水电站设计论文范文3篇

版权声明

水库水电站设计论文

1设计洪水分析

1.1合成流量法计算设计洪水

1.1.1洪峰流量合成方法沣河秦镇大坝位于潏河入汇口下游,沣河在秦渡镇以下没有设立过水文站,无水文资料,本次将沣河干流秦渡镇站洪水与支流潏河同次洪水错开传播时间相加合成,用合成的洪峰流量系列进行频率分析计算,推求工程处的设计洪水。根据流域水系分布特征,沣河干流秦渡镇站以上河长比潏河短24.2km,平均比降比潏河大2.6倍,流域呈扇形,上游各峪洪水汇流集中,所以,秦渡镇站以上洪水汇流时间较潏河短,洪水先于潏河洪水到达汇合口,洪峰时间一般相差约4h左右,一般情况是秦渡镇站以上洪水洪峰流量与潏河基流或起涨段洪水过程叠加。沣河秦渡镇站1943年~1949年为秦渡镇(三)站,距沣河与潏河交汇口为694m;1950年~1964年为秦渡镇(四),距两河交汇口为824m;1965年至今为秦渡镇(五)站,距交汇口为800m。潏河1943年~1964年为秦渡镇(二)站,距河口距离为0.5km;1965年至今为高桥站,距河口距离为7.0km。根据两站不同时期的实测流量成果资料,采用τ=L/V公式计算测流断面某流量于两河汇处的传播时间,分别建立两站流量Q~传播时间τ相关关系曲线,求得两站不同时期各级流量洪水至潏河口的传播时间。1.1.2洪峰流量合成由于1943年~1954年沣河秦渡镇(三)或(四)站、潏河秦渡镇(二)站没有洪水要素摘录资料,本次采用同日洪峰流量相加合成;1955年~1964年根据两站流量Q~传播时间τ相关关系曲线,以沣河秦渡镇(四)站洪峰流量和出现时间为依据,错开传播时间推求潏河秦渡镇(二)站相应流量,沣河秦渡镇站洪峰流量加潏河相应流量等于合成后的沣河洪峰流量。潏河高桥站1965年~1979年有流量资料,1980年~2008年只有水位资料。本次首先推求出高桥站水位~流量综合关系曲线,再根据水位过程推求出与沣河秦渡镇(五)站对应的洪水流量过程。采用同样方法进行洪峰流量合成。经过合成,沣河潏河交汇口处有1943年~2008年共66年的合成洪峰流量系列,另外还调查到1883年以来两次较大的历史洪水,这在大、中流域系较长资料系列,但对总体而言,仍为容量有限的样本。绘制沣河潏河交汇口处历年最大合成洪峰流量过程线图,见图1。从图1中可以看出,沣河潏河交汇口处合成洪峰流量系列已长达66年,基本上包括了丰、平、枯时段和各种来水组合,且又加入了历史调查洪水,同时,洪水系列正递序均值、变差系数Cv随历时变化也趋于稳定,因此认为该洪水系列具有较好的代表性。

1.2水文比拟法推求设计洪水

灞河位于设计流域沣河东侧,为相邻流域。灞河马渡王站位于灞河中游,其控制流域面积由秦岭北麓山区和渭河南岸平原两部分组成,和沣河秦镇大坝区段以上流域面积组成相似,故本次以灞河马渡王站为参证站,采用水文比拟法推求工程处的设计洪水。1.2.1参证站设计洪水分析计算根据马渡王站1952年~2008年共57年洪峰流量系列,按照《水利水电工程设计洪水计算规范》(SL44—2006)推荐的方法,以年最大值法选样,并加入1835年历史调查洪水,按不连续系列进行频率分析,洪水经验频率采用数学期望公式进行计算,均值及变差系数Cv采用矩法计算,理论频率偏态系数Cs按经验取Cv的倍比通过适线确定。经过适线,求得灞河马渡王站设计洪水频率计算成果及统计参数,详见表1。1.2.2工程处设计洪水计算沣河潏河交汇口处的设计洪水以灞河马渡王站为参证站,采用水文比拟法进行计算,计算公式为:Q工程处=F工程处F参证站!"23×Q参证站式中,Q工程处、Q参证站—分别为工程处和参证站灞河马渡王站设计洪峰流量(m3/s);F工程处、F参证站—为工程处和参证站灞河马渡王站控制流域面积(km2),分别为1253km2和1601km2。经过计算,得到沣河潏河交汇口处的设计洪水成果,详见表2。

2成果分析选用

将合成流量法和水文比拟法两种方法计算成果汇总于表3。从表中3可以看出,两种方法计算的成果略有差异,但差异不大。考虑到水文比拟法参证站的流域面积与设计流域面积相差较大,且灞河马渡王站控制流域面积内平原面积的比例较沣河、潏河交汇口以下流域面积内平原面积小,故洪水成果可能有一定的误差,且水文比拟法成果值偏大;合成流量法采用了本流域两个水文站的实测资料,两站距汇合口的距离也很近,合成精度相对较好,计算时考虑了本流域的洪水特性,成果精度相对较高。经分析比较,选择合成流量法计算成果作为本次沣惠水电站洪水设计的依据。沣惠电站厂房位于秦镇大坝下游100m处,设计洪水洪峰流量采用潏河入汇后沣惠渠渠首秦镇大坝处的流量,即Q10%=840m3/s。5结语合理确定设计洪水,对电站的安全运行具有重要意义。本文以秦镇沣惠低水头水电站为实例,根据设计洪水理论与实际资料,分别采用合成流量法和水文比拟法来进行设计洪水分析。将两种方法的计算成果对比发现,水文比拟法与合成流量法的计算成果差异并不大,但由于前者存在参证站流域面积与设计流域面积相差较大等不利因素的影响,将会为算法带来一定程度的计算误差;而后者采用了汇合口就近两个水文站的资料,并且考虑了本流域的洪水特性,使得算法具有了更高的精度,故最终选择合成流量法的计算结果作为本站洪水设计的依据。

作者:杨钧博 单位:西安市太平河渠道管理中心

小水电站设计研究论文

摘要:该文针对农村小水电站“机组容量小、设备供应困难、运行人员文化技术水平相对较低”等特点,介绍了水轮机的选择、电气主接线的拟定、电气测量和同期装置及保护装置的设计等有关问题。

关键词:小水电站;设计;经验

1水轮机的选择

水轮机是水电站一个十分重要的设备,水流的动能和势能转换成机械能就是通过水轮机来实现的。水轮机选择合理与否,直接影响到机组的效率和运行的安全性、经济性。

1.1机组台数的选择

农村小水电站机组台数与电站的投资、运行维护费用、发电效益以及运行人员的组织管理等有着密切的关系。通过多年设计和运行经验表明:农村小水电站机组台数一般为1~4台,且型号应尽量相同,以利于零部件通用和维修管理方便,其中每座电站2台机组居多。

1.2水轮机型号的选择

水轮机型号的选择合理与否,直接影响到水轮机的运行效率、汽蚀和振动等。选择型号时,既要考虑水轮机生产厂家的技术水平和运输的方便程度,又要确保水轮机常处于较优的运行工况,即尽量处于水轮机运转特性曲线图的高效区。尤其是机组运行时,水头的变化不要超过水轮机性能表的水头范围,否则会加剧水轮机汽蚀和振动,降低水轮机效率。

1.3机组安装高程的确定

水轮机的安装高程不能超过水轮机允许的最大吸出高度,否则会引起水轮机转轮的汽蚀、振动等不良现象,因而缩短机组的运行寿命。

(1)卧式机组:安=Z下+hs-/900-D/2

(2)立式机组:安=Z下+hs-/900

式中Z下——尾水渠最低水位(m);

hs——水轮机理论吸出高度(m),查水轮机应用

范围图及hs=f(H)曲线;

D——水轮机转轮直径(m);

——水电站厂房所在地的海拔高程(m)。

为了消除或减轻水轮机汽蚀,可将计算出的安降低0.2~0.3m确定安装高程。

2电气主接线的拟定

小水电站的电气主接线是运行人员进行各种操作和事故处理的重要依据之一。农村小水电站装机容量往往有限,一般装机台数不超过4台,相应电站的电压等级和回路数以及主变的台数都应较少。考虑到小水电站(尤其是单机100kW以下的微型电站)的机电设备供应比较困难,运行和管理人员的文化、业务素质普遍较差,从进站到熟练掌握操作、检修、处理故障及优化运行等也有一个过程。因此,农村小水电站的电气主接线在满足基本要求的前提下,应力求采用简单、清晰而又符合实际需要的接线形式。

对于1台机组,宜采用发电机—变压器组单元接线;对于2~3台机组,宜采用单母线不分段接线,共用1台主变;对于4台机组,宜采用2台主变用隔离开关进行单母线分段,以提高运行的灵活性。

3电气测量及同期装置

并入电网运行的小水电站电气测量应包括:三相交流电流、三相交流电压(使用换相断路器和1只电压表测量三相电压)、有功功率、功率因数、频率、有功电能、无功电能、励磁电流和励磁电压等的监视和测量。发电机的测量、监视表计、断路器、互感器及保护装置等装在控制屏上(发电机控制屏);电网的表计、断路器、同期装置等装在同期屏上(总屏)。

保护装置

农村小水电站主保护装置的配置应在满足继电保护基本要求的前提下,力求简单可行、维护检修方便、造价低及运行人员容易掌握等。

4.1过电流保护

单机750kW以下的机组,可以采用自动空气断路器的过电流脱扣器作为过流及短路保护,其动作整定值可以通过调整衔铁弹簧拉力来整定,整定值一般为发电机额定电流的1.35~1.7倍。为了提高保护的可靠性,还可采用过流继电器配合空气断路器欠压脱扣器作过流及短路保护,继电器线圈电源取自发电机中性点的1组(3只)电流互感器,继电器动作值亦按发电机额定电流的1.35~1.7倍整定。

原理:当发电机出现短路故障时,通过过流继电器线圈的电流超过其动作值,过流继电器常闭接点断开,空气断路器失压线圈失电而释放,跳开空气断路器主触头,切除故障元件——发电机。

4.2欠压保护

当电网停电时,由于线路上的用电负荷大于发电机容量,此时电压大幅度降低,空气断路器欠压线圈欠压而释放,跳开空气断路器,以防电网来电造成非同期并列。

4.3水阻保护

当发电机因某种原因(如短路、长期过载、电网停电等)突然甩负荷后,机组转速会迅速升高,这种现象叫飞逸。如果不及时关闭调速器和励磁,可能造成事故。一般未采用电动调速的农村小水电站可利用三相水阻器作为该保护的负荷。

水阻器容量按被保护机组额定功率的70%~80%左右考虑。如果水阻容量过大,机组甩负荷瞬间,将对机组产生较大的冲击电流和制动力,影响机组的稳定,严重时可能造成机组基础松动。反之,如果水阻容量过小,达不到抑制机组飞逸转速的目的。水阻器采用角钢或钢板制成三相星型、三角型均可。

对于单机125kW及以下的电站,水阻池内空,以长为机组台数×(0.7~1)m,宽为(0.7~1)m,深为0.6~0.8m为宜,同时考虑机组容量大小,应在短时间内(如3~5min)不致于将池中的水煮沸。

在调试水阻负荷大小时,应在水中逐渐施加水阻剂,调试水阻负荷,直到达到要求为止。

4.4变压器过载、短路保护

变压器高压侧采用跌落式熔断器(或SN10-10型少油断路器)作过载、短路保护。运行经验表明,额定电压为6~10kV的跌落式熔断器只能用在560kVA及以下的变压器,额定电压为10kV的跌落式熔断器只能用在750kVA及以下的变压器。当变压器容量超过750kVA时,应采用油断路器。跌落式熔断器熔丝按下列公式选择:

当Se<100kVA时,熔丝额定电流=(2~2.5)×高压侧额定电流;当Se≥100kVA时,熔丝额定电流=(1.5~2)×高压侧额定电流。

4.5变压器的防雷保护

由于变压器上可能出现正、逆变换波的过电压,为了防止雷击线路和变压器,对Y/Y、Y/Y0接线的变压器,均应在其高低压侧各装设1组(3只)阀型避雷器FS-10和FS-0.38。避雷器越靠近变压器安装,防雷效果越好,可以将高低压侧避雷器安装在变压器顶盖边上,再将变压器外壳、避雷器引下线和变压器中性点连接在一起后,三者共同接地。一般接地引下线采用T-16线或GJ-25线

.

水电站方案设计论文

1闸门设计及启闭机选型

1.1引水发电系统

1.1.1取水口拦污栅及启闭设备

1)优化选型布置设计。发电引水隧洞喇叭口底槛678.50mm处设置1孔拦污栅,单孔孔口尺寸为7.5m×10.0m,检修平台高程717.00m,设计水头4.0m,最大引用流量为42.58m3/s,平均过栅流速为0.811m/s,拦污栅重量为26.0t,栅槽埋件重17.0t,型式为平面滑动式拦污栅。选用1台QPG2×250kN-38m高扬程卷扬式启闭机,安装高程726.20m,操作运行条件为静水启闭。2)蓄水安全复核计算。拦污栅主支承是增强四氟NL150CHI型滑块,最大线荷载为25kN/cm,反向支承是钢滑块。栅条间距50mm,栅体主材为Q235B,内力分析计算[2]成果为:主梁最大压应力为105.35N/mm2,发生在跨中处;最大剪力为21.01N/mm2,发生在支座处;最大挠度为9.5mm,发生在跨中处;栅条弯应力为53.1N/mm2,发生在跨中处。拦污栅重量为247kN,提栅清污时考虑污物重量为100kN,拦污栅启闭力为450.1kN,启闭机容量为2×250kN。

1.1.2取水口事故闸门及启闭设备

1)优化选型布置设计。在拦污栅的下游设置1扇事故闸门,孔口尺寸为4.5m×4.8m,底槛高程680.00m,检修平台高程717.00m,设计水头37.0m,闸门型式为平面定轮钢闸门。选用1台安装高程为726.20m上的QPG2×800kN-38m高扬程卷扬机控制闸门,操作运行条件为动闭静启。2)蓄水安全复核计算。闸门由门叶结构、水封装置、4个简支轮主支承(同时兼做反向支承)、4个侧向限位装置和充水阀装置等组成。受力计算采用假设平面体系,按照实际可能发生的最不利荷载组合情况,进行强度、刚度和稳定性验算。闸门在设计水头下动水操作会受到不同程度的动力荷载,动力系数取1.1。门体材料为Q235B,内力分析计算结果为:闸门承受的静水压力为7713.7kN,动水压力为8485.1kN;面板折算应力为157.03N/mm2;主梁最大压应力为128.1N/mm2,位于跨中处。最大剪力为49.2,位于支座处。最大挠度为2.71mm,位于跨中处;主轮与轨道的接触应力为844.06N/mm2;主轨颈部局部承压应力为173.36N/mm2;闸门闭门力为-659.1kN,启门力为479.6kN,持住力为1394.4kN;启闭机容量为2×800kN。

1.2泄水系统闸门及启闭设备

1.2.1溢洪道弧形工作闸门

1)优化选型布置设计。该闸门设置在溢洪道上,底槛设置在堰顶下游侧704.80m处,堰顶高程为717.00m,共设置3孔闸门,启闭机安装高程为719.50m。闸门运行方式为动水启闭,主要承担水库的泄洪任务。闸门的孔口尺寸为12.0m×8.5m(宽×高),设计水头为8.2m。型式为露顶式弧形闸门,其面板曲率半径为10.0m,支铰高度为5.5m,其结构布置见图1。2)蓄水安全复核计算。闸门由门叶结构(焊接件)、水封装置、支臂、支铰和侧轮等所组成,支承为斜支臂。受力计算采用假设平面体系,并按照实际可能发生的最不利荷载组合情况,对闸门的设计条件和校核条件进行强度、刚度和稳定性验算。闸门在动水操作条件下各部件尚需承受的不同程度的动力荷载,故将设计水头作用在闸门部件上的静水压力乘以动力系数,考虑为最不利的荷载组合,动力系数取1.1。门体材料为Q235B,内力分析计算结果表明:闸门承受的静水压力为4218.0kN,动水压力为4639.8kN;面板折算应力为181.8N/mm2;主梁最大压应力为106.3N/mm2,位于跨中处。最大剪力为69.2,位于支座处。最大挠度为4.36mm,位于跨中处;支臂平面内应力为76.2N/mm2;主支臂平面外应力为66.3N/mm2;闸门启门力为441.7kN,闭门力为246.3kN;启闭机容量为2×250kN。

1.2.2放空底孔进口事故闸门

1)优化选型布置设计。在放空底孔进口设置一道事故闸门,孔口尺寸为2.5m×2.6m(宽×高),设计水头52.0m。底槛高程为665.00m,检修平台高程为717.00m,启闭机安装平台高程为723.50m。闸门运行方式为动闭静启,由1套QPG800kN-53m高扬程卷扬机控制。当水库需要放空时小开度提门充水平压,待前后水压差小于4m时,再开启事故闸门。2)蓄水安全复核计算。闸门由门叶结构(焊接件)、水封装置、4个悬臂轮主支承(同时兼做反向支承)、4个侧向限位装置等所组成。受力计算采用假设平面体系,按照实际可能发生的最不利荷载组合情况,进行强度、刚度和稳定性验算。闸门在设计水头下动水操作会受到不同程度的动力荷载,动力系数取1.1。门体主材为Q235B,内力分析计算结果表明:闸门承受的静水压力为3491.5kN,淤沙压力为619.6kN,总压力为4111.1kN;面板折算应力为187.9N/mm2;主梁最大压应力为101.27N/mm2,位于跨中处。最大剪力为65.4,位于支座处。最大挠度为0.76mm,位于跨中处;主轮与轨道的接触应力为663.1N/mm2;闸门启门力为769.1kN,闭门力为-22.0kN,持住力为206.3kN;启闭机容量为800kN。

1.2.3放空底孔出口弧形工作闸门

1)优化选型布置设计。在放空底孔出口设置一道弧形工作闸门,孔口尺寸为2.5m×2.2m(宽×高),承压水头为52.0m,型式为潜孔式弧形钢闸门,底槛高程为665.00m,检修平台高程为668.70m,启闭机安装平台高程为674.60m。闸门运行方式为动水启闭,选用1套QH-SY-500/150kN-4.0m弧门潜孔液压启闭机控制闸门,闸门长期处于闭门挡水状态。当水库需要放空时,动水开启该闸门锁定于检修平台上,待放空完毕,放下工作闸门封闭孔口蓄水。2)蓄水安全复核计算。闸门由门叶结构(焊接件)、水封装置、2个支铰支承和4个侧向限位装置等所组成。受力计算采用假设平面体系,按照实际可能发生的最不利荷载组合情况,进行强度、刚度和稳定性验算。闸门在实际操作中会受到不同程度的动力荷载,动力系数取1.1。门体主材为Q235B,内力分析计算结果为:闸门承受的静水压力为3329.7kN,动水压力为3662.7kN;面板折算应力为183.9N/mm2;主梁最大压应力为33.2N/mm2,位于跨中处。最大剪力为24.4,位于支座处。最大挠度为0.12mm,位于跨中处;支臂平面内应力为98.4N/mm2;闸门启门力为248.8kN,闭门力为122.7kN;启闭机容量为500/150kN。

1.2.4导流隧洞封堵闸门

1)优化选型布置设计。导流隧洞进口设置封堵工作闸门一扇,孔口尺寸为5.0m×6.5m(宽×高),承压水头为44.3m,闭门水头:20m,型式为潜孔式平面钢闸门,底槛高程为647.70m,检修平台高程为659.00m,启闭机安装平台高程为667.50m。闸门运行方式为动水启闭,选用1套QPQ630kN-13m卷扬式启闭机控制闸门,闸门仅用于导流隧洞封堵时使用,导流隧洞在枯水季节封堵下闸门。因受启闭机平台高程的限制(启闭机平台高程为667.50m),闭门时最不利水头工况为启闭高程,即水头为20m,因此整个闸门启闭按最不利的情况下水头20m计算。2)蓄水安全复核计算。闸门由门叶结构(焊接件)、水封装置、12个主滑块和8个反向滑块装置等所组成。受力计算采用假设平面体系,按照实际可能发生的最不利荷载组合情况,进行强度、刚度和稳定性验算。门体主材为Q235B,内力分析计算结果为:闸门承受的静水压力为13501.9kN,发生在设计水头44.3m处;材料容许应力(抗拉、抗压和抗弯)为142.5kN,容许应力(抗剪)为85.5kN;面板折算应力为138N/mm2;主梁最大压应力为84.6N/mm2,位于跨中处。最大剪力为71.92,位于支座处。最大挠度为3.78mm,位于跨中处;闸门闭门力为145kN;水柱压力为898.60kN;启闭机容量为630kN。

2结语

河湾水电站引水发电系统、泄水系统闸(栅)门的金属结构设计严格遵循《水利水电钢闸门设计规范》(DL/T5039-1995)、《水利水电工程启闭机设计规范》(DL/T5167-2002)等规范进行,选型布置规范准确,设计方案合理可行。应力复核计算结果表明,主要受力构件的强度、刚度及稳定性均满足规范要求,且与工程实际相匹配,具备安全下闸蓄水条件。

作者:刘猛金 单位:贵州新中水工程有限公司

注:本文为网友上传,不代表本站观点,与本站立场无关。举报文章

0

好文章需要你的鼓励

上一篇:土木新材料论文范文 下一篇:土木工程系论文范文

你需要文秘服务吗?

提供一对一文秘服务,获得独家原创范文

了解详情
期刊发表服务,轻松见刊

提供论文发表指导服务,1~3月即可见刊

了解详情