建筑物防雷设计规范范文

时间:2023-02-25 09:55:05

建筑物防雷设计规范

建筑物防雷设计规范范文第1篇

关键词:LPS(防雷装置) LPMS(雷击电磁脉冲防护) LPL(雷电防护水平)

中图分类号:TU89 文献标识码:A 文章编号:1672-3791(2012)12(a)-0051-02

“雷电”这个词自古以来就一直伴随着人类的生活,并且给我们人类的生活造成了不小的影响。如何做好雷电的防护工作对人类来说是一项重大而艰巨的任务,而建筑物的雷电防护更是值得我们去研究与探讨的一项重要问题。为此我们国家于2008年和2010年颁布了GB/T 21714《雷电防护》标准体系和GB 50057-2010《建筑物防雷设计规范》两部国家标准,为我国建筑物的防雷保护提供了设计的参考依据。

1 防雷装置(LPS)

防雷装置(LPS)用于减少闪击击于建(构)筑物上或建(构)筑物附件造成的物质性损害和人身伤亡,由外部防雷装置和内部防雷装置组成。内部防雷装置是由防雷等电位连接与外部防雷装置的间隔距离组成,外部防雷装置是由接闪器、引下线和接地装置组成[1]。

根据GB/T 21714.3中的定义建筑物的外部LPS分为分离的和非分离的两种。对于分离的雷电防护系统(LPS),如果接闪器位于多个分离支撑杆上,每个支撑杆至少应安装一根引下线。支撑杆为金属材料或互联钢筋,则不需另外的引下线。如果接闪器为避雷线,则避雷线的每一支点至少需要一根引下线。如果接闪器为避雷网,则每一支撑线的末端至少需要一个引下线。对于非分离的LPS,引下线的数量不应少于2 根,且最好围绕建筑物的周边等间隔尽可能沿建筑物暴露在外的墙角设置[2]。

在LPS的设计上GB/T 21714和GB 50057两规范是有一定的差别的。比如接闪器的主要尺寸、位置、布局和设计方法上GB/T 21714采用的是保护角法、滚球法或网格法,LPS的分类分为四类,建筑物滚球半径分别为20 m、30 m、45 m和60 m,网格尺寸分别为5×5、10×10、15×15、20×20;而GB 50057采用的是滚球法或网格法,LPS的分类分为三类,建筑物滚球半径分别为30 m、45 m和60 m,网格尺寸分别为5×5或6×4、10×10或12×8、20×20或24×16。

2 雷击电磁脉冲防护(LPMS)

雷击电磁脉冲(LEMP)是指雷电流经电阻、电感、电容耦合产生的电磁效应,包含闪电电涌和辐射电磁场[1]。雷击电磁脉冲(LEMP)的防护措施系统叫LPMS,它与电磁兼容(EMC)有密切的关系,前者是后者的一个特殊部分,两者都致力于电子系统对电磁骚扰的抵御。LEMP的分析是建立在EMC的理论基础上的,LPMS要借助EMC 的许多措施,而不一定要另起炉灶。特殊之处在于LEMP来源于非常强烈的雷电放电过程,量值高而概率小。LPMS担负的是不让电子设备永久性损坏或电子系统永久性失效,LPMS器件要通过巨大的能量。

GB/T 21714标准体系将综合防雷体系看成由雷电防护系统(LPS)和LEMP防护措施系统(LPMS)组成[2]。LPS针对建筑物实体和生命体的防护,LPMS针对电气电子系统的防护。应该强调的是,在综合防雷体系中,这些措施不是孤立的,而是作为一个整体来综合考虑的。一种防雷措施对于多种雷电危害都有防护效果,同样,另一种雷电危害的防护需要考虑多种措施的综合作用。

3 GB 50057和GB/T 21714标准体系的差异

从建筑物防雷的分类上来说GB 50057按照雷害后果的严重性、建筑物的重要性和年预计雷击次数直接将建筑物的防雷划分为三类,并对三类防雷建筑给出了明确的雷击防护措施要求,GB/T 21714则不硬性划分建筑物的防雷类别。而是按照4类损害源、3种损害类型、4种损失类型和相应的4种风险来划分,根据风险评估,按雷电流幅值出现概率,考虑防护的雷电流的最大和最小值范围划分I、II、III、IV类雷电防护水平(LPL),然后对应于LPL定义雷电防护系统LPS的I、II、III、IV级,依据必要性和经济合理性原则选择合适的防雷措施,使风险降低到可接受的程度。

从防雷的接收面积来看两个标准规范也存在着一定的差异。如图1所示,GB 50057是当建筑物高度H100 m时,按扩大宽度D=H计算接收面积。而GB/T 21714则是对平坦大地上的孤立建筑物,按建筑物上各点以斜率为1/3的直线向地面投射的面积计算接收面积,而对于形状复杂的建筑物、建筑物的一部分的接收面积的计算和服务设置接收面积的计算也给出了说明。

此外,从设计者的角度而言,GB 50057规范已经应用成熟,可操作性很强,且必须满足对各类防雷建筑物的防雷措施规定要求,设计的自主性较小,应该说是比较适合目前国内设计的习惯的。而GB/T 21714应该说是刚开始应用,需要设计根据具体的风险评估和技术经济型评价选择合适的防雷措施,有较强的设计自主性和适应性,对设计的专业水平和设计协调能力要求较高。

从实际情况来看,两个规范标准各有自身的优势和缺点。目前,国内设计采用较多的是GB 50057这本防雷设计规范,但是如果在设计过程中能够充分考虑GB/T 21714中的相关内容来加以互补,那么我们可以相信我们的建筑物防雷工程应该能够比现在做的更为出色。

参考文献

[1] GB 50057-2010,建筑物防雷设计规范[S].北京:中国计划出版社,2011.

建筑物防雷设计规范范文第2篇

【关键词】规范;防雷;设计

1.适用范围

新规范适用于新建、扩建、改建建筑物的防雷设计,增加了扩建、改建建筑物,删除了不适用范围。说明新规范的适用范围扩大了,与相关防雷法律法规条文相适应,只要属于新建、扩建、改建建筑物的防雷设计都适用于该规范。

2.从第一章总则来看区别

从第一章的总则1.0.1来看,为使建(构)筑物防雷设计因地制宜地采取防雷措施,防止或减少雷击建(构)筑物所发生的人身伤亡和文物、财产损失,以及雷击电磁脉冲引发的电气和电子系统损坏或错误运行,做到安全可靠、技术先进、经济合理,制定本规范。在保护范围的内容中与原规范相比,增加了“雷击电磁脉冲引发的电气和电子系统损坏或错误运行”这部分内容。这源于近年来现代化建筑的迅速发展,精密且昂贵的电气和电子设备也不断增加,因此增加这部分的保护,显得至关重要。

从第一章的总则1.0.2来看,原规范规定“本规范适用于新建建筑物的防雷设计”现修订为“本规范适用于新建、扩建、改建建筑物的防雷设计”。所以说适应的范围为新建、扩建、改建建筑物的防雷设计,故定期检测不适用。

3.从第二章新增术语的修改或者重新定义来看区别

新规范对原有的部分术语进行了修改或者重新定义,共新增了10条术语。其中包括三个感应术语(2.0.14 闪电静电感应 、2.0.15 闪电电磁感应、2.0.16 闪电感应)还增加了2.0.17 闪电电涌 、2.0.25 雷击电磁脉冲 二个术语。以及几个几个常用SPD参数术语(2.0.31 最大持续运行电压 、2.0.32 标称放电电流、2.0.33 冲击电流 、2.0.44 电压保护水平、2.0.37 Ⅱ级试验 、2.0.37 Ⅱ级试验 、2.0.39 Ⅲ级试验 )

在第2.0.8接闪器的术语,由原规范的避雷针、避雷带、避雷线、避雷网相应改为接闪杆、接闪带、接闪线、接闪网。

4.从第三章建筑物的防雷分类看区别

4.1 建筑物应根据其重要性、使用性质、发生雷电事故的可能性和后果,按防雷要求分为三类。

①根据重要性划分的有:部级重点文物保护的建筑物,部级的会堂、办公建筑物、大型展览和博览建筑物、大型火车站和飞机场、国宾馆,部级档案馆、大型城市的重要给水泵房等特别重要的建筑物,部级计算中心、国际通信枢纽等对国民经济有重要意义的建筑物,国家特级和甲级大型体育馆划分为第二类防雷建筑物。(不管建筑物的大小、当地的雷暴情况)

②根据使用性质划分的有:第一类防雷建筑物等。(不管建筑物的大小、当地的雷暴情况)

③发生雷电事故的可能性:是指预计雷击次数。

4.2 除第一类防雷建筑物增加了21区外,爆炸危险场所建筑物的防雷类别划分标准与94规范基本一致。

爆炸性粉尘环境区域的划分和代号采用国家标准GB 12476 . 3― 2007/IEC6124 1 -10: 2 004《可燃性粉尘环境用电气设备 第3 部分: 存在或可能存在可燃性粉尘的场所分类》中的规定,故2010规范与94规范的分区标准有变化。

2010规范爆炸性粉尘环境区域的划分标准如下:

0 区:连续出现或长期出现或频繁出现爆炸性气体混合物的场所。

1 区: 在正常运行时可能偶然出现爆炸性气体混合物的场所。

2 区: 在正常运行时不可能出现爆炸性气体混合物的场所, 或即使出现也仅是短时存在的爆炸性气体混合物的场所。

20 区:以空气中可燃性粉尘云持续地或长期地或频繁地短时存在于爆炸性环境中的场所。

21 区:正常运行时,很可能偶然地以空气中可燃性粉尘云形式存在于爆炸性环境中的场所。

22 区:正常运行时,不太可能以空气中可燃性粉尘云形式存在于爆炸性环境中的场所, 如果存在仅是短暂的。

94规范爆炸性粉尘环境区域的划分标准如下:

0区:连续出现或长期出现爆炸性气体混合物的环境;

1区:在正常运行时可能出现爆炸性气体混合物的环境;

2区:在正常运行时不可能出现爆炸性气体混合物的环境,或即使出现也仅是短时存在的爆炸性气体混合物的环境;

10区:连续出现或长期出现爆炸性粉尘环境;

11区:有时会将积留下的粉尘扬起而偶然出现爆炸性粉尘混合物的环境。

2010规范与94规范两者相比:0、1、2区定义一致,20区就是原10区,原来的11区(有时)细分为现在的21区(很可能偶然地)和22区(不太可能、如果存在仅是短暂的)。

4.3 将工业和民用建筑合并分类。94规范中工业建筑只有第三类。

4.4 预计累计次数的调整:0.3次/a调整为0.25次/a,0.06次/a调整为0.05次/a,0.012次/a调整为0.01次/a。

5.新规范在依据预计雷击次数分类上是否更加严格?

①雷击大地年平均密度计算

新规范:Ng=0.1×Td (广州:7.31次/km2・a)

旧规范:Ng=0.024×Td1.3 (广州:6.36次/km2・a)

当Td=116.4天时,新规范Ng=旧规范Ng

当Td旧规范Ng

当Td>116.4天时,新规范Ng

② 预计累计次数的调整

③ 建筑物等效面积计算

新规范需考虑周边建筑物的影响。

5.从第五章看防雷装置的区别

本章有大幅度的更新修改。主要区别有:

1)增加了防雷装置使用各种金属的相关规定,即第一节。

2)部分材料直径截面积厚度要求有变化。

3)新增了接闪导体和引下线的固定:明敷接闪导体固定支架的高度不宜小于150mm。检测规范要求:避雷带支持件间距是否符合水平直线距离为0.5m~1.5m的要求。每个支持件能否承受49N(5 kgf)的垂直拉力。引下线支持件间距是否符合水平直线部分0.5m~1.5m,垂直直线部分1.5m~3m,弯曲部分0.3m~0.5m的要求。

4)新增了钢材要求热镀锌,热镀锌与冷镀锌的区别是:1.防腐蚀性不同,热镀锌是冷镀锌的几十倍。2.镀锌层厚度不同,热镀锌厚度远远大于冷镀锌。 3.表面光滑度不同,冷镀锌外表比热镀锌光滑好看。 4.价格不同,热镀锌价格高于冷镀锌。 5.冷镀锌可以只镀一面,热镀锌要得全镀。冷镀锌是电镀,是通过电荷吸附,电荷主要集中在边、角等尖端处,所以内表面和凹处会有镀不上的现象。 6.附着力不同,冷镀锌附着力不如热镀锌。

6.详细规定内部防雷的要求

原规范对电气系统和电子系统选用电涌保护器的规定不够具体,特别是电子系统方面几乎没有规定,电子系统选用电涌保护器一直按照《建筑物电子信息系统防雷技术规范》(GB50343-2004)的要求。而新规范明确应安装内部防雷装置,对电气系统和电子系统选用和安装电涌保护器都做了具体要求,并且是强制性条文。对选用电涌保护器的相关参数、安装位置、连接导体截面和放电电流等都做了比较详细的规定和要求,具有可操作性。

7.结束语

新《建筑物防雷设计规范》(GB50057-2010)参考和引用了一系列国际国家最新版本的防雷技术规范,也是对旧规范实施以来防雷实践的总结,在使用过程中应对一些新规定和新要点进行具体研究和分析,执行好规范的要求。

参考文献:

[1]《建筑物防雷设计规范》GB50057-94(2000年版).

建筑物防雷设计规范范文第3篇

关键词:规范 对比 低压配电线路 电涌保护器 区别

Abstract: to make standard of the expression of more rigorous, more in line with the actual situation, combined with the recent research achievements of, the building lightningproof design specification of GB50057-2010 in the lightning transient invasion in many changes. In order to more comprehensive grasp of the old and new standard lightning transient into the difference between measures, by comparing the relevant provisions of the regulation of the old and new content, in view of the low voltage power distribution lines, from the basic rules, different types of lightning protection building measures taken different requirements of laying methods, this paper analyzes the low voltage distribution lines and lightning transient invasion of the modified content and measures difference, finally summarized the new standard of this overall change. Lightning protection technology staff need to grasp new standard standard requirements, right of low voltage distribution lines to the protective measures to protect more reasonable and effective.

Keywords: standard of low voltage distribution lines contrast surge protector difference

中图分类号:TM642+.2文献标识码:A文章编号:

0引言

闪电电涌侵入是指由于雷电对架空线路、电缆线路或金属管道的作用,雷电波,即闪电电涌,可能沿着这些管线侵入屋内,危及人身安全或损坏设备[3]。低压配电线路是采取防闪电电涌侵入措施的主要项目,《建筑物防雷设计规范》GB50057-2010(以下简称新规范)与GB50057-94(2000年版)(以下简称旧规范)对此方面的规定有比较大的变化,笔者就此部分内容提出自己的一些理解,以供大家参考。

1基本规定

旧规范的基本规定:各类防雷建筑物应采取防直击雷和防雷电波侵入的措施。

新规范的基本规定:各类防雷建筑物应设防直击雷的外部防雷装置,并应采取防闪电电涌侵入的措施;在建筑物的地下室或地面层处,建筑物金属体、金属装置、建筑物内系统、进出建筑物的金属管线应与防雷装置做防雷等电位连接。

可见,新规范将术语名称由“防雷电波侵入”改为“防闪电电涌侵入”,新旧规范都将该措施作为基本规定,但新规范增加了对建筑物的地下室或地面层处的要求,目的是为了防止在外部防雷装置与上述部件之间(建筑物金属体、金属装置、建筑物内系统、进出建筑物的金属管线)放生危险的火花放电。具体到低压配电线路,就是要求各类建筑物入户处低压配电线路的金属外皮、钢管等均应与防雷装置做防雷等电位连接。新规范为强制性条文,必须严格执行,要求明显提高。

2第一类防雷建筑物低压配电线路的防闪电电涌侵入措施

第一类防雷建筑物分为两种情况,一是在条件允许下应装设独立接闪杆或架空接闪线或网,即防直击雷的接地装置与防闪电感应的接地装置分设;二是特殊情况下难以装设独立的外部防雷装置(如建筑物高度很高),防直击雷的接地装置与防闪电感应的接地装置合设,即采用共用接地。

2.1分设时采取措施

2.1.1首先对低压配电线路的敷设方式及类型提出要求,为防止雷击线路时高电位侵入建筑物造成危险,新规范规定室外低压配电线路应全线采用电缆直接埋地敷设,而旧规范则为宜。此时要求入户处将电缆的金属外皮、钢管等接到等电位连接带或防闪电感应接地装置上即可。

2.1.2当难以全线采用电缆时,应采用钢筋混凝土杆和铁横担的架空线,并应使用一段金属铠装电缆或护套电缆穿钢管直接埋地引入,也就是说,不允许将架空线路直接引入建筑物内。新旧规范架空线与建筑物的距离及电缆埋地长度的要求对比如表1所示。

表1架空线与建筑物的距离及电缆埋地长度的要求对比

旧规范GB50057-94(2000年版) 新规范GB50057-2010

架空线与建筑物的距离 未做要求 不应小于15m

电缆埋地长度 且不应小于15m

从表1可以看出,新规范增加了架空线与建筑物的距离要求,对电缆埋地长度的要求也有所不同。根据《爆炸和火灾危险环境电力装置设计规范》GB50058-92规定,架空线路与爆炸性气体环境的水平距离不应小于杆塔高度的1.5倍。一般杆高为10m,故新规范要求为15m。规定架空线路与爆炸危险环境的间距,主要是考虑一旦发生架空线断线或杆塔倒塌事故,线路短路或接地电火花(电弧)不会作用到爆炸性气体环境,不会形成电气引燃源。对电缆埋地长度的要求是考虑电缆金属外皮、铠装、钢管等起散流接地体的作用。旧规范要求电缆埋地长度不得小于15m,也是为了满足架空线和建筑物的距离要求,但是在实际操作中,因未做明确规定,会出现架空线距建筑物只有几米,埋地电缆为满足长度要求而环绕建筑物敷设的情况。可见,新规范的规定更为合理、科学。

为防止雷击线路时高电位侵入建筑物造成危险,新旧规范规定在电缆与架空线连接处,尚应装设电涌保护器,电涌保护器、电缆金属外皮、钢管和绝缘子铁脚、金具等应连在一起接地。电涌保护器的设置及接地措施,起到限压泄流的作用。其冲击接地电阻旧规范要求不应大于10Ω,新规范要求不应大于 30Ω,对接地阻值的要求有所降低。并且新规范对安装电涌保护器的条件、参数等做出了详细的规定,操作性比较强。

需要注意的是,当全线埋地或架空转换埋地引入时,入户处总配电箱没有明确要求安装SPD,主要是因为:

一、当全线埋地电缆引入时,电缆相当于处于LPZ1区,并且由于防直击雷接地装置和防闪电感应接地装置分设,在两者间隔距离满足规范要求的前提下,当防直击雷装置接闪时,流过防闪电感应接地装置的感应电流数值会很小,且在金属物已普遍等电位连接和接地的情况下,电位分布均匀,雷电流引起的电位差也会很小。

二、当架空转埋地引入时,为防止雷击线路时高电位侵入建筑物造成危险,已在转换处应装设SPD,此处装设SPD后,亦相当于形成一个防雷分区界面。

2.2合设时采取措施

除按分设时采取相应措施外,旧规范规定在电源引入的总配电箱处宜装设过电压保护器,而新规范明确规定在电源引入的总配电箱处应设置电涌保护器,主要考虑此时接闪器遭受雷击时,感应电流对建筑物有关线路上的影响比外部防雷装置独立设置时要求大得多。

新规范对此处装设的电涌保护器的实验类型、电压保护水平明确了具体要求(Ⅰ级试验;Up≤2.5kV),每一保护模式的冲击电流值,分屏蔽线路和非屏蔽线路两种情况分别按公式进行计算,当无法确定时,应取等于或大于 12.5 kA。而旧规范规定“当线路有屏蔽时,通过每个SPD的雷电流可按上述确定的雷电流的30%考虑”。相比而言,新规范更为合理。

3第二类防雷建筑物低压配电线路的防闪电电涌侵入措施

旧规范对于爆炸危险环境的第二类防雷建筑物的低压架空线,当其处于平均雷暴日小于30d/a地区时,才允许直接引入建筑物内,否则应改换一段埋地金属铠装电缆或护套电缆穿钢管直接埋地引入,并且对埋地长度、接地及接地电阻值有相应的要求,并且转换处应装设避雷器。而对于非爆炸危险环境的第二类防雷建筑物,当架空线转换金属铠装电缆或护套电缆穿钢管直接埋地引入时,其埋地长度应大于或等于15m,其他要求同爆炸危险环境;当架空线直接引入时,要求在入户处装设避雷器。

新规范将防闪电电涌侵入措施合并到防高电位反击中。

新规范则取消了埋地长度的要求,对低压配电线路的穿钢管等敷设方式也未做明显的要求和区分,也就是说允许架空线缆直接入户,但有强制性条文要求:低压电源线路引入的总配电箱、配电柜处以及配电变压器设在本建筑物内或附设于外墙处,并在低压侧配电屏的母线上应装设电涌保护器。理论上,安装适配的SPD是可以限制瞬态过电压和分走浪涌的,能够满足防闪电电涌侵入的要求。但从工程实际应用看,采用穿钢管或铠装电缆埋地的方式更为实用、有效,因为如果只安装SPD,在工程上有很多使SPD失效或降低效用的因素,如SPD的质量问题、未明确的参数选择问题、老化问题、安装工艺问题等等,而采用穿钢管或铠装电缆埋地仅在入户处等电位接地即可,不存在SPD的这些问题。

另外,新规范取消了旧规范中对低压配电线路相关措施的接地阻值的要求,新规范强调采用共用接地,共用接地装置的接地电阻值在新规范第4.3.6条中作出了规定,因此就没有必要再做规定了。

4第三类防雷建筑物低压配电线路的防闪电电涌侵入措施

旧规范对埋地电缆及转换处与第二类相同,对低压架空线允许直接引入,但应在进出处装设避雷器。而新规范与第二类的要求基本一致,只是具体公式上选值的不同,在此不做赘述。

5 结论

综合分析新旧规范关于低压配电线路防护措施的规定,其主要变化如下:

1、明确了各类防雷建筑物(除一类接地装置分设视情况确定)总配电箱处均应装设SPD;

2、不同类别的防雷建筑物采取的敷设方式及要求有所区别,尤其是对第二、三类防雷建筑物的引入方式不做要求;

3、明确了各类防雷建筑物低压配电线路安装的第一级SPD的类型及参数要求及计算方法。

建筑物低压配电线路的防护是整个防雷措施的重要环节,新规范对其做了诸多修改,使规范的表述更加严谨,更有利于实际操作,同时也体现了安全可靠、经济合理的理念。修改后部分低压配电线路采取的措施及要求有所不同,本文所分析的关于新旧规范在此方面的区别及对新规范的理解提供给防雷技术工作人员参考,全面掌握新规范内容,正确采取相应措施,使建筑物低压配电线路采取的防护措施更加符合防雷安全的要求,进一步做好防雷减灾工作。

参考文献:

[1] 机械工业部.建筑物防雷设计规范GB50057-94(2000年版)[S].北京.中国计划出版社.2001

[2] 化工部.爆炸和火灾危险环境电力装置设计规范GB50058-92[S].北京.中国计划出版社.1992

[3] 机械工业联合会.建筑物防雷设计规范GB50057-2010. 北京.中国计划出版社.2011

建筑物防雷设计规范范文第4篇

关键词 建筑物防雷;防雷设计;图纸审核;防雷工程;施工

中图分类号 TU895 文献标识码 A 文章编号 1007-5739(2015)13-0289-01

1 建筑物防雷设计存在的问题

1.1 图纸内容短缺

完整的防雷设计图纸包括设计说明在内的5个组成部分,可当前对图纸审核过程中发觉,大多防雷设计图纸仅仅包含设计说明与天面防雷图。这主要是由于我国对防雷设计图纸的审核是近些年才开始的,对于防雷图纸的内容审核还在不断完善中[1-2]。

1.2 防雷设计与防雷分类标准不同

当前各个设计单位进行防雷设计工作的依据没有明确的规定,2种不同的防雷设计规范对于防雷分类有着不同的准则,而设计师工作时一般不会明确指出具体根据哪一种防雷规范进行设计,他们只是表明自己是按第几类防雷进行相关设计,这就造成了一定的混乱。但实际中不同的防雷分类就有不同的设计要求,这样防雷设计和防雷分类标准的不一致性,就势必引起设计内容出现偏差[3]。

1.3 引下线间距和防雷分类不统一

《建筑物防雷设计规范》中提到,一类、二类、三类防雷建筑物的引下线的间距分别不能超过12、18、24 m,但是实际中有些设计没有充分考虑这些标准,也有些设计应用了错误的标准,从而造成了大量的引下线间距不符合设计规范的情况。还有的设计没有充分考虑到设计规范中附录二对于某些特殊部位的引下线要求,导致了引下线少设置或未设置情况的出现,从而对防雷施工产生了一些负面作用。

1.4 避雷网格不符合规范

《建筑物防雷设计规范》中也对一类、二类、三类避雷网格做出了相关规定,但很多设计师在防雷设计时并没有按照要求的规范去设计。

1.5 防侧击雷未合规设计

滚球法理论指出当建筑物的高度超过滚球的半径时,其多出的部分应当进行防侧击雷保护。一类、二类、三类建筑分别超过30、45、60 m的部位,必须充分利用引下线钢筋的作用进行合理的构建,设计出科学的防侧击保护措施,但很多设计者并未考虑。

1.6 雷电感应和电磁脉冲防范设计不标准

有很多建筑物内部设置有大量的电子装置设备,但防雷设计却没有按照相应的综合防雷系统进行设计,相关的屏蔽设备、等电位连接以及防雷电感应和电磁脉冲举措都没有进行到位。对众多电子设备设计防雷措施的缺失很容易造成雷电波干扰的现象,从而影响到建筑物的电子设备安全。

1.7 未预留等电位连接装置的安装位置

《建筑物防雷设计规范》中明确提到,对于那些未来有可能安装信息服务系统的建筑物,应当在适宜的位置安置等电位连接装置,但现实设计中,对很多配有大量电子装置的建筑都没有进行预留等电位连接装置位置的设计,这样就给等电位连接装置的安装造成了很大的麻烦,也影响到了建筑物内设备的安全。

2 建筑物防雷施工要点

2.1 基本工程

防雷装置的安置一般都比较隐秘,而防雷施工的质量能够对建筑物的防雷作用产生很大的影响。现实施工中很多建筑物的地桩和承台之间的钢筋未能够很好地连接在一起,从而造成了建筑物接地作用不明显的后果。对于这类问题,在施工中必须注意,最起码在每个桩内设置4根主钢筋,每2根与承台的上下进行连接,同时要保证钢筋连接达到规定的质量标准。另外一类问题就是地梁的钢筋没有形成一个循环的回路,这类情况的施工要注意必须保证地梁有2根以上的主钢筋连接成循环回路。

2.2 主体工程

主要包含引下线、金属家具接地、设置等电位来接、防止侧击、配电设备接地、均压环等多种内容。首先,对于引下线必须在其柱体内部设置2根以上的钢筋并令其与长引上相连,然后再和水平的地梁钢筋进行连接,并设置相应的短路环。实际施工中经常遇到施工单位2根并排的引下线钢筋未与地梁钢筋进行相连等现象;还有部分建筑物将梁内部的钢筋作为均压环,而没有和引下线进行连接,更有些施工单位没有对建筑物的配输电等工作间设置相应的等电位连接装置,这些都极大地影响了主体工程的质量[4]。

2.3 天面工程

天面工程是指建筑物上避雷针以及其他带网的安装工程,工程中出现的问题有材料质量不过关、没有将避雷网格和引下线相连、没有在天面设置设备接地端等。有的避雷带直接使用的是女儿墙的压顶钢筋,这样使得混凝土完成后水泥的平均厚度超过2 cm,违反了相关的规定。有一些层数较高的建筑物顶部存在标志性的金属杆件,此时应当在金属杆件垂直的柱体内部设置引下线,且进行接地板的预设,从而达到标志金属杆的接地。

3 防雷设计与施工的核心探索

一是对于建筑物的防雷工作设计最关键就是要按照《建筑物防雷设计规范》进行,并参照国家其他的准则规范。二是建筑物防雷设计的作用已经不单单是防止直击雷电的破坏,它还包含防止雷电感应以及电磁脉冲等的工作。防雷工作应当充分使用建筑物自身的钢筋结构,可以通过建筑物相关构建的彼此联通并设置相关的引下线,达到建筑物的屏蔽雷电效果。防雷设计对电磁脉冲的防范作用也体现在建筑物配输电以及信息服务等的系统中。三是对于新建成的建筑物,必须设计以满足每一个楼层都设有电器的接地端,以此来保证电器设备的等电位连接。同时等电位连接的母线应选用性能优异的铜材料。四是在整个施工过程中设定相关的施工图纸以及严苛的施工规范,可以极大地保证防雷施工工程的有序和高质量完成。

4 结语

通过以上分析可知,我国目前的建筑物防雷设计工作还存在诸多问题,因此对于防雷设计应该进行更加严格的规范和指导,同时,还要综合多种环境因素以及建筑物自身特点进行有序的施工,以此来确保建筑物防雷工作的高质量完成。

5 参考文献

[1] 窦征巍.建筑物防雷设计审核跟踪验收中容易忽视的问题[J].科技风,2012(3):182.

[2] 汪鲁刚.建筑物防雷图纸审核中常见的问题[J].山东气象,2009,29(增刊1):82-84.

[3] 李贵俭.建筑物防雷设计审核与竣工验收相关的问题浅析[J].科技传播,2010(19):28.

建筑物防雷设计规范范文第5篇

关键词:建筑物防雷保护

随着现代社会的发展,建筑物的规模不断扩大,其内各种电气设备的使用日趋增多,尤其是计算机网络信息技术的普及,建筑物越来越多采用各种信息化的电气设备。我国每年因雷击破坏建筑物内电气设备的事件时有发生,所造成的损失非常巨大。因此建筑物的防雷设计就显得尤为重要。

直击雷和感应雷是雷电入侵建筑物内电气设备的两种形式。直击雷是雷电直接击中线路并经过电气设备入地的雷击过电流;感应雷是由雷闪电流产生的强大电磁场变化与导体感应出的过电压,过电流形成的雷击。根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版)规定,建筑物的防雷区划分为LPZOA,LPZOB,LPZ1,LPZn+1等区(各区的具体含义本文不再赘述)。将需要保护的空间划分为不同的防雷分区,是为了规定各部分空间不同的雷击电磁脉冲的严重程度和等电位联结点的位置,从而决定位于该区域的电子设备采用何种电涌保护器在何处以何种方式实现与共同接地体等电位联结。

建筑物直击雷的保护区域为LPZOA区,其保护设计已为电气设计人员所熟知,根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版),设计由避雷网(带),避雷针或混合组成的接闪器,立柱基础的钢筋网与钢屋架,屋面板钢筋等构成一个整体,避雷网通过全部立柱基础的钢筋作为接地体,将强大的雷电流入大地。建筑物感应雷的保护区域为LPZOB,LPZ1,LPZn+1区,即不可能直接遭受雷击区域;感应雷是由遭受雷击电磁脉冲感应或静电感应而产生的,形成感应雷电压的机率很高,对建筑物内的电气设备,尤其低压电子设备威胁巨大,所以说对建筑物内部设备的防雷保护的重点是防止感应雷入侵。由感应雷产生的雷电过电压过电流主要有以下三个途径:(1)由供电电源线路入侵;高压电力线路遭直击雷袭击后,经过变压器耦合到各低压0.38KV/0.22KV线路传送到建筑物内各低压电气设备;另外低压线路也可能被直击雷击中或感应雷过电压。据测,低压线路上感应的雷电过电压平均可达10KV,完全可以击坏各种电气设备,尤其是电子信息设备。(2)由建筑物内计算机通信等信息线路入侵;可分为三种情况:①当地面突出物遭直击雷打击时,强雷电压将邻近土壤击穿,雷电流直接入侵到电缆外皮,进而击穿外皮,使高压入侵线路。②雷云对地面放电时,在线路上感应出上千伏的过电压,击坏与线路相连的电器设备,通过设备连线侵入通信线路。这种入侵沿通信线路传播,涉及面广,危害范围大。③若通过一条多芯电缆连接不同来源的导线或者多条电缆平行铺设时,当某一导线被雷电击中时,会在相邻的导线感应出过电压,击坏低压电子设备。(3)地电位反击电压通过接地体入侵;雷击时强大的雷电流经过引下线和接地体泄入大地,在接地体附近放射型的电位分布,若有连接电子设备的其他接地体靠近时,即产生高压地电位反击,入侵电压可高达数万伏。建筑物防直击雷的避雷引入了强大的雷电流通过引下线入地,在附近空间产生强大的电磁场变化,会在相邻的导线(包括电源线和信号线)上感应出雷电过电压,因此建筑物避雷系统不但不能保护计算机,反而可能引入了雷电。计算机网络系统等设备的集成电路芯片耐压能力很弱,通常在100伏以下,因此必须建立多层次的计算机防雷系统,层层防护,确保计算机特别是计算机网络系统的安全。

由此可见,对建筑物内各电气设备进行防感应雷保护设计是必不可少的一项内容;设计的合理与否,对电气设备的安全使用与运行有着至关重要的作用。

目前,在感应雷的防护当中,电涌保护器的使用已日趋频繁;它能根据各种线路中出现的过电压,过电流及时作出反应,泄放线路的过电流,从而达到保护电气设备的目的。

根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版)第6.4.4条规定:电涌保护器必须能承受预期通过它们的雷电流,并应符合以下两个附加要求:通过电涌时的最大钳压,有能力熄灭在雷电流通过后产生的工频续流。即电涌保护器的最大钳压加上其两端的感应电压应与所属系统的基本绝缘水平和设备允许的最大电涌电压协调一致。

现在,我们根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版)附录六规定的各类防雷建筑物的雷击电流值进行电涌保护器的最大放电电流的选择。

一、一类防雷建筑物

1、根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版)附录六规定,其首次雷击电流幅值为200KA,波头10us;二次雷击电流幅值为50KA,波头0.25us;根据图1,全部雷电流i的50%按流入建筑物防雷装置的接地装置计,另外50%按1/3分配于线缆计);首次雷击:总配电间第根供电线缆雷电流分流值为200*50%/3/3=11.11KA;后续雷击;总配电间每根供电线缆雷电流分流值为50*50%/3/3=2.78KA;如果进线电缆已经进行屏蔽处理,其每根供电线缆雷电流的分流值将减低到原来的30%,即11.11KA*30%=3.3KA及2.78KA*30%=0.8KA,而在电涌保护器承受10/350us的雷电波能量相当于8/20us的雷电波能量的5~8倍,所以选择能承受8/20us波形电涌保护器的最大放电电流为11.11*8=88.9KA;即设计应选用电涌保护器SPD的最大放电电流为100KA,以法国SOULE公司产品为例,选用PU100型。根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版)第6.4.7条规定,该级电涌保护器应在总配电间处安装,即在LPZOA,LPZOB与LPZ1区的交界处安装。

2、根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版)第6.4.8,第6.4.9条规定,在分配电箱处,即在LPZ1与LPZ2区的交界处安装电涌保护器,其额定放电电流不宜小于5KA(8/20us),故此处应选用电涌保护器SPD的最大放电电流为40KA,额定放电电流为10KA;以法国SOULE公司产品为例,选用PU40型。

二、二类防雷建筑物

1、根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版)附录六规定,其首次雷击电流幅值为150KA,波头10us;二次雷击电流幅值为37.5KA,波头0.25us;根据图1,全部雷电流i的50%按流入建筑物防雷装置的接地装置计,另外50%按1/3分配于线缆计;首次雷击:总配电间每根供电线缆雷电流分流值为150*50%/3/3=8.33KA;后续雷击:总配电间每根供电线缆雷电流的分流值为37.5*50%/3/3=2.08KA;如果进线电缆已经进行屏蔽处理,其每根供电线缆雷电流的分流值将减低到原来的30%,即8.33KA*30%=2.5KA及2.08KA*30%=0.6KA,而在电涌保护器承受10/350us的雷电波能量相当于8/20us的雷电波能量的5~8倍,所以选择能承受8/20us波形电涌保护器的最大放电电流为8.33*8=66.6KA;即设计应选用电涌保护器SPD的最大放电电流为65KA,以法国SOULE公司产品为例,选用PU65型。根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版)第6.4.7条规定,该级电涌保护器应在总配电间处安装,即在LPZOA,LPZOB与LPZ1区的交界处安装。

2、根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版)第6.4.8,第6.4.9条规定,在分配电箱处,即在LPZ1与LPZ2区的交界处安装电涌保护器,其额定放电电流不宜小于5KA(8/20us),故此处应选用电涌保护器SPD的最大放电电流为40KA,额定放电电流为10KA;以法国SOULE公司产品为例,选用PU40型。

三、三类防雷建筑物

1、根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版)附录六规定,其首次雷击电流幅值为100KA,波头10us;二次雷击电流幅值为25KA,波头0.25us;根据附图1,全部雷电流i的50%按流入建筑物防雷装置的接地装置计,另外50%按1/3分配于线缆计;首次雷击:总配电间每根供电线缆雷电流分流值为100*50%/3/3=5.55KA;后续雷击:总配电间每根供电线缆雷电流分流值为25*50%/3/3=1.39KA;如果进线电缆已经进行屏蔽处理,其每根供电线缆雷电流的分流值将减低到原来的30%,即5.55KA*30%=1.7KA及1.39KA*30%=0.4KA,而在电涌保护器承受10/350us的雷电波能量相当于8/20us的雷电波能量的5~8倍,所以选择能承受8/20us波形电涌保护器的最大放电电流为5.55*8=44.4KA;即设计应选用电涌保护器SPD的最大放电电流为40KA,以法国SOULE公司产品为例,选用PU40型,根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版)第6.4.7条规定,该级电涌保护器应在总配电间处安装,即在LPZOA,LPZOB与LPZ1区的交界处安装。

2、根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版)第6.4.8,第6.4.9条规定,在分配电箱处,即在LPZ1与LPZ2区的交界处安装电涌保护器,其额定放电电流不宜小于5KA(8/20us),故此处应选用电涌保护器SPD的最大放电电流为40KA,额定放电电流为10KA;以法国SOULE公司产品为例,选用PU40型。

在供电线路中,电涌保护器的具体安装以较常用的TN-S系统,TN-C-S系统,TT系统为例,示意如下:

1)TN-S系统过电压保护方式

2)TN-C-S系统过电压保护方式

3)TT系统过电压保护方式

综上所述可见,在防雷保护设计中,总的防雷原则是采用三级保护:1、将绝大部分雷电流直接引入地下基础接地装置泄散;2、阻塞沿电源线或数据、信号线引入的过电压;3、限制被保护设备上浪涌过电压幅值(过电压保护)。这三道防线,缺一不可,相互配合,各行其责。目前通常作法是以下三点:

1)建立联合共用接地系统,形成等电位防雷体系

将建筑物的基础钢筋(包括桩基、承台、底板、地梁等),梁柱钢筋,金属框架,建筑物防雷引下线等连接起来,形成闭合良好的法拉第笼式接地,将建筑物各部分的接地(包括交流工作地,安全保护地,直流工作地,防雷接地)与建筑物法拉第笼良好连接,从而避免各接地线之间存在电位差,以消除感应过电压产生。

2)电源系统防雷

以建筑物为一个供电单元,应在供电线路的各部位(防雷区交接处)逐级安装电涌保护器,以消除雷击过电压。

3)等电位联结系统

国家标准《建筑物防雷设计规范》GB50057-94(局部修订条文)明确规定,各防雷区交接处,必须进行等电位联结;尤其建筑物内的计算机房等弱电机房,遭受直击雷的可能性比较小,所以在此处除采取电涌保护器进行感应雷防护外,还应采用等电位联结方式来进行防雷保护,本文不再叙述。

作为电气设计人员都非常清楚,建筑物的防雷保护设计是一项既简单又繁琐的内容,但对建筑物的安全使用,电气设备的正常运行有着至关重要的作用,所以还有待于各位电气设计人员作进一步的研究与探讨;同时必须严格按照国家规范,善为谋划,精心设计。本文仅此设计作了一点粗浅的探讨,所以文中不足之处,望同行不吝赐教。

参考文献

1、国家标准建筑物防雷设计规范GB50057-94(2000年版)北京中国计划出版社2001

2、中南建筑设计院主编建筑物防雷设计安装99D562北京中国建筑标准设计研究所出版1999.12

建筑物防雷设计规范范文第6篇

关键词:建筑物防雷保护

随着现代社会的发展,建筑物的规模不断扩大,其内各种电气设备的使用日趋增多,尤其是计算机网络信息技术的普及,建筑物越来越多采用各种信息化的电气设备。我国每年因雷击破坏建筑物内电气设备的事件时有发生,所造成的损失非常巨大。因此建筑物的防雷设计就显得尤为重要。

直击雷和感应雷是雷电入侵建筑物内电气设备的两种形式。直击雷是雷电直接击中线路并经过电气设备入地的雷击过电流;感应雷是由雷闪电流产生的强大电磁场变化与导体感应出的过电压,过电流形成的雷击。根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版)规定,建筑物的防雷区划分为LPZOA,LPZOB,LPZ1,LPZn+1等区(各区的具体含义本文不再赘述)。将需要保护的空间划分为不同的防雷分区,是为了规定各部分空间不同的雷击电磁脉冲的严重程度和等电位联结点的位置,从而决定位于该区域的电子设备采用何种电涌保护器在何处以何种方式实现与共同接地体等电位联结。

建筑物直击雷的保护区域为LPZOA区,其保护设计已为电气设计人员所熟知,根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版),设计由避雷网(带),避雷针或混合组成的接闪器,立柱基础的钢筋网与钢屋架,屋面板钢筋等构成一个整体,避雷网通过全部立柱基础的钢筋作为接地体,将强大的雷电流入大地。建筑物感应雷的保护区域为LPZOB,LPZ1,LPZn+1区,即不可能直接遭受雷击区域;感应雷是由遭受雷击电磁脉冲感应或静电感应而产生的,形成感应雷电压的机率很高,对建筑物内的电气设备,尤其低压电子设备威胁巨大,所以说对建筑物内部设备的防雷保护的重点是防止感应雷入侵。由感应雷产生的雷电过电压过电流主要有以下三个途径:(1)由供电电源线路入侵;高压电力线路遭直击雷袭击后,经过变压器耦合到各低压0.38KV/0.22KV线路传送到建筑物内各低压电气设备;另外低压线路也可能被直击雷击中或感应雷过电压。据测,低压线路上感应的雷电过电压平均可达10KV,完全可以击坏各种电气设备,尤其是电子信息设备。(2)由建筑物内计算机通信等信息线路入侵;可分为三种情况:①当地面突出物遭直击雷打击时,强雷电压将邻近土壤击穿,雷电流直接入侵到电缆外皮,进而击穿外皮,使高压入侵线路。②雷云对地面放电时,在线路上感应出上千伏的过电压,击坏与线路相连的电器设备,通过设备连线侵入通信线路。这种入侵沿通信线路传播,涉及面广,危害范围大。③若通过一条多芯电缆连接不同来源的导线或者多条电缆平行铺设时,当某一导线被雷电击中时,会在相邻的导线感应出过电压,击坏低压电子设备。(3)地电位反击电压通过接地体入侵;雷击时强大的雷电流经过引下线和接地体泄入大地,在接地体附近放射型的电位分布,若有连接电子设备的其他接地体靠近时,即产生高压地电位反击,入侵电压可高达数万伏。建筑物防直击雷的避雷引入了强大的雷电流通过引下线入地,在附近空间产生强大的电磁场变化,会在相邻的导线(包括电源线和信号线)上感应出雷电过电压,因此建筑物避雷系统不但不能保护计算机,反而可能引入了雷电。计算机网络系统等设备的集成电路芯片耐压能力很弱,通常在100伏以下,因此必须建立多层次的计算机防雷系统,层层防护,确保计算机特别是计算机网络系统的安全。

由此可见,对建筑物内各电气设备进行防感应雷保护设计是必不可少的一项内容;设计的合理与否,对电气设备的安全使用与运行有着至关重要的作用。

目前,在感应雷的防护当中,电涌保护器的使用已日趋频繁;它能根据各种线路中出现的过电压,过电流及时作出反应,泄放线路的过电流,从而达到保护电气设备的目的。

根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版)第6.4.4条规定:电涌保护器必须能承受预期通过它们的雷电流,并应符合以下两个附加要求:通过电涌时的最大钳压,有能力熄灭在雷电流通过后产生的工频续流。即电涌保护器的最大钳压加上其两端的感应电压应与所属系统的基本绝缘水平和设备允许的最大电涌电压协调一致。

现在,我们根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版)附录六规定的各类防雷建筑物的雷击电流值进行电涌保护器的最大放电电流的选择。

一、一类防雷建筑物

1、根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版)附录六规定,其首次雷击电流幅值为200KA,波头10us;二次雷击电流幅值为50KA,波头0.25us;根据图1,全部雷电流i的50%按流入建筑物防雷装置的接地装置计,另外50%按1/3分配于线缆计);首次雷击:总配电间第根供电线缆雷电流分流值为200*50%/3/3=11.11KA;后续雷击;总配电间每根供电线缆雷电流分流值为50*50%/3/3=2.78KA;如果进线电缆已经进行屏蔽处理,其每根供电线缆雷电流的分流值将减低到原来的30%,即11.11KA*30%=3.3KA及2.78KA*30%=0.8KA,而在电涌保护器承受10/350us的雷电波能量相当于8/20us的雷电波能量的5~8倍,所以选择能承受8/20us波形电涌保护器的最大放电电流为11.11*8=88.9KA;即设计应选用电涌保护器SPD的最大放电电流为100KA,以法国SOULE公司产品为例,选用PU100型。根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版)第6.4.7条规定,该级电涌保护器应在总配电间处安装,即在LPZOA,LPZOB与LPZ1区的交界处安装。

2、根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版)第6.4.8,第6.4.9条规定,在分配电箱处,即在LPZ1与LPZ2区的交界处安装电涌保护器,其额定放电电流不宜小于5KA(8/20us),故此处应选用电涌保护器SPD的最大放电电流为40KA,额定放电电流为10KA;以法国SOULE公司产品为例,选用PU40型。

二、二类防雷建筑物

1、根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版)附录六规定,其首次雷击电流幅值为150KA,波头10us;二次雷击电流幅值为37.5KA,波头0.25us;根据图1,全部雷电流i的50%按流入建筑物防雷装置的接地装置计,另外50%按1/3分配于线缆计;首次雷击:总配电间每根供电线缆雷电流分流值为150*50%/3/3=8.33KA;后续雷击:总配电间每根供电线缆雷电流的分流值为37.5*50%/3/3=2.08KA;如果进线电缆已经进行屏蔽处理,其每根供电线缆雷电流的分流值将减低到原来的30%,即8.33KA*30%=2.5KA及2.08KA*30%=0.6KA,而在电涌保护器承受10/350us的雷电波能量相当于8/20us的雷电波能量的5~8倍,所以选择能承受8/20us波形电涌保护器的最大放电电流为8.33*8=66.6KA;即设计应选用电涌保护器SPD的最大放电电流为65KA,以法国SOULE公司产品为例,选用PU65型。根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版)第6.4.7条规定,该级电涌保护器应在总配电间处安装,即在LPZOA,LPZOB与LPZ1区的交界处安装。

2、根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版)第6.4.8,第6.4.9条规定,在分配电箱处,即在LPZ1与LPZ2区的交界处安装电涌保护器,其额定放电电流不宜小于5KA(8/20us),故此处应选用电涌保护器SPD的最大放电电流为40KA,额定放电电流为10KA;以法国SOULE公司产品为例,选用PU40型。

三、三类防雷建筑物

1、根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版)附录六规定,其首次雷击电流幅值为100KA,波头10us;二次雷击电流幅值为25KA,波头0.25us;根据附图1,全部雷电流i的50%按流入建筑物防雷装置的接地装置计,另外50%按1/3分配于线缆计;首次雷击:总配电间每根供电线缆雷电流分流值为100*50%/3/3=5.55KA;后续雷击:总配电间每根供电线缆雷电流分流值为25*50%/3/3=1.39KA;如果进线电缆已经进行屏蔽处理,其每根供电线缆雷电流的分流值将减低到原来的30%,即5.55KA*30%=1.7KA及1.39KA*30%=0.4KA,而在电涌保护器承受10/350us的雷电波能量相当于8/20us的雷电波能量的5~8倍,所以选择能承受8/20us波形电涌保护器的最大放电电流为5.55*8=44.4KA;即设计应选用电涌保护器SPD的最大放电电流为40KA,以法国SOULE公司产品为例,选用PU40型,根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版)第6.4.7条规定,该级电涌保护器应在总配电间处安装,即在LPZOA,LPZOB与LPZ1区的交界处安装。

2、根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版)第6.4.8,第6.4.9条规定,在分配电箱处,即在LPZ1与LPZ2区的交界处安装电涌保护器,其额定放电电流不宜小于5KA(8/20us),故此处应选用电涌保护器SPD的最大放电电流为40KA,额定放电电流为10KA;以法国SOULE公司产品为例,选用PU40型。

在供电线路中,电涌保护器的具体安装以较常用的TN-S系统,TN-C-S系统,TT系统为例,示意如下:

1)TN-S系统过电压保护方式

2)TN-C-S系统过电压保护方式

3)TT系统过电压保护方式

综上所述可见,在防雷保护设计中,总的防雷原则是采用三级保护:1、将绝大部分雷电流直接引入地下基础接地装置泄散;2、阻塞沿电源线或数据、信号线引入的过电压;3、限制被保护设备上浪涌过电压幅值(过电压保护)。这三道防线,缺一不可,相互配合,各行其责。目前通常作法是以下三点:

1)建立联合共用接地系统,形成等电位防雷体系

将建筑物的基础钢筋(包括桩基、承台、底板、地梁等),梁柱钢筋,金属框架,建筑物防雷引下线等连接起来,形成闭合良好的法拉第笼式接地,将建筑物各部分的接地(包括交流工作地,安全保护地,直流工作地,防雷接地)与建筑物法拉第笼良好连接,从而避免各接地线之间存在电位差,以消除感应过电压产生。

2)电源系统防雷

以建筑物为一个供电单元,应在供电线路的各部位(防雷区交接处)逐级安装电涌保护器,以消除雷击过电压。

3)等电位联结系统

国家标准《建筑物防雷设计规范》GB50057-94(局部修订条文)明确规定,各防雷区交接处,必须进行等电位联结;尤其建筑物内的计算机房等弱电机房,遭受直击雷的可能性比较小,所以在此处除采取电涌保护器进行感应雷防护外,还应采用等电位联结方式来进行防雷保护,本文不再叙述。

作为电气设计人员都非常清楚,建筑物的防雷保护设计是一项既简单又繁琐的内容,但对建筑物的安全使用,电气设备的正常运行有着至关重要的作用,所以还有待于各位电气设计人员作进一步的研究与探讨;同时必须严格按照国家规范,善为谋划,精心设计。本文仅此设计作了一点粗浅的探讨,所以文中不足之处,望同行不吝赐教。

参考文献

1、国家标准建筑物防雷设计规范GB50057-94(2000年版)北京中国计划出版社2001

2、中南建筑设计院主编建筑物防雷设计安装99D562北京中国建筑标准设计研究所出版1999.12

建筑物防雷设计规范范文第7篇

由此可见,对建筑物内各电气设备进行防感应雷保护设计是必不可少的一项内容;设计的合理与否,对电气设备的安全使用与运行有着至关重要的作用。

目前,在感应雷的防护当中,电涌保护器的使用已日趋频繁;它能根据各种线路中出现的过电压,过电流及时作出反应,泄放线路的过电流,从而达到保护电气设备的目的。

根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版)第6.4.4条规定:电涌保护器必须能承受预期通过它们的雷电流,并应符合以下两个附加要求:通过电涌时的最大钳压,有能力熄灭在雷电流通过后产生的工频续流。即电涌保护器的最大钳压加上其两端的感应电压应与所属系统的基本绝缘水平和设备允许的最大电涌电压协调一致。

现在,我们根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版)附录六规定的各类防雷建筑物的雷击电流值进行电涌保护器的最大放电电流的选择。

一、一类防雷建筑物

1、根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版)附录六规定,其首次雷击电流幅值为200KA,波头10us;二次雷击电流幅值为50KA,波头0.25us;根据图1,全部雷电流i的50%按流入建筑物防雷装置的接地装置计,另外50%按1/3分配于线缆计);首次雷击:总配电间第根供电线缆雷电流分流值为200*50%/3/3=11.11KA;后续雷击;总配电间每根供电线缆雷电流分流值为50*50%/3/3=2.78KA;如果进线电缆已经进行屏蔽处理,其每根供电线缆雷电流的分流值将减低到原来的30%,即11.11KA*30%=3.3KA及2.78KA*30%=0.8KA,而在电涌保护器承受10/350us的雷电波能量相当于8/20us的雷电波能量的5~8倍,所以选择能承受8/20us波形电涌保护器的最大放电电流为11.11*8=88.9KA;即设计应选用电涌保护器SPD的最大放电电流为100KA,以法国SOULE公司产品为例,选用PU100型。根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版)第6.4.7条规定,该级电涌保护器应在总配电间处安装,即在LPZOA,LPZOB与LPZ1区的交界处安装。

2、根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版)第6.4.8,第6.4.9条规定,在分配电箱处,即在LPZ1与LPZ2区的交界处安装电涌保护器,其额定放电电流不宜小于5KA(8/20us),故此处应选用电涌保护器SPD的最大放电电流为40KA,额定放电电流为10KA;以法国SOULE公司产品为例,选用PU40型。

二、二类防雷建筑物

1、根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版)附录六规定,其首次雷击电流幅值为150KA,波头10us;二次雷击电流幅值为37.5KA,波头0.25us;根据图1,全部雷电流i的50%按流入建筑物防雷装置的接地装置计,另外50%按1/3分配于线缆计;首次雷击:总配电间每根供电线缆雷电流分流值为150*50%/3/3=8.33KA;后续雷击:总配电间每根供电线缆雷电流的分流值为37.5*50%/3/3=2.08KA;如果进线电缆已经进行屏蔽处理,其每根供电线缆雷电流的分流值将减低到原来的30%,即8.33KA*30%=2.5KA及2.08KA*30%=0.6KA,而在电涌保护器承受10/350us的雷电波能量相当于8/20us的雷电波能量的5~8倍,所以选择能承受8/20us波形电涌保护器的最大放电电流为8.33*8=66.6KA;即设计应选用

电涌保护器SPD的最大放电电流为65KA,以法国SOULE公司产品为例,选用PU65型。根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版)第6.4.7条规定,该级电涌保护器应在总配电间处安装,即在LPZOA,LPZOB与LPZ1区的交界处安装。

2、根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版)第6.4.8,第6.4.9条规定,在分配电箱处,即在LPZ1与LPZ2区的交界处安装电涌保护器,其额定放电电流不宜小于5KA(8/20us),故此处应选用电涌保护器SPD的最大放电电流为40KA,额定放电电流为10KA;以法国SOULE公司产品为例,选用PU40型。

三、三类防雷建筑物

1、根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版)附录六规定,其首次雷击电流幅值为100KA,波头10us;二次雷击电流幅值为25KA,波头0.25us;根据附图1,全部雷电流i的50%按流入建筑物防雷装置的接地装置计,另外50%按1/3分配于线缆计;首次雷击:总配电间每根供电线缆雷电流分流值为100*50%/3/3=5.55KA;后续雷击:总配电间每根供电线缆雷电流分流值为25*50%/3/3=1.39KA;如果进线电缆已经进行屏蔽处理,其每根供电线缆雷电流的分流值将减低到原来的30%,即5.55KA*30%=1.7KA及1.39KA*30%=0.4KA,而在电涌保护器承受10/350us的雷电波能量相当于8/20us的雷电波能量的5~8倍,所以选择能承受8/20us波形电涌保护器的最大放电电流为5.55*8=44.4KA;即设计应选用电涌保护器SPD的最大放电电流为40KA,以法国SOULE公司产品为例,选用PU40型,根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版)第6.4.7条规定,该级电涌保护器应在总配电间处安装,即在LPZOA,LPZOB与LPZ1区的交界处安装。

2、根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版)第6.4.8,第6.4.9条规定,在分配电箱处,即在LPZ1与LPZ2区的交界处安装电涌保护器,其额定放电电流不宜小于5KA(8/20us),故此处应选用电涌保护器SPD的最大放电电流为40KA,额定放电电流为10KA;以法国SOULE公司产品为例,选用PU40型。

在供电线路中,电涌保护器的具体安装以较常用的TN-S系统,TN-C-S系统,TT系统为例,示意如下:

1)TN-S系统过电压保护方式

2)TN-C-S系统过电压保护方式

3)TT系统过电压保护方式

综上所述可见,在防雷保护设计中,总的防雷原则是采用三级保护:1、将绝大部分雷电流直接引入地下基础接地装置泄散;2、阻塞沿电源线或数据、信号线引入的过电压;3、限制被保护设备上浪涌过电压幅值(过电压保护)。这三道防线,缺一不可,相互配合,各行其责。目前通常作法是以下三点:

1)建立联合共用接地系统,形成等电位防雷体系

将建筑物的基础钢筋(包括桩基、承台、底板、地梁等),梁柱钢筋,金属框架,建筑物防雷引下线等连接起来,形成闭合良好的法拉第笼式接地,将建筑物各部分的接地(包括交流工作地,安全保护地,直流工作地,防雷接地)与建筑物法拉第笼良好连接,从而避免各接地线之间存在电位差,以消除感应过电压产生。

2)电源系统防雷

以建筑物为一个供电单元,应在供电线路的各部位(防雷区交接处)逐级安装电涌保护器,以消除雷击过电压。

3)等电位联结系统

国家标准《建筑物防雷设计规范》GB50057-94(局部修订条文)明确规定,各防雷区交接处,必须进行等电位联结;尤其建筑物内的计算机房等弱电机房,遭受直击雷的可能性比较小,所以在此处除采取电涌保护器进行感应雷防护外,还应采用等电位联结方式来进行防雷保护,本文不再叙述。

作为电气设计人员都非常清楚,建筑物的防雷保护设计是一项既简单又繁琐的内容,但对建筑物的安全使用,电气设备的正常运行有着至关重要的作用,所以还有待于各位电气设计人员作进一步的研究与探讨;同时必须严格按照国家规范,善为谋划,精心设计。本文仅此设计作了一点粗浅的探讨,所以文中不足之处,望同行不吝赐教。

参考文献

1、国家标准建筑物防雷设计规范GB50057-94(2000年版)北京中国计划出版社2001

2、中南建筑设计院主编建筑物防雷设计安装99D562北京中国建筑标准设计研究所出版1999.12

建筑物防雷设计规范范文第8篇

关键词:高层建筑;防雷;技术

1 建筑物防雷类别的分析

首先,必须认真了解建筑物所处区域的地理位置、地质(土壤电阻率等)、气象(雷暴日数)、环境等条件,了解建筑物的内外结构、建筑面积、层数、高度以及用途。

其次,综合建筑物的各方面的因子,计算建筑物年预计雷击次数,按照《建筑物防雷设计规范》(GB50057-2010版)第二章的规定,确定建筑物的防雷类别。有的建设项目年预计雷击次数达不到三类防雷,这时应考虑以下二种情况:

(1)是否是人员密集的公共建筑物。如大型商场、展览、博览、体育、商业影剧院、医院、学校等,如果出现以上建设项目应至少按三类防雷建筑物设计;

(2)建设项目内部是否有信息系统。《建筑物防雷设计规范》(GB50057-2010版)第六章明确规定“在设有信息系统的建筑物需防雷击电磁脉冲的情况下,当该建筑物没有装设防直击雷装置和不处于其它建筑物或物体的保护范围内时,宜按第三类防雷建筑物采取防直击雷的防雷措施。在要考虑屏蔽的情况下,防直击雷接闪器宜采用避雷网。”这个因素评价时也要考虑到。

(3)查看电气设计说明,其描述的建筑物防雷类别是否正确,如果防雷分类错误将导致防雷图纸的重大改动,作为技术评价人员应认真把好这一关。

2 防雷技术的依据

作为一个完整、严谨的建设项目工程设计图纸,防雷设计依据必须列出,可查看工程建筑设计总说明和电气设计说明。常用防雷技术依据有:《建筑物防雷设计规范》(GB50057-GB50057-2010版)、《建筑物电子信息系统防雷技术规范》(GB 50343-2012)、《智能建筑设计标准》(GB/T50314-2006)、《民用建筑电气设计规范》(JGJ/T16-2008)、《低压配电设计规范》(GB50054-2011)、《供配电系统设计规范》(GB50052-2013)、《有线电视系统工程技术规范》(GB50200-2002)、《建筑物防雷设施安装》(99D501-1)、《建筑物防雷设施安装2003年局部修改版》(99(03)D501-1)、《接地装置安装》(03D501-4)、《利用建筑物金属体做防雷及接地装置安装》(03D501-3)、《等电位联结安装》(02D501-2)等。

3 外部防雷与内部防雷的技术评价

3.1外部防雷

外部防雷装置由接闪器、引下线和接地装置三部分组成。

(1)接闪器(也叫接闪装置)有三种形式:避雷针、避雷带和避雷网,它位于建筑物的顶部,其作用是引雷或叫截获闪电,即把雷电流引下。技术评价内容有:避雷针、带、网的布置、材料及布置方式,避雷带是否闭合,避雷网格是否偏大,突出天面的金属物体的接地情况,突出天面的非金属物体是否增设避雷带或加装避雷短针保护,避雷带是明敷或暗敷,应特别注意屋面结构比较复杂的情况,如斜屋面、层高不同或者多处设计露台阳台等,避雷带有没有上下跨接构成闭合环路,有没有漏设避雷带(网)等。

(2)引下线,上与接闪器连接,下与接地装置连接,它的作用是把接闪器截获的雷电流引至接地装置。主要技术评价屋面防雷平面图、基础接地平面图。技术评价内容有:引下线布局设置是否合理,包括引下线条数、间隔、位置,四角及拐角处有无设置引下线。框架结构建筑物一般应利用钢筋混凝土柱内两根Φ16以上的主筋通长焊接或4根Φ10以上钢筋焊接作为引下线,非框架结构建筑物的引下线应设计在建筑物角位。

(3)接地装置:接地装置位于地下一定深度之处,它的作用是使雷电流顺利流散到大地中去。主要技术评价基础接地平面图。技术评价内容有:接地电阻值的要求,接地装置的选择、布置,测试卡以及外引连接线的设置情况。利用建筑物基础钢筋网作自然接地体时,应评价桩利用率、钢筋利用情况、接地网是否连成一个环型接地体。垂直接地极桩利用率一般以1:2为宜,如2.5m的桩,利用间距为5m,水平接地极一般利用地梁底部二主筋焊接成闭合环路,每幢建筑物应设置两个以上的测试卡,建筑物外墙四周引下线宜在地下0.8~1.0m设计外引连接线作为散流和连接人工接地体用。人工接地体则评价其形式、安全距离。

3.2内部防雷

内部防雷装置的作用是减少建筑物内的雷电流和所产生的电磁效应以及防止反击、接触电压、跨步电压等二次雷害。它包括等电位连接、屏蔽、加装电涌保护器(SPD)以及合理布线和良好接地等措施。即分流、均压、屏蔽、接地和保护(D・B・S・G・P)技术。

(1)等电位连接:建筑物内用电设备,进入建筑物的各种金属管道、电源线路、通信缆线等是否有等电位措施。凡穿越不同保护区界面的金属物都要进行等电位联接,并要求多点接地,一幢建筑物一般在一层(或地下层)电源总配电箱附近应设计总等电位连接(MEB)箱,卫生间、电梯机房、计算机房等弱电机房设计局部等电位连接(LEB)端子板。

(2)屏蔽(线路穿钢管、金属线槽、桥架和合理布线)、接地。屏蔽主要技术评价设有大量重要微电子设备的机房、弱电线路的屏蔽情况。有大量重要微电子设备的计算机信息系统机房除线路要穿入钢管屏蔽外,同时宜采用六面体建筑物钢筋作全屏蔽,弱电线路当采用桥架、线槽或金属管布线,非镀锌电缆桥架、线槽间连接板和螺纹连接的金属导管接头应采金属线跨接和至少两端接地。一头接地只能起防静电的作用,两头接地才能防雷击。接地技术评价是否共用接地及其安全距离,当大楼采取联合接地的形式,弱电接地与防雷接地宜相距10m以上,弱电接地与强电接地宜相距3m,这即是共网不共线原则。

(3)对电涌保护器(SPD)的要求:电涌保护器(SPD)评价安装位置、型号、数量、技术参数等是否符合要求。依据《建筑物防雷设计规范》宜在建筑物以下位置设计安装电涌保护器(SPD):总电源(配电房)进线处、由市政网管引来的电话、宽带、有线电视配线设备(CD)处、固定在建筑物屋面上用电设备如节日彩灯、广告灯箱、航空障碍灯等对应的室内配电箱处,卫星天线馈线电缆两端,计算机信息系统、保安监控中心、消防控制中心等弱电系统的配电箱内。电涌保护器(SPD)的技术参数可按《建筑物防雷设计规范》的规定。

4 总结

综上所述,高层建筑比一般建筑遭雷击的概率要大得多,而一旦遭受雷灾,损失将非常严重,后果会不堪设想。因此,高层建筑的防雷设计,成了建筑领域十分关注的问题。

参考文献

[1]刘潇忆.浅谈高层建筑的防雷设计[J].中小企业管理与科技学术版,2012.

[2]宋效峰,陆春萍.防雷保护技术在高层建筑中的应用[J].福建建材,2012.

建筑物防雷设计规范范文第9篇

关键词:建筑物;金属门窗;防雷措施;接闪器;引下线;接地装置;等电位连接

1 前言

建筑物防雷设计、施工与验收的新规范《建筑物防雷设计规范》GB 50057—2010[1]和《建筑物防雷工程施工与质量验收规范》GB 50601—2010[2]已经颁布实施,文献[1] 的相关条文与其旧版本《建筑物防雷设计规范》GB 50057—94(2000年版)[3] 在建筑物防雷分类、防雷措施、等电位连接等方面做了诸多修改。文献[2]是新制定的防雷工程施工验收规范,它与文献[1]一样,是与国际雷电防护新标准体系接轨的国家标准。为了全面地理解掌握新规范,在金属门窗防雷设计、施工与验收的实际工作中正确运用新规范的标准要求,有必要对金属门窗雷电防护措施的有关问题重新进行讨论。

2 金属门窗防雷设计相关技术规范

文献[1]和文献[2]是建筑物防雷设计、施工与验收上位规范的现行版本。这两本标准的修订和制订均参照和采纳了国际电工委员会IEC 62305系列标准,是与国际雷电防护新标准体系接轨、技术水平先进的标准规范。

与金属门窗防雷设计、施工与验收相关的技术规范还有《民用建筑电气设计规范》JGJ 16—2008、《铝合金门窗工程技术规范》JGJ 214—2010和《建筑装饰装修工程质量验收规范》GB 50210—2001。JGJ 16—2008由于并未采纳国际雷电防护新标准体系,存在一些与文献[1]相抵触的规定。JGJ 214—2010的相关条文未与文献[1]、文献[2]协调,GB 50210—2001未列入金属门窗防雷措施验收的条文。

还有几个推荐性标准,《雷电保护》GB/T 21714—2008,共有4个部分。现行的版本等同采用IEC 62305:2006,但由于IEC 62305目前已更新至2010版,文献[1]已参照IEC 62305:2010进行修订,《雷电保护》GB/T 21714—2008已落后于IEC 62305的现行版本。《防雷装置施工质量监督与验收规范》QX/T 105—2009和《防雷装置设计技术评价规范》QX/T 106—2009,这两个标准主要参照《建筑物防雷设计规范》GB 50057—94(2000版)和IEC 62305:2006,其时效性落后于文献[1]。

因此,笔者认为金属门窗的防雷设计、施工与验收应满足文献[1]和文献[2]的规定。其他相关规范的规定若与文献[1]和文献[2]相抵触,应按文献[1]和文献[2]执行。其他相关规范的要求若高于文献[1]和文献[2]的要求,则可根据具体情况协商确定。同时,其他相关规范在作修订时,应与文献[1]和文献[2]协调一致。

3 建筑物防雷设计、施工与验收新规范的有关规定

3.1 建筑物的防雷分类要求有所提高

文献[1]根据建筑物重要性、使用性质、发生雷电事故的可能性及后果,把建筑物的防雷要求分为三类:第一类防雷建筑物是指受雷击容易引起爆炸危险,会造成巨大破坏和人身伤亡的建筑物;第二类防雷建筑物是指部级建筑物、有爆炸危险场所但受雷击不容易引起爆炸或不致造成巨大破坏和人身伤亡的建筑物、预计雷击次数>0.05次/a的部省级办公建筑物和其他重要或人员密集的公共建筑物以及火灾危险场所、预计雷击次数>0.25次/a的住宅、办公楼等一般性民用建筑物和一般性工业建筑物;第三类防雷建筑物是指省级重点文物保护建筑物及档案馆、预计雷击次数≥0.01次/a且≤0.05次/a的部省级办公建筑物和其他重要或人员密集的公共建筑物以及火灾危险场所、预计雷击次数≥0.05次/a且≤0.25次/a的住宅、办公楼等一般性民用建筑物和一般性工业建筑物、平均雷暴日>15d/a且高度≥15m的烟囱、水塔等孤立的高耸建筑物、平均雷暴日≤15d/a且高度≥20m的烟囱、水塔等孤立的高耸建筑物。

应当注意,新规范对建筑物的防雷分类要求有所提高,而且分类更加明确。对第一类防雷建筑物和第二、三类的一部分(如爆炸危险场所、部级建筑物、重点文物保护建筑物等)仍沿用以往的做法,不考虑以风险作为分类的基础。对以风险作为划分基础的建筑物,只有在以下4种情况下可不设防雷装置:

1)预计雷击次数<0.01次/a的部省级办公建筑物和其他重要或人员密集的公共建筑物以及火灾危险场所;

2)预计雷击次数<0.05次/a的住宅、办公楼等一般性民用建筑物和一般性工业建筑物;

3)平均雷暴日>15d/a且高度<15m的烟囱、水塔等孤立的高耸建筑物;

4)平均雷暴日≤15d/a且高度<20m的烟囱、水塔等孤立的高耸建筑物。

在进行某建筑物的金属门窗防雷设计时,应查阅其建筑施工图的建筑设计总说明或建筑防雷装置设计说明,明确建筑物的防雷分类。

3.2 增加了地下室及首层金属体的接地要求

文献[1]4.1.2—1规定:在建筑物的地下室或地面层处,下列物体应与防雷装置做防雷等电位连接:a)建筑物金属体。b)金属装置。c)建筑物内系统。d)进出建筑物的金属管线。

此条为强制性条文。因此,位于建筑物的地下室或地面层处的金属门窗应与建筑物的防雷装置做等电位连接。

3.3 对第二、三类防雷建筑物的防侧击作了新规定

文献[1]4.3.9、4.4.8规定:对于第二、三类防雷建筑物,高于60m 的建筑物,其上部占高度20%并超过60m 的部位应防侧击,防侧击应按本类防雷建筑物屋顶上的保护措施处理。

建筑物防雷设计规范范文第10篇

【关键词】 智能建筑物;防雷设计;直击雷防护;弱电系统

引言

随着经济水平的提升及科技的快速发展,现代智能化建筑越来越多,建筑物内部的电子设备也越来越多样化,这些楼宇自控系统、消防报警系统、闭路电视监控系统、综合布线及通讯系统、门禁及保安报警系统等微电子设备耐过电压等级低、防干扰要求高,极易遭受雷击产生的雷电波入侵危害,雷电灾害频发。我国每年因建筑物内弱电设备遭受雷击破坏的事件时有发生,而且损失巨大。而防雷工程属多学科、跨部门复杂系统工程,必须采取综合治理、系统防护措施,严格遵循防雷规范规定,加强各设备系统的单独防护和综合设计,实现防雷工程的科学化、实用化和经济化。

1.智能建筑物防雷设计

1.1 防雷设计原则

①智能建筑物防雷设计以预防为主、安全第一为指导方针,遵循综合防雷系统要求,在设计前对现场雷电环境进行调查评估,确保防雷设计的合理性、科学性和实用性。

②根据智能建筑物所在区域雷电活动规律、周围环境因素和建筑内放置的电气设备等重要性以及遭受雷击后果的严重程度,分别对其采取相应的雷电防护设计。

③应参照《建筑物防雷设计规范》规定,坚持全面规划、综合防治、优化设计、技术先进、经济合理的设计原则对智能建筑物进行综合防雷设计,加强建筑物外部防雷,并针对建筑物内微电子设备进行直击雷防护、等电位连接、屏蔽、共用接地系统及安装电涌保护器等综合防雷措施,并根据微电子设备系统对雷电电磁脉冲抗扰度采取不同的防护措施,放置于不同的雷电防护区内。

1.2 防雷设计依据

防雷设计依据为:《建筑物防雷规范》GB50057-94、《电子设备雷击保护导则》GB7450-87、《计算机房防雷设计规范》GB50174-93、《计算机站场安全要求》GB9361-88、《计算机信息系统防雷保安器》GA173-1998、《电信专用房屋设计规范》YD5003-94、《移动通信基站防雷与接地设计规范》YD5068-98、《工业与民用电力装置的过电压保护设计规范》GB64-83、《雷电电磁脉冲的防护》IEC1312、国家标准《电气装置安装工程接地装置施工及验收规范》GB50169-92等。

1.3 防雷设计思路

要重点对屋顶作直击雷防护以及建筑物内机房进行感应雷防护;综合考虑建筑物内部整个供电系统雷电感应防护措施及等电位连接及接地系统等。

2.智能建筑物雷电防护措施

2.1 外部防雷

智能建筑物外部防雷主要为直击雷和侧击雷防护,包括接闪装置、均压环、引下线和接地装置。其中接闪装置可为避雷针、带、网,整个建筑屋面组成≤5m×5m的避雷网格,并增加天面预留接地端子数量;较高智能建筑物由于引下线较长,可将每层建筑外圈梁钢筋及适当内圈梁钢筋焊接连通形成均压环,然后与引下线连接,这样可减小引下线电感,分流并降低反击电压;引下线是用于连接接闪装置和接地装置,在设置引下线时,可尽量采用建筑物外墙柱筋作为引下线;应根据建筑物所处地理位置的土质情况、土壤电阻率,增设建筑物桩筋、承台钢筋、地梁梁筋接地体,确保接地装置均匀分布。

2.2 弱电防护

雷电击中建筑物后,约有一半以上的雷电流击中接闪器后沿敷设的引下线经接地装置泄入大地,而一部分频率成分复杂的雷电流在快速流经引下线时感应出强电磁场,直接危害电气设备及人员安全。雷电波及雷电电磁脉冲防护已成为智能建筑物防雷保护的重点,主要采取安装电涌保护器及等电位连接措施。

①电源系统防护。为将供电线路电压限制在安全水平范围内,应在线路上安装电涌保护器,通常分为三级防护:其中I级电涌保护器可将雷击产生的过电流在瞬间泄放入大地,使瞬间过电压限制在2.5KV以下;II级电涌保护器可进一步限制I级电涌保护器泄放电流后的剩余残压,控制瞬间电压在1.8KV以下,用于建筑室内一般用电设备的安全防雷;III级电涌保护器用于服务器、交换机等重要设备,装设在其前端,起到精细保护和抑制噪声作用,并进一步将残压限制在0.9KV以下,而且还能吸收非雷击操作产生的过电压。

②通信线路防护。建筑物弱电防雷保护中,通信线路电涌保护器选型和安装较为复杂,也极易发生故障,发生雷击时即使未出现雷电波入侵,也可能因设计失误或型号选取不当等造成防护失效、数据包丢失甚至是通信中断。在进行通信线路电涌保护器选择、安装时首先要详细了解相关设备,按照通信线路、通信接口、供电方式、工作频率、带宽等要求选择相应速度快、通流量大、频带宽、插入损耗小的电涌保护器。

③屏蔽、接地、等电位连接及综合布线。进出建筑物室内的电源线、信号线应置于屏蔽槽内,然后将屏蔽槽两端接地,并要求各线缆屏蔽层两端需同时接地,如果系统要求应单端接地,就必须作二次屏蔽处理。为减小防雷保护区内各金属物、系统之间电位差,可参照相关标准,将防雷保护地、防静电地、电气设备工作地等进行等电位连接,机房门窗、设备金属外壳、等电位连接端子盒和防雷保护区内所有金属物及设备系统均应就近连接等电位连接带(网),使机房内各接地线之间的电位达到均衡,及时将积聚在地板表面及电气设备外壳上的静电电荷泄流入地。

2.3 强电保护

①高压电缆接入点和室内变压器高压侧需安装防雷器,而且低压侧也应装设必要的防雷器,分别在各楼层分配电间、计算机房、闭路电视监控间、消防监控间等弱电设备机房设计安装第II级、III级电涌保护器。

②要求必须将各高低压电缆线路金属保护层于配电主干线进、出线处与接地端子进行连接,采用4mm?的多股铜线作为干线电缆屏蔽层,连接至接地汇流排,同时必须保证电缆屏蔽层电气通路。非屏蔽干线电缆线路需敷设金属线槽或穿金属管,金属线槽或金属管接头处要进行牢固连接,以保证电气连通,而且电缆线路经过配线间时必须采用6mm?辫式铜带与接地装置相连。

③市电主接地网应通过采用 16镀锌圆钢的接地母线,与智能建筑物接地网变配电间接地母线作必要的焊接连通。

3.防雷装置日常维护及检测

新建、改建或扩建智能建筑物防雷工程应按照文件规定获得气象部门的行政许可,经防雷中心技术评价后,由具有防雷施工资质的防雷机构进行设计施工,最后由防雷检测机构进行检测,合格后才能投入使用;建筑物内信息系统建设前,应提前或同步开展防雷系统建设。智能建筑物所在小区或物业管理部门应安排雷电灾害防御责任人,专门负责防雷装置日常维护及报检工作,定期或不定期检查安装强、弱电电涌保护器运行情况,发现损坏应及时向防雷施工部门上报进行更换。每年雷雨季来临前,由气象部门防雷检测机构定期进行防雷检测,对防雷装置是否符合国家规范要求进行评估。发生雷击事故后,要及时、如实的上报气象主管部门,开展灾情调查、分析、处理及评估,避免再次遭受雷击。

参考文献

[1] 陈一才. 《高层建筑电气设计手册》. 中国建筑工业出版社,1990

上一篇:建筑规范范文 下一篇:违章建筑范文