特点是用计算机高级语言C语言对数字逻辑电路的基本功能进行描述和实验,也就是用计算机高级语言对我们在数字逻辑电路课程中讲解的全部基本数字逻辑电路进行表示。本方法特别适合与计算机专业的学生,因为计算机专业的学生在学习数字逻辑电路课程之前都学习过了计算机高级语言C语言。这使得他们能够较好的理解数字逻辑电路的这种表示方式,同时也能够使他们在学习数字逻辑电路的这种表示方式中复习计算机的高级语言,并且可以扩展学生的知识面,培养和训练学生的创新能力。它不但能够进行数字逻辑电路的基本教学,还可以用于数字逻辑电路的实验教学和课程设计。

1数字逻辑电路的C语言描述

C语言功能丰富,表达能力强,使用灵活方便,目标程序效率高,可移植性好,适合编写各种软件,尤其是系统软件,所以C语言已在诸多领域得到广泛的应用。目前许多高等院校,都在计算机专业开设了C语言课程。利用C语言可以编写出简洁、紧凑、高效的程序。C51是在完全支持标准C全部指令的基础上添加了许多用来优化8051指令结构的C的扩展指令而形成的,其程序结构也类似于标准C程序的编写。随着嵌入式技术的不断发展以及C语言在嵌入式应用中的不断普及,C程序设计技术在嵌入式系统中将得到广泛的应用。

数字逻辑电路通常分为组合数字逻辑电路和时序数字逻辑电路两大类,组合数字逻辑电路常用的描述方法是逻辑图、逻辑代数式、真值表和卡诺图,它们均可对同一个组合逻辑问题进行描述,知道其中的任何一个,就可以推出其余的三个。随着EDA技术的发展,目前又出现了硬件描述语言的数字逻辑电路描述法。与用硬件描述语言类似的方法,本文探索了在微控制器中的C51程序描述法。例如对一个三变量的一致电路的描述:

三变量的一致电路就是当A、B、C三个变量一致时,电路输出高电平;当三个变量不一致时,电路输出低电平。

用逻辑代数式表示为:F=ABC+

用C51语言描述为:

Main()

{ sbit a=P1.0; // 定义布尔输入变量a是微控制器的P1.0口

sbit b=P1.1; // 定义布尔输入变量b是微控制器的P1.1口

sbit c=P1.2; // 定义布尔输入变量c是微控制器的P1.2口

sbit f=P2.0; // 定义布尔输出变量f是微控制器的P2.0口

while(1){ // 无限循环

P1=0xff;

if (a==b==c)

f==1;

elsl f==0;

}

} // P1为输入口,P2为输出口

从以上的C51程序可以看出,这样的数字逻辑电路描述方法,对于计算机专业的学生,只要学习过C语言是非常容易理解的,而且用该方法描述的数字逻辑电路也容易用下面介绍的实验方法中得到验证。

2在教学中的应用原则

2.1教学重点

笔者认为对于计算机专业的数字逻辑电路课,教学重点在于让学生能够很好地理解常用数字逻辑电路的逻辑功能,至于这些数字逻辑电路的实现方法有一些概念就可以了,没有必要掌握数字逻辑电路的中小规模集成电路实现方法。而这些中小规模集成电路实现的数字逻辑电路在我们目前所用的教材中往往是重点讲解的,这点对于计算机专业的学生就不是很合适。事实上,本文探索的用C51程序描述数字逻辑电路,就是基于微控制器的用软件实现的数字逻辑电路。这就是说数字逻辑电路课程的重点内容是理解数字逻辑电路的逻辑功能。而具体用什么方法实现这个逻辑功能就不是太重要了。用中小规模集成电路、可编程逻辑电路和软件来实现都是可以的。

2.2应用实例

根据笔者的多年教学实践经验,在计算机专业的数字逻辑电路课程教学中,灵活运用本文论述的C51程序描述法,结合传统的数字逻辑电路的描述方法,取得到了较好的教学效果。

如:对于在计算机专业中用到的较多的逻辑电路“译码器”。用逻辑代数描述为:

用C51程序可以描述为:

main()

{ sbit a=P1.0; // 定义布尔输入变量a,b,c为微控制器的P1口

sbit b=P1.1;

sbit c=P1.2;

sbit y0=P2.0; // 定义布尔输出变量y0~y7是微控制器的P2口

sbit y1=P2.1;

sbit y2=P2.2;

sbit y3=P2.3;

sbit y4=P2.4;

sbit y5=P2.5;

sbit y6=P2.6;

sbit y7=P2.7;

while(1){ // 无限循环

P1=0xff;

y0=y1=y2=y3=y4=y5=y6=y7=0;

if (a==0&&b==0&&c==0) y0=1;

if (a==0&&b==0&&c==1) y1=1;

if (a==0&&b==1&&c==0) y2=1;

if (a==0&&b==1&&c==1) y3=1;

if (a==1&&b==0&&c==0) y4=1;

if (a==1&&b==0&&c==1) y5=1;

if (a==1&&b==1&&c==0) y6=1;

if (a==1&&b==1&&c==1) y7=1;

}

}

因此,在数字逻辑电路课程中,让学生懂得作为计算机专业的学生,单单学会数字逻辑电路的硬件实现方法是不够的,还应当让学生从一开始就重视学习计算机软硬件的相互关系。如果教师在数字逻辑电路课程的教学中运用本文论述的方法,引导学生从计算机软件和硬件层次上去认识数字逻辑电路知识,对学生学好后续专业课程有着积极的促进意义。

3实验教学方法

3.1硬件结构

本实验方法的硬件部分主要由PC机以及微控制器电路和多个LED电路组成。微控制器选用Philips公司生产的P89C51RD2BN。该芯片内部集成了多种功能部件,如四个8位的数字I/O口,8路A/D转换接口、UART、定时器、看门狗定时器和FLASH存储器等。微控制器的主要功能是:用户输入输出端口状态扫描输入,用户输入输出端口信号输入和数字信号显示等。实验硬件组成框图如图1所示。

图1 实验硬件组成框图

3.2ISP实现原理

本实验方法的关键是ISP技术。P89C51RD2BN的系统编程是通过标准RS232串口来完成的,它是一种内嵌的在线可编程。内部有一系列的硬件资源,当微控制器对自身的Flash存储器进行编程时,所有底层操作都由这些内部资源来完成。ISP编程不需要将微控制器从系统中取出,只要用一个开关将PSEN强行拉低,ALE管脚悬空,系统便在上电复位后进入ISP状态。通过免费的编程软件Flashmagic下载二进制文件到微控制器,就可以运行程序了。

3.3实验方法

如图1所示,实验时先把ISP控制开关放置在ISP位置上,在PC机上输入需要实现的数字逻辑电路的C51程序,然后经过C51编译器编译,生成二进制文件形式的目标程序文件,然后使用Flashmagic软件把目标程序下载到微控制器中,再把ISP控制开关放置到微控制器的正常工作状态,按动复位按钮,微控制器中的程序就可以正常运行了。这时可以在输入拨位开关上输入数字信号,在LED上可以观察到这个实验数字逻辑电路的逻辑功能的实现结果。改变输入拨位开关上输入的数字信号,可以得到不同的数字信号输入,在LED中可以观察分析实验数字逻辑电路的全部逻辑功能。

运用本实验方法进行的数字逻辑电路实验,由于实验所用到的硬件设备,除PC机以外的成本是极低的,可以实现把实验带回家的实验理念。在家里进行各种有创造性的实验。让学生真正成为实验学习的主人。

4结束语

本文论述的数字逻辑电路C语言描述方法具有易懂、直观、有创新性的特点。用该教学方法的实验装置结构简单、成本较低、维护方便、性能可靠。可以进行简单的组合数字逻辑电路实验,也可以进行时序逻辑电路的实验,能够搭建多种趣味电路。能满足基本教学的需要,也可以进行综合性、设计性实验。

参考文献

[1] 孙荣高,吕昂. 微控制器温室环境温湿度程序控制系统的研究与设计[J]. 微计算机信息,2005,(10):9-11.

[2] 陈科,李进. 基于ISP技术的单片机教学实验装置的研制[J]. 浙江理工大学学报,2006,(3):60-63.

[3] ,王彬. 将专业课知识融入高级语言程序设计教学[J]. 吉林大学学报(信息科学版),2005.

收稿时间:2007-2-16

作者简介:孙荣高(1959-),男,浙江万里学院计算机系.

数字逻辑论文篇2

论文摘 要:针对目前“数字逻辑”课程教学中存在的问题,在分析“数字逻辑”课程的特点、教学现状和pbl教学模式内涵的基础上,文章提出将pbl教学方法应用于“数字逻辑”教学过程中的观点,并提出“2+2”教学方案。教学实践表明,将pbl教学模式应用于数字逻辑课程中,提高了学生学习的积极性和主动性,使他们进一步加深了对数字逻辑的原理、知识、概念的理解,为后续课程的学习奠定了坚实的基础。

“数字逻辑”课程是理工类专业的技术基础课,从计算机的层次结构上讲,“数字逻辑”是深入了解计算机“内核”的一门最关键的基础课程,同时也是一门实践性很强的课程[1]。其任务是使学生掌握数字逻辑与系统的工作原理和分析方法,能对主要的逻辑部件进行分析和设计,学会使用标准的集成电路和高密度可编程逻辑器件,掌握数字系统的基本设计方法,为进一步学习各种超大规模数字集成电路的系统设计打下基础。

pbl全称为problem—based learning,被翻译成“基于问题学习”或“问题式学习”。其基本思路是以问题为基础来展开学习和教学过程[2]。pbl教学法是以问题为基础,以学生为主体,以小组讨论形式,在老师的参与和指导下,围绕某一具体问题开展研究和学习的过程,培养学生独立思考能力[3]。如今pbl教学已经成为美国教育中最重要和最有影响力的教学方法。

1 研究背景

1.1 数字逻辑课程的内容及其教学中存在的问题

数字逻辑课程的主要内容包括数字逻辑基础和数字电路两个部分,在学习过程中学生应把握好这两条贯穿整个课程的主线。数字逻辑基础是研究数字电

路的数学基础,教师在教学中应使学生明确数字电路中逻辑变量的概念,掌握逻辑代数(布尔代数)的基本运算公式、定理,能够熟练对逻辑函数进行化简。数字电路是解决逻辑问题的硬件电路,包括组合逻辑电路和时序逻辑电路两种基本形式。对于每一种电路形式,教师应指导学生从基本单元电路入手,熟悉其常用中规模集成电路的原理及使用方法,掌握数字电路(组合和时序电路)的分析和设计方法,并了解数字系统的现代设计方法。

我们根据教学内容,总结数字逻辑课程具有以下几个特点:

1) 数字逻辑课程是一门既抽象又具体的课程。在逻辑问题的提取和描述方面是抽象的,而在逻辑问题的实现上是具体的。因此,学习中既要务虚,又要务实。

2) 理论知识与实际应用紧密结合。该课程各部分知识与实际应用直接相关,学习中必须将理论知识与实际问题联系起来,真正培养解决实际问题的能力。

3) 逻辑设计方法灵活。许多问题的处理没有固定的方法和步骤,很大程度上取决于操作者的逻辑思维推理能力、知识广度和深度、以及解决实际问题的能力。换而言之,逻辑电路的分析与设计具有较大的弹性和可塑性。

基金项目:黑龙江省智能教育与信息工程重点实验室项目;黑龙江省计算机应用技术重点学科(081203);黑龙江省教育厅科学研究项目(11551125)。

作者简介:季伟东,男,讲师,研究方向为计算机教学、并行计算。

笔者发现在实际教学过程中存在以下一些问题。

1) 在教学方式上,很多教师仍然在以“满堂灌”的教学方式为主,整堂课以教师为中心,教师将书本上现成的内容、公式、定理、结论讲授给学生,这使学生不能主动地去思考和探索,只能机械地记忆若干公式定理结论,长期下去会使学生失去学习兴趣。

2) 在实验实践环节上,一些教师侧重理论知识的讲授,忽视实验实践环节,致使学生在面对具体应用问题时手忙脚乱,不知道如何运用所学的知识去解决问题。在实验方案的选择上,一些教师以传统实验为主,扩展性不足,使学生无法与实际工程项目接轨,不能很好地解决实际问题。

1.2 pbl教学的内涵

在传统教学中,我们习惯于把知识的获得和应用看成是教学中两个独立的阶段。实际上,知识的应用并不是知识的套用,在应用知识解决有关问题的过程中,学习者常常需要针对当前的具体问题进行具体分析,在原有知识的基础上建构出解决当前问题的方案。因此,应用知识解决问题的过程同样是一个建构过程,在解决问题的过程中,学习者需要对问题背后所隐含的基本关系、基本规律做思考、分析、考察,从而建构起相应的知识。

以问题为导向的教学方法(pbl)是基于现实世界的以学生为中心的教育方式,与传统的以学科为基础的教学法有很大不同,pbl 强调以学生的主动学习为主,而不是传统教学中的以教师讲授为主;pbl 将学习与更大的任务或问题挂钩,使学习者投入于问题中;它设计真实性任务,强调把学习设置到复杂的、有意义的问题情景中,通过学习者的自主探究和合作来解决问题,从而学习隐含在问题背后的科学知识,形成解决问题的技能和自主学习的能力,真正提高学习者分析问题、解决问题的能力。

当今的建构主义者越来越重视问题在学习中的作用,以问题为中心,以问题为基础,让学生通过解决问题来学习,通过高水平的思维来学习,这是当今教学改革的重要思路。

2 pbl教学模式在数字逻辑课程中的应用

2.1 教材选择

针对pbl教学法,根据计算机工程专业的特点,笔者选择由欧阳星明主编、华中科技大学出版社出版的《数字逻辑》(第四版)作为基础教材,由欧阳星明主编、人民邮电出版社出版的《数字电路逻辑设计》作为参考教材。选择教材的目的是理论和实践相结合,每本教材各有其侧重点。

2.2 pbl教学法的教学设计

在“基于问题学习”模式的课堂中,教师是指导者,学生是活动的主体,它要求学生要会主动地去寻找学习中的问题,然后带着问题,在自己能力所及的范围内概括和应用知识,运用各种已有的知识和科学的方法去分析问题和解决问题。其教学目标立足于培养学生灵活的知识基础,发展高层次思维能力、自主学习能力以及合作学习能力。基于问题学习体现在课堂上,最突出的特点就是促使学生积极参与到学习中去,成为积极主动的学习者,从而去努力学习新的知识和技能,并能逐渐把所学知识整合,最终达到用知识来解决问题的目的。

作者在多年教学经验基础上,针对pbl教学模式,提出“2+2”教学方案,包括4个教学环节:提出问题解决问题方案讨论总结评价。

在上述4个环节中,教师主要参与提出问题环节和总结评价环节,学生主要参与解决问题环节和方案讨论环节。下面具体说明各个环节的设置。

1) 提出问题。

提出问题环节是教学方案中的第一个环节,也是教师参与的第一个环节。在这个环节中教师应该根据所讲课程内容的不同设计出不同的问题,好的问题是整个学习过程中的关键。一个好的问题能够充分调动学生自主学习能力以及合作学习能力,使学生参与到学习过程中,调动学生学习热情。

笔者讲到组合逻辑电路设计时,提出的问题是设计一个全加器,用硬件描述语言vhdl进行描述并在试验箱上进行实现,同时还给出一个已经设计好的参考例程,共学生参考学习;在讲到时序逻辑电路设计时,提出的问题是设计一个汽车尾灯控制器,并对选用的逻辑门器件进行了要求。

这个环节的实施能够提高学生的学习积极性,使学生产生学习需求,培养了学生的问题意识。

2) 解决问题。

解决问题环节是以学生为主体的环节,是学生对老师提出的问题进行解决。在这个环节中,老师首先对学生进行分组,根据学生学习情况,以5~7个人为一组。学生接受任务后学习兴趣提高,小组成员进行分工,采取各种方法来完成任务。每个小组共同学习,学习好的同学带动大家一起学习,互相帮助,学生变被动为主动,主动地思考和探索老师所提出的问题,在解决问题的过程中进行学习。在实际解决问题过程中,学生将面临一些困难,如逻辑器件的选择上、语言的描述上、具体问题的实现上,等等。

通过这一环节,教师也感受到同学们的想象力、创造力和动手能力等都是非常强的。

3) 方案讨论。

在方案讨论这个环节中,学生根据学习到的知识对自己所设计的方案进行讨论,积极发言,提出自己的见解,说明自己的理由。教师根据学生们的发言,指出其合理的地方,对其不足的地方进行指正,引导学生解决问题。如在全加器的设计问题中,有的小组采用的是多种逻辑门电路进行设计,有的小组基于经济问题考虑,只采用与非门电路来进行设计,每个小组都详细阐明自己的观点,对自己的设计方案进行论证。

在这个环节,老师应强调放开思路,开拓创新,

鼓励学生进行多途径思考,全方位构思。这样既加强了学生们学习自觉性、开创性,又培养学生更多地进行综合思考,得到更多的锻炼,提高分析和解决复杂问题的能力。

4) 总结评价。

小组必须在规定时间内完成设计开发任务。各个小组分别展示各自成果,其他小组学生提出问题进行互动并相互评价,老师给出点评并比较各自设计的优缺点,最后老师进行总结评价。这个环节中,教师作为主要参与者,一方面要对知识进行系统性的总结归纳,使学生对知识的掌握具有条理性,另一方面还要对学生进行启发式扩展,使学生的知识面更广,同时对一些难点重点再次进行强调,增加学生对知识的理解。

3 结语

数字逻辑是一门理论联系实践比较强的课程,在教学中采用pbl教学模式,不仅可以提高学生掌握知识的能力和培养学生的创造性思维能力,还能提高学生的交流和合作能力。pbl教学可以使得数字逻辑课程目标更好的实现,能够引导学生自主学习,在实际的教学中,取得了良好的教学效果。

参考文献:

[1] 季伟东,张军. 数字逻辑课程的探究性教学研究与实践[j]. 计算机教育,2010(10):76-78.

[2] 付森. pbl教学法在数据库原理教学中的应用[j]. 计算机教育,2010(10):91-93.

数字逻辑论文篇3

关键词:数字逻辑;课堂教学;实验教学

作者简介:徐银霞(1979-),女,湖北武汉人,武汉工程大学计算机科学与工程学院,讲师。(湖北 武汉 430073)

中图分类号:G642.421 文献标识码:A 文章编号:1007-0079(2013)28-0104-02

“数字逻辑”是计算机专业一门重要的硬件基础课程,其主要目的是使学生掌握数字系统分析与设计的理论知识,熟悉各种不同规模的逻辑器件,掌握各类逻辑电路分析与设计的基本方法,为数字计算机或其它硬件电路分析与设计奠定基础。[1]“数字逻辑”课程教学一般采用课堂教学与实验教学相结合的方式,使得学生掌握数字电路分析与设计的一些理论知识,同时培养学生电路设计、制作与调试以及分析问题、解决问题的能力。学生的学习效果一直是教学当中的重中之重,因此如何有效利用有限的理论与实验教学时间培养学生的综合素质是一个值得探讨的问题。笔者结合多年的教学实践经验,分别对课堂教学和实验教学环节就“数字逻辑”课程的教学方法做一次探讨。

一、“数字逻辑”课程的课堂教学

课堂教学效果直接决定学生理论知识掌握的程度,也影响随后的实验及实践能否顺利进行。在课堂教学中采用任务式教学、课堂讨论、电路仿真演示以及硬件描述语言电路设计等方式进行教学,取得了满意的效果。

1.任务式教学

明确任务,使学生掌握方法,做到举一反三。教学过程中将 “数字逻辑”课程的知识点归纳整理成若干个任务。比如数字电路按逻辑功能分成组合逻辑电路和时序逻辑电路两大类,主要的问题是电路分析与设计两个方面。按电路规模要求重点掌握的是小规模和中规模电路,所以任务主要有小规模组合电路的分析、小规模组合电路的设计、中规模组合集成芯片、中规模组合电路分析、中规模组合电路设计;小规模时序电路分析、小规模时序电路设计、中规模时序集成芯片、中规模时序电路分析、中规模时序电路设计等等。对于每一个问题明确任务,分析解决办法,归纳一般的解答步骤及注意事项,举例证明方法的可行性。比如对于中规模组合芯片的学习,仅以数据选择器为例,引导学生上网查阅芯片资料,阅读资料找出芯片的功能表、输出表达式,逻辑图和引脚图以及典型应用。这样,学生不仅掌握了该芯片的全部知识要点,还可以掌握中规模组合集成芯片这类芯片的学习方法。此后,对于所有此类芯片学生都能够通过自行查找芯片资料来掌握,节约了课堂时间,学生也获得了自主学习的成就感。

2.增加课堂讨论

精讲多练,给予学生充分的讨论时间。为提高学习效果,在提出任务、介绍原理及方法后,布置课堂练习。学生可以一边练习一边自由讨论,已理解的同学在讨论中充当老师,可以加深印象,巩固知识;而没有理解的同学可以在讨论中积极主动地学习,同时也激发了学生后续学习的积极性,比教师反复讲解的效果好。这种方式可以避免“满堂灌”式的教学方式,活跃课堂气氛,创造学习氛围,提高学习兴趣,实践证明取得了良好的效果。

3.电路仿真演示

在数字电路分析与设计的理论教学过程中,很多学生会觉得枯燥且难以理解。借助Multisim11.0仿真软件进行数字电路的模拟和课堂演示,可以直观地显示电路的功能和时序电路的时序波形。比如在讲解中用16进制计数器74161实现12进制计数器时,其中复位法可通过置0或者异步清零两种方法使得计数器从11回0,但置0法必须在计数到1011时使得置数端为0,异步清零必须在计数器为1100时使得清零端为0才能保证计数器为12进制。如果仅用理论讲解学生比较难理解,但通过仿真演示后学生能够恍然大悟。因此仿真软件的使用可以使“数字逻辑”理论课的教学更加生动活泼,而且学生在遇到疑问时也可以通过仿真软件进行验证。学生通过直观的仿真结果,对电路的工作过程进行透彻的分析,提高了学习的兴趣和效率,促进自学能力和创新能力的提高。

4.引入硬件描述语言

硬件描述语言用软件编程的方式来描述电子系统的逻辑功能、电路结构和连接形式,适合大规模系统的设计。在教学的过程中将硬件描述语言Verilog HDL引入课堂,比如在讲解逻辑门、数据选择器、触发器、计数器等基本单元电路的原理之后,给出模块对应的硬件描述语言,演示仿真波形和综合结果。学生从仿真波形中观察信号的逻辑变化,对数字逻辑电路的掌握更加透彻,同时也丰富了教学内容。Verilog HDL语言是一种非常实用的硬件描述语言,易学易用,学生只要有C语言编程基础,便容易掌握。编程也可以实现电路设计,同学们感到非常新奇,将被动学习变为主动学习,提高学习兴趣,取得了很好的教学效果。

二、“数字逻辑”的实验教学

“数字逻辑”是一门实践性很强的课程。[2]通过数字电路设计实验,学生可以基本掌握数字电路的设计、制作与调试步骤,学会借助万用表、示波器等实验仪器排除实验当中遇到的各种故障,从而独立分析设计各种规模的数字电路。实践教学中将传统实验、仿真实验与硬件描述语言设计三种类型实验相结合,三者互为补充,提高实验效果,充分培养学生的综合实践能力。

1.传统实验

传统实验项目一般利用面包板及用中小规模芯片完成电路设计。其接线模式可以使学生直观了解数字电路是如何工作的,从而掌握电路测试、调试以及维修技能。但是部分学生视这一过程为简单的连线工作,往往只注重结果,不重视过程,造成实验课就是反复的接线和碰运气,学生不能驾驭整个实验过程,产生畏难和退缩心里。在实验课前要求学生书写预习报告,自主设计实验方案,进行原理图设计、芯片选型,上网查阅芯片资料,掌握阅读芯片资料的方法,进行实验方法设计,可以避免机械化操作,学会排除故障,增强操作信心。

在实验过程中,学生不可避免地会遇到种种问题,导致实验结果出错:可能是电路设计或连线过程中出现了问题,也有可能是实验设备或实验器材出现了故障。教师应该指导学生借助实验仪器找到故障点,发现问题之所在,并想出解决办法。在未来的实际工作中,学生将会遇到各种各样的问题,而实验课正是锻炼如何解决这些问题的好机会。因此实验中应该向学生讲明排除故障的必要性,并引导其对独立解决各种疑难问题的兴趣,增强其信心,令其克服畏难情绪。一旦学生掌握了排除故障的方法,独立解决了问题,他们就会很有成就感,甚至就此对排除故障产生了浓厚的兴趣。[3]实践表明学生能自主完成所有设计,自主分析讨论实验过程中碰到的问题,逐个排查故障点,最终完成电路调试。

2.仿真实验

传统实验适于以验证性实验为主的一些中小规模电路的构建与测试。对于一些比较复杂的设计性和综合性实验则比较费时,如数字钟、抢答器、拔河游戏机、彩灯控制器等。而且在实验过程中常常因一根导线连接错误、一个连接点接触不良,就致使实验受阻甚至无法完成,给学生以挫折感,影响学生的实验兴趣,不利于动手能力的培养。

Multisim11.0是一个集原理电路设计和电路功能测试为一体的虚拟仿真软件,其元器件库提供了数千种电路元器件供实验选用,其中包含了数字器件。虚拟测试仪器仪表种类齐全,如数字万用表、函数信号发生器、示波器、直流电源、数字信号发生器、逻辑分析仪等,可以设计、测试和演示各种电子电路。[4]采用Multisim11.0软件进行仿真实验,使学生能充分发挥想象力,按照自己的想法创建各种电路,从而摆脱实验箱的束缚。实践证明将Multisim11.0应用于实验教学,能够使学生提高学习的兴趣,增加学习乐趣,充分发挥学生独立思考和创新的能力,提高学生的综合实践能力。

3.硬件描述语言开发数字电路

当数字逻辑电路及系统的规模比较小而且简单时,用电路原理图输入法基本足够了,但是需要手工布线,需要熟悉器件的内部结构和外部引线特点,才能达到设计要求。当电路规模大时工作量会相当大,实验时间往往不能保证。随着可编程逻辑器件的广泛应用,硬件描述语言已成为数字系统设计的主要描述方式,采用硬件描述语言进行数字电路的设计,可以实现从传统的验证性实验到分析设计性实验课的转变。利用Verilog HDL硬件描述语言进行数字钟、抢答器、交通灯控制电路等的设计,要求学生利用课堂知识进行编程、仿真、综合和下载到可编程逻辑器件中运行以观察结果。学生还可以按照自己的想法自行设计其它数字电路进行仿真、下载调试,提高学生学习兴趣和综合实践能力。

此外还通过举办电子设计竞赛、综合设计等方式激发学生的学习兴趣,提高学生自主学习、独立分析问题和解决问题的能力,也提高了学生综合应用的能力,收到了良好的教学效果。

三、结论

数字电子技术的应用已经渗透到人类的各个方面,从计算机到手机,从数字电话到数字电视,从家用电器到军用设备,从工业自动化到航天技术,都采用了数字电子技术。[5]因此“数字逻辑”课程对于计算机及相关专业来说是一门很重要的课程。笔者结合多年的教学实践经验,对“数字逻辑”课程的教学方法进行深入探讨,在课堂教学中采用任务式教学,增加课堂讨论,借助仿真软件进行电路演示,利用硬件描述语言进行复杂数字系统设计;在实验教学中将传统实验、仿真实验和硬件描述语言实验有机结合、互为补充,激发学生的学习兴趣,培养学生的综合能力,取得了很好的教学效果。

参考文献:

[1]康华光.电子技术基础(数字部分)[M].第5版.北京:高等教育出版社,2006.

[2]孙丽君,张晓东,鲁可.“数字电子技术”课程教学改革探析[J].中国电力教育,2013,(13):67-68.

[3]王宇,崔文华,王宁,等.兴趣导向的数字电路设计实验改革[J].计算机教育,2010,(17):38-40.

[4]黄颖,关宇,徐勇,等.Multisim11.0仿真软件在数字电路教学中的应用[A].中国电子教育学会高教分会2012年论文集[C].2012:169-172.

数字逻辑论文篇4

关键词:数字逻辑;Multisim12.0软件;仿真

中图分类号:642.0 文献标志码:A 文章编号:1674-9324(2015)07-0233-02

“数字逻辑”是计算机及电子类专业的一门重要的专业基础课程,其具有很强的理论性和实践性,要求学生通过学习既掌握数字电路分析与设计的理论知识,也能够自己动手设计调试实用的数字电路。在理论教学过程中,教师借助Multisim12.0仿真软件进行数字电路的模拟和演示,对电路的工作过程进行透彻的分析讲解,可以帮助学生深刻理解和掌握理论知识。采用Multisim12.0软件进行仿真实验,为学生提供更加灵活方便的实验环境,使学生能充分发挥想象力,按照自己的想法创建各种电路,摆脱实验箱的束缚。Multisim12.0软件的使用使得数字逻辑理论课的教学更加生动活泼,实验操作更加灵活方便,提高学生的学习兴趣和学习效率,同时也能够培养学生的自学能力和创新能力的[1]。

一、Multisim 12.0软件的特点

Multisim12.0是一个集电路原理图设计和电路功能测试为一体的虚拟仿真软件,它为数字电路仿真提供了丰富的元器件模型,如时钟信号、各类门电路、各种集成组合逻辑器件、时序逻辑器件等,同时提供了种类齐全的虚拟仪器,如函数信号发生器、示波器、数字万用表、逻辑分析仪、逻辑转换仪和直流电源等。Multisim12.0仿真软件具有详细的电路分析功能,可以设计、测试和演示各种电子电路,它将原理图的创建、电路的测试分析、结果的图表显示等全部集成到同一个电路窗口中,具有和真实环境一致的可视化界面,整个操作界面就像一个实验工作台,与实物操作几乎相同[2]。

二、Multisim12.0应用于“数字逻辑”课堂教学

在“数字逻辑”课程的课堂教学中,对于数字电路分析与设计的理论知识很多学生会觉得枯燥且难以理解,借助Multisim12.0仿真软件进行数字电路的模拟和演示,可以直观地显示电路的功能和波形,把理论知识和电路运行结果加以对照、分析,可以提高课堂教学效率。同时还可以提出问题进行课堂讨论,活跃气氛,激发学生学习兴趣。

在讲解用逻辑门设计小规模组合电路时,一般是按照逻辑功能分析、真值表、表达式和逻辑图的顺序设计电路,然后举例讲解。以一个三人表决电路设计为例,假设用A,B,C分别表示三个输入变量,同意用1表示,不同意用0表示,F表示结果,通过用1表示,不通过用0表示。通过列真值表、表达式和化简等步骤得到输出表达式F(A,B,C)=AB+BC+AC,若用与非门实现,则F(A,B,C)=,可以画出相应的逻辑图。如果教师仅仅在黑板上或者多媒体课件中画出逻辑图,相当于纸上谈兵,学生可能只能被动地接受这种解题方法,甚至是死记硬背设计步骤,很难留下深刻的印象。可以在multisim12.0仿真软件中绘制出电路原理图,将输入端分别连接3个开关用于输入高低电平信号,输出端连接一个发光二极管用于显示结果。通过切换开关状态,按照真值表的顺序改变输入高低电平信号,观察发光二极管亮、熄的规律,直观形象地演示电路工作结果,之前讲解的设计方法便很容易得到学生的认可。同时还可以利用仿真软件中的逻辑转换仪得到组合逻辑电路的真值表,快速判断电路的正确性。

此外,还可以讨论一下如果用其他类型的逻辑门实现该逻辑功能电路,比如与门和或门或者或非门,又该如何将表达式变形?如何绘制电路原理图?能不能达到同样的效果?学生在课堂上都会积极参与讨论,课后也会迫不及待地去利用Multisim12.0软件进行验证。同时,鼓励同学们联系生活实际用数字电路制作一些小发明,充分发挥自己的想象力,大胆创新,并利用Multisim12.0软件实现和验证自己的一些想法。

三、Multisim12.0应用于“数字逻辑”实验教学

“数字逻辑”课程实验中传统实验项目一般利用面包板及用中小规模芯片完成电路设计,适于以验证性实验为主的一些中小规模电路的构建与测试,对于一些比较复杂的设计性和综合性实验则比较费时,如数字钟、抢答器、交通灯控制器、密码锁等。而且在实验过程中常常因一根导线连接错误、一个连接点接触不良,致使实验受阻,甚至无法完成,影响学生的实验兴趣。利用Multisim12.O可以实现数字电路设计虚拟仿真实验,修改调试方便。学生可以随时在任意装有该软件的计算机上进行实验设计和测试,充分调动了学生的学习积极性和主动性,取得较好的实验效果[3]。

在时序电路设计中有一个实验项目是数字秒表电路设计,这是一个综合性的实验,理论分析可知,整个电路由秒脉冲产生电路,计数电路和译码显示电路三部分组成。第一步用555定时器和电阻电容构成多谐振荡器,由公式T=0.7(R1+2R2)计算求得适当的电阻值,使得输出波形频率为1kHz,利用3片74LS90芯片级联构成1000倍分频器将多谐振荡器输出信号进行分频,从而得到秒脉冲信号。虽然可以通过理论计算得到电阻值,但是要想调试出精确的秒脉冲信号,需要在电路搭建好之后利用示波器或逻辑分析仪等仪器观察输出波形,测量输出频率或周期,根据实际情况调整电阻值。第二步选择两片74LS161芯片实现60进制计数电路。74LS161芯片为16进制计数器,利用清零法分别实现6进制和10进制计数器,然后用乘数法实现610进制计数器。将第一步调试好的秒脉冲信号作为输入计数脉冲,计数器的输出可以连接8个发光二极管,运行过程中通过观察发光二极管的亮熄规律判断电路输出是否满足要求,也可以通过逻辑分析仪观察计数器输出的8路波形判断结果的正确性。第三步采用两个共阴极七段数码管进行秒表显示,由两片74LS48芯片作为七段字型译码器,将第二步中两个计数器的输出信号分别送译码器,两个译码器的输出分别连接两个七段数码管,通过译码器译码和驱动七段数码管显示相应的数字。

由设计步骤可知,整个数字秒表电路的设计制作需要用到10个以上的集成芯片,电路连线多且复杂,调试过程需要调整电阻值,需要用到电源、示波器和逻辑分析仪等设备。如果采用传统的硬件实验方法,学生需要事先查找大量资料,画出粗略的硬件电路图,准备所需芯片和足够的导线,然后在面包板或者实验箱上直接搭建硬件实物电路,借助实验仪器观察结果。由于实验室只能提供有限的元器件和示波器、万用表等仪器,若所选用芯片不合适,或者电路设计本身就存在问题,或者哪个芯片有问题,又或者哪一根线不通,有时候很难检查出具体问题,即便检查出来又可能要重新设计电路,在四个学时内实验很难完成。不少学生往往会为了完成任务直接照搬其他同学的电路或者要求老师直接给出可行的电路图,然后只是机械按照硬件电路图连线。连线完成后如果发现电路不能正常工作,也只是简单地直接拆除和重新连线,因为不理解电路工作原理,根本就不会分析问题解决问题,整个实验过程就变成了重复地拆线和连线的简单劳动。大多这样的学生即便实验做完了,可电路工作原理却完全不懂,根本达不到通过设计性实验锻炼学生实际动手能力、培养分析问题和解决问题能力的目的[4]。

相反,如果使用仿真软件,学生在了解基本原理后就可以在仿真软件平台上选择元器件直接搭建电路,可以任意选择芯片而不必理会材料消耗、可以放心大胆地连接电路而不用担心电路连接错误而造成器件损坏的问题。仿真软件中提供的电源、函数发生器、示波器和逻辑分析仪等可以任意选取使用,这样就可以留出更多的时间去理解电路工作原理,分析问题和调试电路。比如在秒表电路设计制作过程中,可以任意调整电阻值,借助仿真软件提供的示波器调试出精确的秒脉冲信号;可根据个人喜好选择各种型号的计数器芯片设计分频器和60进制计数器;也可以采用共阳极数码管和相应的译码器设计显示电路。

通过软件仿真实验,选择符合要求的元器件,设计出满意的电路,然后在实验箱或面包板上搭建硬件实物电路,通过实物电路验证实验结果,可以保证实验结果的正确性,大大提高实验教学的效率。利用仿真软件的另一个好处是学生可以大胆地发挥自己的想象,尝试各种设计方案,有效激发学生的实验热情和培养创新能力。

四、结论

在课堂教学中借助Multisim12.0仿真软件进行电路演示,验证理论的正确性和可行性,使得数字逻辑理论课的教学更加生动活泼。在实验教学中利用Multisim12.0仿真软件进行仿真实验,使得实验操作更加灵活方便,激发了学生的学习兴趣,培养了学生的自学能力和创新能力[5]。因此,有效利用Multisim12.0仿真软件能够对数字逻辑课程教学起到积极作用。

参考文献:

[1]徐银霞.“数字逻辑”课程教学方法探讨[J].中国电力教育,2013,(28):104-105.

[2]黄智伟.基于NI Multisim的电子电路计算机仿真设计与分析[M].北京:电子工业出版社,2011.

[3]康华光.电子技术基础(数字部分)[M].第5版.北京:高等教育出版社,2006.

[4]Multisim仿真软件在数字电子技术实验教学中的应用[J].中国电力教育,2014,(8):166-169.

数字逻辑论文篇5

一、课程特点与教学存在的问题

数字电子技术课程是电子信息工程、自动化、机电一体化、电力系统自动化、电气自动化、计算机等相关专业的主要技术基础课,是一门理论与实践紧密相结合的课程。本课程的主要特点是:实践性强,系统性强,逻辑思维强。本课程作用与任务是:通过学习数字系统逻辑分析与设计的基本理论和方法,使学生学会使用标准的集成电路,掌握典型数字电路的分析方法以及常用数字电路的分析和设计方法,使其逐步具备独立分析与设计数字逻辑电路的能力。当前,该课程在网络教学中采用视频录像教学方式,存在的主要问题是缺少实验教学,考核方式只有理论部分,缺少实验评价。

二、基于Mulitism软件的教学方法改革

(一)Mulitism软件简介

Mulitism是美国国家仪器公司推出的电路原理设计、电路功能测试的虚拟仿真软件,是早期的ElectronicWork-bench(EWB)的升级换代的产品。Mulitism元器件库包含了数千种电路元器件供仿真实验选用,虚拟测试仪器仪表种类齐全。该软件特色体现在它将各种虚拟仪表非常逼真地与电路原理图放置在同一操作界面上进行各项参数和波形的测试,以图形化的方式消除了传统电路仿真的复杂性,它具有详细的电路分析功能,可以设计、测试和演示各种电子电路。

(二)Mulitism在教学中的具体使用

数字电子技术的知识点可划分为两大类,即组合逻辑电路和时序逻辑电路。在组合逻辑的教学中,以逻辑代数、基本逻辑门、逻辑函数、基本逻辑电路为基础;在基本逻辑门视频录像教学中传统的教学方法采用真值表进行讲解,而采用Mulitism可通过逻辑门、开关、LED显示器进行直观实验式教学;在逻辑函数视频录像教学中重点讲解公式化简、卡若图化简,规则繁琐通常需6个左右课时进行讲解,而采用Mulitism可利用其逻辑函数转换器实现真值表、逻辑函数、逻辑电路、逻辑表达式化简相互之间转换,因此可大大减少课时。组合逻辑的常用逻辑功能芯片教学中,需掌握编码器、译码器、译码显示器、数据选择器、加法器、比较器,在时序逻辑的教学中触发器、寄存器、计数器是重点,也是本门课程的难点,这些知识点具有很强的实践性,在视频录像教学中只能理论讲解,而采用Mulitism可实现实践式教学,可帮助学生更好的理解,同时又可提高学生的学习兴趣,继而提高学生学习的主观能动性。

(三)Mulitism在具体知识点上的教学示例

以六十进制计数器为例进行Mulitism教学示例。六十进制计数器的讲解分为三个步骤进行教学。

1.在PPT中介绍

Mulitism中典型的计数器芯片74LS161N,74是个系列名,LS是低功耗,161是型号,N表示民用产品。它是一块四位二进制数计数器,可用一块74LS161N设计成十六进制以内的任意进制计数器,用多块74LS161N级联可设计出任意进制的计数器。

2.在PPT中讲解

74LS161N芯片的清零、计数、保持、同步预置数四种功能,结合Mulitism仿真进行教学。在Mulitism仿真中教学能让学生直观接受,达到一边理论教学、一边实验示范的直观学习效果,有利于提高教师的教学效率、学生的学习效果。课后学生可在自己的电脑上进行反复仿真实验。

三、课程考核方式改革

当前网络教育中大多采用平时作业加卷面考试的考核方式,此种方式存在的显著弊端是只有理论考核,与本门课程的宗旨和特点是相违背的。基于Mulitism的教学方式可以增加实验考核,为此提出网络教育中数字电子技术教学新的考核方式,即总成绩由平时作业成绩、卷面考试成绩、仿真实验成绩、实验报告成绩共同构成。数字电子技术是一门非常重要的基础课程,是单片机技术、微机原理、嵌入式系统、PLC等后续相关课程学习的必要基础。当前网络教育中数字电子技术课程的教学质量急需提高,以往的教学方式和考核方式存在显著弊端,本文探索了Mulitism软件应用于网络录像教学,很好地解决了网络教育中数字电子技术课程缺乏实验教学的显著问题。

数字逻辑论文篇6

中图分类号:TN911-34; TP216+.3 文献标识码:A

文章编号:1004-373X(2010)16-0181-03

Design Method and Application of Digital Logic Virtual Chip Based on LabVIEW

HUANG Jin-wen, WANG Shan-fa, WANG Xiao-min

(Physics Department, Baoshan College, Baoshan 678000, China)

Abstract: The virtual chips were structured and the database of the virtual chips was formed on the basis of the signal processing function of LabVIEW. With the virtual chips, digital logic circuit diagrams can be designed, even the function analysis of logic circuits or experiment for the logical circuit teaching can be done. It is a new application domain of LabVIEW. The design method of the virtual chipis researched based on LabVIEW.

Keywords: virtual chip; virtual instrument; digital logic; simulation system

0 引 言

虚拟仪器LabVIEW目前已广泛应用于测试领域,其出发点和归宿是“软件化的真实仪器”。LabVIEW同时又是一个优秀的仿真系统,但真正处于仿真目的使用的并不多见,本文提出数字“虚拟芯片”概念,并基于LabVIEW实现仿真运用。

所谓“虚拟芯片”,是在充分利用LabVIEW图形化语言风格和强大信号处理功能的基础上,设计具有一定显示界面的虚拟输入/输出端子、能完成相应的数字逻辑运算功能或数字信号处理功能的计算机程序,也就是LabVIEW的VI。应当说这是新时期数字逻辑电路设计、实验或教学的一种新举措,基于LabVIEW的数字虚拟芯片和原理图设计与其他仿真系统相比,不但有自身的特点,也是对虚拟仪器系统LabVIEW应用新领域的拓展和补充[1-2]。

1 基于LabVIEW实现虚拟数字逻辑电路仿真的可行性及优点

由前面板实现数字电路的各种控制和显示,由程序流程图实现数字电路的逻辑运算功能,是基于虚拟仪器LabVIEW进行数字逻辑电路仿真设计的基础[3]。LabVIEW的前面板提供了大量数值、布尔控件。后面板提供了大量的函数模块,使用这些函数可以很方便地调用或设计出各种门电路、编码器、译码器、运算器、存储器、触发器、定时器、ADC/DAC等数字电路设计中常用的器件模块。在数字电路中,高电平和低电平2种逻辑状态可用前面板中的布尔控件提供;而电路设计中的各种模拟量可以用各种数值型控件及函数信号发生器产生和提供[4-5]。

基于LabVIEW实现虚拟数字逻辑电路的可行性及优点,还表现在以下几方面[6-7]:

(1) 可充分使用LabVIEW强大的输入/输出控件资源

(2)LabVIEW中的图形化语言风格适合数字电路的逻辑图构建:

布尔控件图标与数字逻辑门电路符号相近;图形化的G语言风格适合逻辑图的连接。

(3)可开发通用或专用的数字虚拟芯片库(模块库)

(4)LabVIEW虚拟仪器可实现与外部数据的交换

2 基于LabVIEW的数字虚拟芯片设计方法

下面从一个有异步复位、置位端子的虚拟触发器单元设计开始,以LabVIEW中逻辑运算VI作为虚拟“门电路”单元,构建通用数字逻辑芯片、计数器74160虚拟“芯片”,讨论并实现该虚拟芯片的仿真应用。

2.1 具备异步复位、置位端的虚拟触发器设计

低电平有效的异步置位、复位功能的虚拟JK触发器特性方程可表示为:

Qn+1=RD(JQn+KQn+SD)(1)

当满足约束条件RD+SD=1,即RD、SD不同时为有效电平(逻辑值0)时,这2个端子可作为异步置位端(SD)和异步复位端(RD),即有:

RD=0且SD=1时,Qn+1=0,

RD=1且SD=0时,Qn+1=1,

RD=1且SD=1时,Qn+1=JQn+KQn

使用过程中应当注意满足约束条件(当RD+SD=0时,始终有Qn+1=0)。

根据式(1)构建的低电平有效的异步置位、复位功能的JK触发器LabVIEW后面板如图1所示,其异步置位、复位端动作不受同步CP控制,直接实现操作(触发器状态直接被置位或复位)。为实现CP输入下降沿有效的动作方式,程序中引入了条件结构控制。当无有效CP边沿输入时,输入触发器端子的数据是J=K=“false”,等价于J=K=0,触发器处于保持状态;只有当有效CP下降沿输入时,触发器才接收输入控件J,K的数据,实现相应的动作。图1中左下角部分程序就是实现CP下降沿输入有效的控制程序部份。

图1 异步置位、复位功能的虚拟JK触发器后面板

定义图1中VI的各输入、输出端子,编辑好相应的VI图标,将其保存为一独立VI文件,最后得到对应的VI图标及连线如图2所示。这样的VI图标即可看作一个虚拟触发器。

图2中2个图标为同一VI在LabVIEW中的2种不同显示方式,且2个图标为同一VI分别以不同文件名保存的2个文件。(程序完全相同)

2.2 基于虚拟JK触发器及LabVIEW虚拟“逻辑门”构建74161芯片

虚拟仪器LabVIEW中的逻辑运算VI,可以完成各种基本逻辑运算,在仿真数字逻辑电路时可当作虚拟的“门电路”直接使用[8-9],部份图标如图3所示。

图2 异步置位、复位功能的虚拟JK触发器图标及连线端子

图3 LabVIEW中的逻辑运算VI

集成计数器74161的内部逻辑图如图4所示[10]。

图4 74161逻辑图

它是4位二进制同步加法计数器,有异步清零、预置数端子和两个使能控制端子,各端子的含义如下[10]:

(1) RD:异步清零端,低电平有效

(2) LD:预置数使能控制端,低电平有效

(3) 预置数据输入端:A、B、C、D

(4) CP:时钟输入端,上升沿有效

(5) 状态输出端:QA~QD

(6) RCO:进位输出

74161的逻辑功能[10]:

数字逻辑论文篇7

关键词:计算机,电器控制,模拟,CAD

一、引言

实现顺序控制的电器控制线路的数学模型是一组逻辑关系表达式,其中逻辑变量代表控制触点,受控元件的电磁线圈为各触点的逻辑函数,逻辑函数值即对应受控元件的工作状态。在电器控制系统运行过程中,各元件及触点状态的变化,使逻辑运算结果随之改变,这种变化的过程实际就是电器控制线路的运行过程。

电器控制系统中元件与控制触点之间的逻辑关系是根据系统控制要求确定的,模拟控制线路的运行过程就是要按一定顺序解算控制系统的数学模型——逻辑代数方程组。在方程组中,以逻辑函数代表运算元件的电磁线圈,以逻辑变量代表元件触点。对同一电器元件来说,其线圈和触点的物理状态是互相关联的,可约定逻辑函数值为“1”时表示线圈得电,同名的原变量取值为“1”,表示动合触点闭合;反之,逻辑函数值为“0”时表示线圈得电,同名的原变量取值为“0”,动合触点断开。

二、电器控制线路模拟运行程序设计的主要思路

1.表达式分析的基本原理

计算机高级程序设计语言编译系统中,通常配备有字符型变量,一个数学表达式可以以集中或分散的形式存储在这类变量中。将一个具有物理意义或数学意义的函数表达式转换为计算机能够执行的指令的过程,称为表达式句法分析。表达式的分析过程是按严格的代数规则进行的,因为电器控制线路的数学模型是逻辑代数方程,故模拟运行程序中表达式分析依据的即为逻辑代数运算规则。

“递归下降法”是比较常用的表达式句法分析方法,其基本过程就是将一个完整的表达式逐项分解,分解出的成分可以是变量、运算符或子表达式,当根据分解规则识别出被分解出来的某个成分为子表达式时,就要继续进行分解,直至所有被分解出的成分皆为最基本元素为止(所谓最基本元素,即为事先约定的可以直接参与计算的变量和运算符)。

在设计表达式分析程序时,首先要约定变量、运算符及子表达式定界符,笔者根据电器控制线路数学模型——逻辑代数方程的基本运算规则,以及有关电器元件文字符号的标准规定,约定以下一些字符串为合法的逻辑变量:

sb——手动按钮动合触点变量;nsb——手动按钮动断触点变量;

sq——行程开关动合触点变量;nsq——行程开关动断触点变量;

KM——接触器线圈函数;

km——接触器动合触点变量;nkm——接触器动断触点变量;

K——中间继电器线圈函数;

k——中间继电器动合触点变量;nk——中间继电器动断触点变量;

KT——时间继电器线圈函数;

kt——时间继电器瞬时动合触点变量;nkt——时间继电器瞬时动断触点变量;

t——时间继电器延时动合触点变量;nt——时间继电器延时动断触点变量;

YA——电磁铁线圈函数,

约定在上述各逻辑函数及逻辑变量之后可附加0~9数字序号。约定“*”为逻辑“与”运算符,表示线路中的串联连接;“+”为逻辑“或”运算符,表示线路中的并联连接;“=”为逻辑函数赋值符。约定“(”、“)”为子表达式的定界符。

2.表达式分析的实现过程

设一电器控制线路原理图如图1所示,对应的逻辑关系表达式如下:

K=(sb1+k)*nsb2

其中sb1为K的起始信号,sb2为K的终止信号,k是元件K的自锁触点。当sb1出现时其逻辑值为“1”,在sb2没有出现之前sb2的逻辑值为“0”,nsb2即为“1”,故经逻辑运算K的逻辑值是“1”,即表示元件K得电,随即k的逻辑值由“0”变为“1”,表示自锁触点k自锁闭合。

对这样的逻辑函数表达式的分析过程是从“=”右侧字符串分解开始的,每分解出一个元素就要返回一个记号(称作token),这是表达式分解的核心过程,图2为求取表达式元素分解子程序(get_token)流程图,围绕元素分解过程构成的表达式分析程序(caculate)流程图如图3所示。

图2表达式元素分解子程序(get_token)流程图

以前面图1为例,进入caculat程序后调用get_token函数,得到函数名K及“=”符号,以下顺序调用level2、level3、leve4子程,判断出得到的是“(”符号时,说明后面是一个子表达式,随即递归调用level2子程,且再依次进入level3、level4子程,这时可得出逻辑变量名sb1极其状态值。其后由level4返回到level3并调用get_token函数,得到“+”运算符后返回。返回到level2后判断出“+”运算符,即要调用get_token函数,得到变量名k及其状态值并执行逻辑或运算,将计算结果存入一暂存变量result中,然后从level2退出。这时会返回到level4子程中且调用get_token函数,得到“)”返回返回到level3子程。在level3中判断出为“*”运算符时调用get_token函数,得到nsb2及其状态值后执行逻辑与运算,最终将计算结果返回到变量K中,结束表达式分析计算过程。

三、结束语

本文论述了电器控制线路在微机上模拟运行的核心问题——逻辑关系表达式的分解计算。设计这样一个应用软件,可以帮助设计者快速有效地检验设计结果、分析线路潜在问题,可以说是电器控制线路CAD不可缺少的重要环节,同时也是CAD技术大有可为的一个领域。

四、参考文献

数字逻辑论文篇8

关键词:数字电路;教学方法;Multisim;仿真

中图分类号:G642文献标识码:A文章编号:1009-3044(2011)28-7058-03

The Exploration of Digital Circuit Teaching and the Useage of Simulation Software

ZONG Xin-Xin

(Institute of Computer Science and Technology, Anhui University of Science & Technology, Huainan 232001, China)

Abstract: From the current situation of teaching Digital Circuit, exploring and improving the existing teaching method and means are presented in this paper. Using Multisim in Digital Circuit teaching has greatly stimulated students' interests and has enhanced the students' ability of practice.It has made a better teaching effect.

Key words: digital circuit; teaching methods; multisim; simulation

从事计算机硬件教学的老师都知道,对于计算机专业的学生而言,数字电路是计算机专业学生硬件的专业基础课,这门课程的学习不仅为后续的计算机组成原理,单片机等硬件类课程打下基础,而且更为重要的是通过这门课程的学习,使学生建立对硬件类课程的学习兴趣。如果学生从这门课程开始就对计算机硬件类课程产生了畏难情绪,以后课程的展开是相当困难的。所以这门课程的教学工作承担了双重责任:一是让学生掌握数字电路的基础知识以及分析设计方法,具备查阅和使用集成电路和读图的能力;二是使学生喜欢上硬件类课程,建立对硬件类课程的兴趣和探索精神。因此,这门课程如何展开教学,采用何种教学手段,如何提高学生兴趣,如何使理论和实践更好的结合是每一个教师思索的问题,也是本文所讨论的重点。

1 教学方法和手段

1.1 知识点结构框图化

在每一章每一节内容开始讲授和小结的时候,将知识点以结构图的形式展示给学生,使学生有一目了然的感觉,对自己要学的和学过的知识点有清晰的脉络。例如在讲述逻辑函数的描述方法时,给出下列的结构框图(如图1所示)。

在讲述这个框图时,学生对真值表,卡诺图还没有感性认识,可在黑板上画一个真值表和卡诺图,使学生初步认识它们的形式,也了解了逻辑函数的几种描述方法。

1.2 教学内容的加减法

数字电路发展很快,对数字电路的讲授应符合数字电路的发展趋势,使学生能学有所用,而不是满腹经纶无用之地,这也就是说,要让学生了解数字逻辑电路的最新发展。但俗话说万丈高楼平地起,我们并不能忽视数字电路的基础理论与基础知识。这就要求我们要在有限的时间之内,让学生具备扎实的数字电路基础知识,了解现代数字电路的设计方法和相关工具软件的使用。因此在教学内容安排上做了这样一些调整,重视逻辑代数和逻辑函数基础理论的教学,在组合逻辑电路教学中适当减少中小规模集成电路内部分析和设计,适当增加使用vhdl语言设计组合逻辑电路和时序逻辑电路,学会Multisim11仿真软件的使用方法,让学生有一个较高的起点和平台来应用所学的知识。[1]例如我们在讲到组合电路分析时,常常会将一位全加器给学生作为例题讲解,并且给学生建立全加器的概念:能实现三个一位二进制数相加(被加数、加数和低位进位),得到一位和及一位向高位进位的加法器。在接下来的组合设计内容中我们就适时的增加了用vhdl语言设计一位加法器的内容。

1.3 贴近生活的教学举例

数字电路由于其系统性强,逻辑性强,从始至终教学中穿插着卡诺图,逻辑公式,真值表,特性方程,状态图,状态转移表等内容,很容易让学生产生内容相似的疲劳感,因此在课堂教学中采用贴近生活的举例可以使学生觉得这门课有趣,实用,很容易产生亲切感,让枯燥的课堂学习变得轻松愉快,学习效率也随之提高。例如在组合电路分析教学中给出密码锁电路图,让学生分析开锁的密码是什么。组合电路设计中举例交通灯故障的判别电路,利用优先编码器74LS148和门电路设计医院优先照顾重症患者呼叫的逻辑电路等等。除了课堂老师的举例之外,还通过布置作业的方式让学生查阅数字逻辑电路在现实生活中的用处,并设置课堂讨论时间让学生交流自己所了解的知识。这样不仅激发了学生浓厚的学习兴趣,使其体会到学习的乐趣,变被动学习为主动,同时也活跃了课堂气氛。

2 仿真软件在数字电路教学中的应用

Multisim是一款主要用于数字电路,模拟电路和集成电路仿真分析的软件。它具有界面简单直观,操作方便,电路仿真能力强,虚拟仪器强大等诸多优点。数字电路是一门实践性很强的课程,而传统的教学模式在课堂上理论与实践联系的很少,将Multisim引入数字电路的教学,可有效解决传统教学的不足,在课堂教学演示,课下作业辅导,实验环节都有其独特的优势。其作用主要表现在三个方面。其一,在课堂上,教师和学生可在互动的环境中进行教和学,用事实说话,通过课堂演示可以让学生观察到电路的直观现象,对于学生感觉新鲜好奇,有说服力,对于教师也觉得教的轻松了。其二,将Multisim作为一个课后学习辅助工具,在课后作业的辅导方面发挥着很大作用,一方面学生可以通过软件来验证自己作业的正确性,另一方面可以使有兴趣学生在课外进行更深入的学习,从而达到培养学生学习兴趣及动手能力的目的。其三,在实验环节上,我们现在通常采用传统的硬件实验箱,传统的实验具有现象直观,易于接受的特点,但是实验多是验证性的,并且由于学生操作不当和实验箱老化,容易出现一定损耗;而以Multisim为平台展开的实验,设计,布线,仿真都很简单,也符合现在电路设计的发展方向,可以作为传统实验的有益补充。[2]

2.1 Multisim在课堂教学中的演示

Multisim具有直观的图形界面,它的整个操作界面就像一个电子实验工作台,教师在课堂上绘制电路图十分方便,将元器件和仿真测试仪器直接拖放到屏幕上,用鼠标拖拽导线就可将它们连接起来,测量数据、波形和特性曲线如同在真实仪器上看到的一样。Multisim包含的丰富测试仪器使得它在课堂上演示生动,直观,易于被学生接受。例如,在进行集成计数器74160这一小节的教学时,首先让学生了解74160是一个可预置数的十进制同步加法计数器,LOAD'是置数端,低电平有效,置数是同步的,当置数端为低电平时,在 CP 上升沿作用下,输出端 QAQBQCQD与数据输入端 ABCD 一致;CLR'是清零端,清零端是异步的,当清除端CLR'为低电平时,不管时钟端CP状态如何,即可完成清除功能;74160的计数是同步的,当 ENP、ENT 均为高电平时,在CP上升沿作用下计数器加法计数;74160具有超前进位的功能,计数溢出时,RCO端输出一个高电平。接着给出74160的功能表,如表1所示。

对于集成电路芯片,我们不要求学生了解芯片的内部结构,但是学生必须要会查阅使用芯片的数据手册。在了解了74160的芯片引脚和功能后,就可以应用multisim11来学习这个芯片。为了使学生能够一步一步地深入了解和学习这个芯片,我们采用搭积木的方式来展开内容,首先在multisim的工作电路区上放置电源,信号发生器,74160,七段数码管和逻辑分析仪[3],然后以导线或总线使各个部件连在一起,再将信号发生器和逻辑分析仪的频率设置成相同的,建立如图2的电路图,启动仿真,就可以直观的看到,电路工作在计数状态,数码管从0~9不断变化,打开逻辑分析仪,可以看到,当计数到9时,RCO产生一个超前的高电平进位。

为了进一步讲解置数端和清零端的用法,我们要求用此芯片分别以置数法和清零法实现模6计数器。对于74160,一定要对学生强调它是异步清零和同步置数的。

使用置数法时,模6计数器,也就是要计6个状态,在这里采用0100、0101、0110、0111、1000和1001这6个状态,也就是说,当计数到1001时,要产生置数信号,使下个时种信号到来的时候, QDQCQBQA被置成0100,从而跳过0000到0011。

采用置数法电路图如图3所示,在这里将QDQA输出接个与非门,当QDQCQBQA=1001时,与非门输出为0,置数端得到有效电平,在CP上升沿到来时,QDQCQBQA=DBCA被置成0100。通过仿真,可以看到计数器在4到9之间的6个状态计数。

使用清零法时,采用的是0000、0001、0010、0011、0100、0101这6个状态,也就是说,当计数到0101时,要产生清零信号,在QCQA接与非门,理论上QDQCQBQA=0101时,产生清零信号,可将QDQCQBQA清零,仿真后看到的结果是,计数在0到4变化,没有计到0101这个状态。这究竟是为什么呢,打开逻辑分析仪查看波形,看到只要QDQCQBQA=0101,与非门输出立刻为0,清零是异步的,只要清零信号到来,不论CP如何,计数器立即清零,所以计数器根本没有计到0101这个状态,要想计数到0101的稳态,必须在0110时产生清零信号。修改电路图,在QCQB端接与非门,再次仿真,得到如图4所示的波形图,从图上可以清楚的看到计数到0101状态后,下个计数状态是0000。

接着我们又给学生布置了这样的课后思考题,如何应用74160实现百进制计数器和24进制计数器,并请仿真验证自己的想法。通过这个完整例子的透彻分析,学生不仅掌握了74160这个芯片,对于其他同步计数器芯片也能够做到轻松应用,起到举一反三的效果。

2.2 Multisim作为作业伴侣

Multisim因其方便的界面,丰富的原件库和逼真的虚拟仪器。在学生的课后作业中扮演着重要的角色,大大减轻了教师的负担。例如在学习逻辑代数基础和组合电路中,我们教会学生使用逻辑转换仪,这个仪器可以将电路图、真值表和逻辑表达式进行方便的转换,可以进行逻辑函数的化简。在学完函数化简后给学生布置这样的习题Y=(A'+B')C+BCD'+AD,不管学生是用卡诺图还是公式进行化简,最后结果是否正确,学生自己可以用逻辑转换仪来验证。学生在Multisim工作区放置逻辑转换仪后,双击打开它,在最下方的显示区输入逻辑表达式,点击表达式到真值表按钮,出现这个函数的真值表,再进一步点击真值表到最简与或式按钮,在显示区出现AD+C,也即函数化简的最简结果。从简单的逻辑代数基础知识,到复杂的组合、时序电路分析设计,学生都可以用Multisim验证自己的作业,并且给学生更大的学习和思考空间。

3 结束语

改进现有的教学方法和手段,将EDA技术应用于数字电路的教学,是对此课程的教学改革。通过近几年的教学探索,取得了较好的教学效果,学生对数字电路课程的兴趣大大提高,理论联系实际能力增强,动手能力增强。学生不仅掌握了数字电路的基础知识,而且掌握了现在数字电路的设计方法和新技术,为以后从事电子设计工作打下良好的基础。

参考文献:

[1] 白净,张雪英. 《数字电路逻辑设计》课程的教学实践研究[J]. 电气电子教学学报,2007(s1):72-74.

[2] 蔡春晓,张国庆. EDA教学在数字电路实验中的实践与探索[J]. 高教论坛,2010(11):39-41.

上一篇:课程设计教学论文范文 下一篇:pbl教学论文范文