光电子器件范文

时间:2023-02-28 19:20:19

光电子器件

光电子器件范文第1篇

【关键词】薄膜 原理 应用 光电子器件

一、前言

近年来,国内外正掀起“光电子学”和“光电子产业”的热潮,光电子技术已经在信息、能源、材料、航空航天、生命 科学 、环境科学和军事国防等诸多领域发挥着重要作用。光电子学是从上世纪七十年代,在光学、电子学及相关学科的基础上 发展 起来的一门科学,光电子器件的小型化、多样化和性能的不断提高是光电子技术发展的重要标志,在这个发展过程中,薄膜技术功不可没。

当固体或液体的一维线性尺度远远小于它的其它二维尺度时,我们将这样的固体或液体称为膜。一般将厚度大于1μm的膜称为厚膜,厚度小于1μm的膜称为薄膜,当然,这种划分具有一定的任意性。薄膜的研究和制备由来已久,但在早期,技术落后使得薄膜的重复性较差,其应用受到限制,仅用于抗腐蚀和制作镜面。自从制备薄膜的真空系统和各种表面分析技术有了长足的进步,以及其他先进工艺(如等离子体技术)的发展,薄膜的应用开始了迅速的拓展。目前,在光电子器件中,薄膜的使用非常普遍,它们中大部分是化合物半导体材料,厚度低至纳米级。

二、薄膜制备技术

薄膜制备方法多种多样,总的说来可以分为两种——物理的和化学的。物理方法指在薄膜的制备过程中,原材料只发生物理的变化,而化学方法中,则要利用到一些化学反应才能得到薄膜。

1.化学气相淀积法(cvd)

目前光电子器件的制备中常用的化学方法主要有等离子体增强化学气相淀积(pecvd)和金属有机物化学气相淀积(mocvd)。

化学气相淀积是制备各种薄膜的常用方法,利用这一技术可以在各种基片上制备多种元素及化合物薄膜。传统的化学气相淀积一般需要在高温下进行,高温常常会使基片受到损坏,而等离子体增强化学气相淀积(pecvd)则能解决这一问题。等离子体的基本作用是促进化学反应,等离子体中的电子的平均能量足以使大多数气体电离或分解。用电子动能代替热能,这就大大降低了薄膜制备环境的温度,采用pecvd技术,一般在1000℃以下。利用pecvd技术可以制备sio 2 、si 3 n 4 、非晶si:h、多晶si、sic等介电和半导体膜,能够满足光电子器件的研发和制备对新型和优质材料的大量需求。

金属有机物化学气相淀积(mocvd)是利用有机金属热分解进行气相外延生长的先进技术,目前主要用于化合物半导体的薄膜气相生长,因此在以化合物半导体为主的光电子器件的制备中,它是一种常用的方法。利用mocvd技术可以合成组分按任意比例组成的人工合成材料,薄膜厚度可以精确控制到原子级,从而可以很方便的得到各种薄膜结构型材料,如量子阱、超晶格等。这种技术使得量子阱结构在激光器和led等器件中得到广泛的应用,大大提高了器件性能。

2.物理气相淀积(pvd)

化学反应一般需要在高温下进行,基片所处的环境温度一般较高,这样也就同时限制了基片材料的选取。相对于化学气相淀积的这些局限性,物理气相淀积(pvd)则显示出其独有的优越性,它对淀积材料和基片材料均没有限制。制备光 电子 器件的薄膜常用的pvd技术有蒸发冷凝法、溅射法和分子束外延。

蒸发冷凝法是薄膜制备中最为广泛使用的一种技术,它是在真空环境下,给待蒸发物提供足够的热量以获得蒸发所必需的蒸汽压,在适当的温度下,蒸发粒子在基片上凝结,实现薄膜沉积。蒸发冷凝法按加热源的不同有可分为电阻加热法、等离子体加热法、高频感应法、激光加热法和电子束加热法,后两种在光电子器件的制备中比较常用。

电子束加热法是将高速电子束打到待蒸发材料上,电子的动能迅速转换成热能,是材料蒸发。它的优点是可以避免待蒸发材料与坩埚发生反应,从而得到高纯的薄膜材料。近年来人们又研制出具有磁聚焦和磁弯曲的电子束蒸发装置,使用这样的装置,电子束可以被聚焦到位于基片之间的一个或多个支架中的待蒸发物上。

激光蒸发法是一种在高真空下制备薄膜的技术,激光作为热源使待蒸镀材料蒸发。激光源放置在真空室外部,激光光束通过真空室窗口打到待蒸镀材料上使之蒸发,最后沉积在基片上。激光蒸发法具有超清洁、蒸发速度快、容易实现顺序多元蒸发等优点。后来人们使用脉冲激光,可使原材料在很高温度下迅速加热和冷却,瞬间蒸发在靶的某一小区域得以实现。由于脉冲激光可产生高功率脉冲,完全可以创造瞬间蒸发的条件,因此脉冲激光蒸发法对于化合物材料的组元蒸发具有很大优势。使用激光蒸发法可以得到光学性质较好的薄膜材料,包括zno和ge膜等。

溅射是指具有足够高能量的粒子轰击固体表面(靶)使其中的原子或分子发射出来。这些被溅射出来的粒子带有一定的动能,并具有方向性。将溅射出来的物质沉积到基片上形成薄膜的方法成为溅射法,它也是物理气相淀积法的一种。溅射法又分直流溅射、离子溅射、射频溅射和磁控溅射,目前用的比较多的是后两种。在溅射靶上加有射频电压的溅射称为射频溅射,它是适用于各种金属和非金属材料的一种溅射淀积方法。磁控溅射的原理是,溅射产生的二次电子在阴极位降区内被加速称为高能电子,但它们并不直接飞向阴极,而是在电场和磁场的联合作用下进行近似摆线的运动。在运动中高能电子不断地与气体分子发生碰撞,并向后者转移能量,使之电离而本身成为低能电子。这些低能电子沿磁力线漂移到阴极附近的辅助阳极而被吸收,从而避免了高能电子对基片的强烈轰击,同时,电子要经过大约上百米的飞行才能到达阳极,碰撞频率大约为10 7 /s,因此磁控溅射的电离效率高。磁控溅射不仅可以得到很高的溅射速率,而且在溅射金属时还可以避免二次电子轰击而使基板保持接近冷态。

分子束外延(mbe)技术是一种可在原子尺度上精确控制外延厚度、掺杂和界面平整度的超薄层薄膜制备技术。所谓“外延”就是在一定的单晶材料衬底上,沿着衬底的某个指数晶面向外延伸生长一层单晶薄膜。分子束外延是在超高真空条件下,精确控制原材料的分子束强度,把分子束射入被加热的底片上而进行外延生长的。由于其蒸发源、监控系统和分析系统的高性能和真空环境的改善,能够得到极高质量的薄膜单晶体,可以说它是一种以真空蒸镀为基础的一种全新的薄膜生长方法。

三、结语

光电子器件范文第2篇

关键词:半导体;量子电子;光电子器件

半导体量子电子和光电子器件,作为近年来我国器件研制环节的前沿产品,加强对其分析与研究具有理论与实践的必要性和重要性。当今社会,半导体量子电子和光电子的迅速发展,在一定程度上是由信息技术等的广泛应用以及相关需求的不断扩大带动的;此外,随着材料制备技术的新发展,半导体量子电子和光电子器件也取得了新的发展机遇。由于半导体量子电子和光电子技术作为推动信息社会发展的重要支柱力量,加强对其分析与研究符合时展的需求。

1量子器件时展的新机遇

在开展半导体量子电子和光电子器件分析环节中,结合Moore定律研究发现,在过去的40多年时间内,表征存储技术的芯片集成度实现了两年一翻的发展速度。同时,相关工作人员依据具体的实验研究,表明当体系的对应尺度实现电子波长度一致时,就会产生量子效应。量子器件时展环节,在纳米量级的晶体管就会出现一些新现象分析,其中,电子干涉与无磁场下的附件平行电导就会出现较大的变化。此外,电导振荡周期的相关变化也出现了较大的变化,其中,共振隧穿二极管以及量子阱红外测量器等都是基于量子力学的框架基础上开展的相关讨论。对于半导体量子电子和光电子器件分析环节,纳米精度上的材料制备以及相关器件,同样,线路制作是制约器件发展的决定因素。半导体量子电子和光电子器件在过去发展的几年时间,分子束外延技术(MolecularBeamEpitaxy,MBE)和金属有机化学气相沉积(MetalOrganicChemicalVaporDeposition,MOCVD)同样被广泛地应用于半导体相关的微结构制作。在制作体系建设环节,实际可控制特征尺寸的相关要求,已经达到了精确度要求对生长方向上单个原子层的相关规定。在满足相关规定的基础上,这些相关材料的制作技术的成熟与完善,为复杂的微观结构和常规结构的部分器件制作提供了一定的环境基础。

2关于异质结构中的电子分析

在实施半导体量子电子和光电子器件分析过程中,首先需要考虑晶体的基本特征。晶体的基本特征主要表现为平移对称性,其特性在电子学以及光电子学领域也具有表现的特殊性。电子学和光电子学所涉及的半导体机构一般为金刚石结构以及闪锌矿结构,而金刚石结构和闪锌矿结构的光电性质则由其晶体结构决定。异质结构作为量子器件的一项基本机构,其组成也具有自身的特殊性,异质结构一般由两种晶格结构相似的材料组成,但是,必须要注意强调相似结构材料的异质性和不同构成。两种晶体结构的组成材料十分广泛,但是在一般情况下,异质结构的构成材料必须实现与晶格常数之间实现匹配,此外,异质结构还必须满足二元晶体或者满足三元晶体的材料要求,才能实现最理想的异制结构。在对半导体量子电子和光电子器件分析环节,实现有效质量理论来处理异质结构的问题,则主要是将异质结构看作是一个附属物,实现附加在一个均一的半导体上,并在这个附属环节,实现异质结构问题的解决。此外,量子器件一般会涉及不同维度的电子体系问题,而不同维度的电子体系之间存在的不同光学性质来源于电子体系的体态密度,为此,实现半导体量子电子和光电子器件分析的基础上,要将电子体系态密度和维度之间的关系进行分析。在分析基础上,得出态密度是单位体积,且主要是在能量附近单位能量之间隔离的电子态数,态密度的每一位量子态都可以通过向上旋转或向下旋转的不同性质的两个电子占据。

3对量子电子器件的分析

开展半导体量子电子和光电子器件分析环节,还需将量子电子器件的分析作为分析的着力点。其中,共振隧穿二级管(ResonantTunnelingDiodes,RTD)作为数字电路中最有发展潜力的一种纳米电子器件。RTD基本结构的构成是由两层禁带宽度大的半导体中间夹,半导体中间夹以禁带宽度小的半导体组合形成了双势垒,双势垒两端再用重复掺杂材料,并相互之间互相作用形成了电接触。关于对隧穿二极管的含义理解,可以从隧穿二极管的最初概念理解出发。隧穿二极管在研究最初,隧穿主要是指电子在导带和价带之间的相互作用,并通过带之间形成的跃迁。随着隧穿二极管概念发展到今天,其主要是由隧穿的势垒层即由异质的结的导带以及价带之间的不连续性构成的。经过专业人员的研究表明,许多新的量子器件的主要特性表现为电子通过异质结构形成的隧穿。当前的量子器件主要分为两类,其中一类属于三电极,其主要代表是研究电热子隧穿晶体管。电热子隧穿晶体管把异质结构的垒,作为将热电子在较短的时间内快速注入比较窄的基极路径。其在工作环节,一般情况下形成的基级散射率比较小,其形成的散射率在工作状态下,电子就会形成相当高的工作效率,并最终形成工作效率较高的集电极。其中第二类主要是两电极的器件组成的,两电极中共振隧穿,主要包括超晶格的机构以及双垒量子阱两个为主要代表。超晶格的机构和双垒量子阱,都具有较强的负极电导,其中的负电导,除了在微波领域方面得到广泛应用,还广泛地应用于数字以及光学器件中。

4对量子光电子器件的分析

关于半导体量子电子和光电子器件分析环节,还需要对量子光电子器件进行科学的分析。首先,需要对量子阱红外探测器(QuantumWellInfraredDetectors,QWIP)作出实验探索,量子的红外探测器是指,一种把红外辐射变为电子信号的相关转换器,红外探测器可以分为热探测器和光子探测器两种类别。热探测器主要是根据入射辐射的热效应引起的器件,热探测器与温度有关的参数变化值密切相关,并根据其参数的变化值来进行相关的探测活动。关于量子阱红外探测器的相关研究,早在1988年的贝尔试验,就进行了专业的报告研究。在研究报告中显示,HgCdTe为代表的窄禁带半导体探测器不同,量子阱探测器表现出其自身的特性。而宽禁带的半导体材料由于量子限制效应,其主要在导带和价带中形成相关的大量自能级。关于红外辐射响应的就是这些子能级别相互之间的跃迁。与HgCdTe不同的是,QWIP的优点主要表现为其材料的特性。QWIP的材料更具有均匀性,尤其是其器件的制作工艺比较成熟,在逐渐成熟和发展完善环节,其抗辐射能力强,且成本较低,都是其在发展环节体现的主要优势。其中,量子阱机关器则表现为其阈值的电流较小、线宽窄以及功率高等优点。

5结语

近年来,量子器件已经成为引领器件研制前沿的重要领域,其前沿领域地位的获取与信息技术的迅速发展密切相关。当前,科学技术及其信息技术的迅速发展,以及其应用范围的不断扩大,材料制备技术发展也获得了新的发展机遇。在这一环节,对性价比高、运转高速度、可靠性能高的器件追求,成为器件实现高度集成化的一项重要表现。同时,实现器件的高度集成化,当前已经成为计算机工业发展的核心问题。在实现器件时展的同时,线路中集成的器件总量也呈现出递增趋势,单个器件的维度已经实现了纳米量级的追求目标。在理性对待量子器件发展的时代前景时,还需要正视量子器件的未来发展,为更好地适应多媒体技术发展需求对芯片尺寸的更小要求。

[参考文献]

[1]曹曼.核心电子器件研究趋势可视化分析—以光电子器件为例[J].无线互联科技,2013(10):102-104.

[2]曹则贤.光电子器件:中国科学家谈科学[J].科学观察,2008(2):38.

[3]夏建白.半导体微结构物理效应及其应用讲座第2讲:量子阱、超晶格物理及其在光电子领域中的应用[J].物理,2004(9):684-691.

光电子器件范文第3篇

薄膜制备方法多种多样,总的说来可以分为两种——物理的和化学的。物理方法指在薄膜的制备过程中,原材料只发生物理的变化,而化学方法中,则要利用到一些化学反应才能得到薄膜。

1.化学气相淀积法(CVD)

目前光电子器件的制备中常用的化学方法主要有等离子体增强化学气相淀积(PECVD)和金属有机物化学气相淀积(MOCVD)。

化学气相淀积是制备各种薄膜的常用方法,利用这一技术可以在各种基片上制备多种元素及化合物薄膜。传统的化学气相淀积一般需要在高温下进行,高温常常会使基片受到损坏,而等离子体增强化学气相淀积(PECVD)则能解决这一问题。等离子体的基本作用是促进化学反应,等离子体中的电子的平均能量足以使大多数气体电离或分解。用电子动能代替热能,这就大大降低了薄膜制备环境的温度,采用PECVD技术,一般在1000℃以下。利用PECVD技术可以制备SiO2、Si3N4、非晶Si:H、多晶Si、SiC等介电和半导体膜,能够满足光电子器件的研发和制备对新型和优质材料的大量需求。

金属有机物化学气相淀积(MOCVD)是利用有机金属热分解进行气相外延生长的先进技术,目前主要用于化合物半导体的薄膜气相生长,因此在以化合物半导体为主的光电子器件的制备中,它是一种常用的方法。利用MOCVD技术可以合成组分按任意比例组成的人工合成材料,薄膜厚度可以精确控制到原子级,从而可以很方便的得到各种薄膜结构型材料,如量子阱、超晶格等。这种技术使得量子阱结构在激光器和LED等器件中得到广泛的应用,大大提高了器件性能。2.物理气相淀积(PVD)

化学反应一般需要在高温下进行,基片所处的环境温度一般较高,这样也就同时限制了基片材料的选取。相对于化学气相淀积的这些局限性,物理气相淀积(PVD)则显示出其独有的优越性,它对淀积材料和基片材料均没有限制。制备光电子器件的薄膜常用的PVD技术有蒸发冷凝法、溅射法和分子束外延。

蒸发冷凝法是薄膜制备中最为广泛使用的一种技术,它是在真空环境下,给待蒸发物提供足够的热量以获得蒸发所必需的蒸汽压,在适当的温度下,蒸发粒子在基片上凝结,实现薄膜沉积。蒸发冷凝法按加热源的不同有可分为电阻加热法、等离子体加热法、高频感应法、激光加热法和电子束加热法,后两种在光电子器件的制备中比较常用。

电子束加热法是将高速电子束打到待蒸发材料上,电子的动能迅速转换成热能,是材料蒸发。它的优点是可以避免待蒸发材料与坩埚发生反应,从而得到高纯的薄膜材料。近年来人们又研制出具有磁聚焦和磁弯曲的电子束蒸发装置,使用这样的装置,电子束可以被聚焦到位于基片之间的一个或多个支架中的待蒸发物上。

激光蒸发法是一种在高真空下制备薄膜的技术,激光作为热源使待蒸镀材料蒸发。激光源放置在真空室外部,激光光束通过真空室窗口打到待蒸镀材料上使之蒸发,最后沉积在基片上。激光蒸发法具有超清洁、蒸发速度快、容易实现顺序多元蒸发等优点。后来人们使用脉冲激光,可使原材料在很高温度下迅速加热和冷却,瞬间蒸发在靶的某一小区域得以实现。由于脉冲激光可产生高功率脉冲,完全可以创造瞬间蒸发的条件,因此脉冲激光蒸发法对于化合物材料的组元蒸发具有很大优势。使用激光蒸发法可以得到光学性质较好的薄膜材料,包括ZnO和Ge膜等。

溅射是指具有足够高能量的粒子轰击固体表面(靶)使其中的原子或分子发射出来。这些被溅射出来的粒子带有一定的动能,并具有方向性。将溅射出来的物质沉积到基片上形成薄膜的方法成为溅射法,它也是物理气相淀积法的一种。溅射法又分直流溅射、离子溅射、射频溅射和磁控溅射,目前用的比较多的是后两种。在溅射靶上加有射频电压的溅射称为射频溅射,它是适用于各种金属和非金属材料的一种溅射淀积方法。磁控溅射的原理是,溅射产生的二次电子在阴极位降区内被加速称为高能电子,但它们并不直接飞向阴极,而是在电场和磁场的联合作用下进行近似摆线的运动。在运动中高能电子不断地与气体分子发生碰撞,并向后者转移能量,使之电离而本身成为低能电子。这些低能电子沿磁力线漂移到阴极附近的辅助阳极而被吸收,从而避免了高能电子对基片的强烈轰击,同时,电子要经过大约上百米的飞行才能到达阳极,碰撞频率大约为107/s,因此磁控溅射的电离效率高。磁控溅射不仅可以得到很高的溅射速率,而且在溅射金属时还可以避免二次电子轰击而使基板保持接近冷态。

分子束外延(MBE)技术是一种可在原子尺度上精确控制外延厚度、掺杂和界面平整度的超薄层薄膜制备技术。所谓“外延”就是在一定的单晶材料衬底上,沿着衬底的某个指数晶面向外延伸生长一层单晶薄膜。分子束外延是在超高真空条件下,精确控制原材料的分子束强度,把分子束射入被加热的底片上而进行外延生长的。由于其蒸发源、监控系统和分析系统的高性能和真空环境的改善,能够得到极高质量的薄膜单晶体,可以说它是一种以真空蒸镀为基础的一种全新的薄膜生长方法。

三、结语

薄膜技术是研制新材料、新结构的重要方法之一,用薄膜技术制作的薄膜材料不仅具有优良的光电性能、钝化性能、强的阻挡杂质粒子扩散以及抗水汽渗透能力,在光电子器件中得到广泛的应用,主要用来充当绝缘层、钝化保护层以及各种敏感膜层等,而且还具有很高的硬度和强的化学稳定性,从而在材料改性技术领域中也将有着广阔的应用前景。【摘要】本文介绍了在光电子器件制造中常用的几种薄膜技术的原理以及各自的特点。

光电子器件范文第4篇

论文摘要:纳米光电子技术是一门新兴的技术,近年来越来越受到世界各国的重视,而随着该技术产生的纳米光电子器件更是成为了人们关注的焦点。主要介绍了纳米光电子器件的发展现状。

1纳米导线激光器

2001年,美国加利福尼亚大学伯克利分校的研究人员在只及人的头发丝千分之一的纳米光导线上制造出世界最小的激光器-纳米激光器。这种激光器不仅能发射紫外激光,经过调整后还能发射从蓝色到深紫外的激光。研究人员使用一种称为取向附生的标准技术,用纯氧化锌晶体制造了这种激光器。他们先是"培养"纳米导线,即在金层上形成直径为20nm~150nm,长度为10000nm的纯氧化锌导线。然后,当研究人员在温室下用另一种激光将纳米导线中的纯氧化锌晶体激活时,纯氧化锌晶体会发射波长只有17nm的激光。这种纳米激光器最终有可能被用于鉴别化学物质,提高计算机磁盘和光子计算机的信息存储量。

2紫外纳米激光器

继微型激光器、微碟激光器、微环激光器、量子雪崩激光器问世后,美国加利福尼亚伯克利大学的化学家杨佩东及其同事制成了室温纳米激光器。这种氧化锌纳米激光器在光激励下能发射线宽小于0.3nm、波长为385nm的激光,被认为是世界上最小的激光器,也是采用纳米技术制造的首批实际器件之一。在开发的初始阶段,研究人员就预言这种ZnO纳米激光器容易制作、亮度高、体积小,性能等同甚至优于GaN蓝光激光器。由于能制作高密度纳米线阵列,所以,ZnO纳米激光器可以进入许多今天的GaAs器件不可能涉及的应用领域。为了生长这种激光器,ZnO纳米线要用催化外延晶体生长的气相输运法合成。首先,在蓝宝石衬底上涂敷一层1nm~3.5nm厚的金膜,然后把它放到一个氧化铝舟上,将材料和衬底在氨气流中加热到880℃~905℃,产生Zn蒸汽,再将Zn蒸汽输运到衬底上,在2min~10min的生长过程内生成截面积为六边形的2μm~10μm的纳米线。研究人员发现,ZnO纳米线形成天然的激光腔,其直径为20nm~150nm,其大部分(95%)直径在70nm~100nm。为了研究纳米线的受激发射,研究人员用Nd:YAG激光器(266nm波长,3ns脉宽)的四次谐波输出在温室下对样品进行光泵浦。在发射光谱演变期间,光随泵浦功率的增大而激射,当激射超过ZnO纳米线的阈值(约为40kW/cm)时,发射光谱中会出现最高点,这些最高点的线宽小于0.3nm,比阈值以下自发射顶点的线宽小1/50以上。这些窄的线宽及发射强度的迅速提高使研究人员得出结论:受激发射的确发生在这些纳米线中。因此,这种纳米线阵列可以作为天然的谐振腔,进而成为理想的微型激光光源。研究人员相信,这种短波长纳米激光器可应用在光计算、信息存储和纳米分析仪等领域中。

3量子阱激光器

2010年前后,蚀刻在半导体片上的线路宽度将达到100nm以下,在电路中移动的将只有少数几个电子,一个电子的增加和减少都会给电路的运行造成很大影响。为了解决这一问题,量子阱激光器就诞生了。在量子力学中,把能够对电子的运动产生约束并使其量子化的势场称之成为量子阱。而利用这种量子约束在半导体激光器的有源层中形成量子能级,使能级之间的电子跃迁支配激光器的受激辐射,这就是量子阱激光器。目前,量子阱激光器有两种类型:量子线激光器和量子点激光器。

3.1量子线激光器

近日,科学家研制出功率比传统激光器大1000倍的量子线激光器,从而向创造速度更快的计算机和通信设备迈进了一大步。这种激光器可以提高音频、视频、因特网及其他采用光纤网络的通信方式的速度,它是由来自耶鲁大学、位于新泽西洲的朗讯科技公司贝尔实验室及德国德累斯顿马克斯·普朗克物理研究所的科学家们共同研制的。这些较高功率的激光器会减少对昂贵的中继器的要求,因为这些中继器在通信线路中每隔80km(50mile)安装一个,再次产生激光脉冲,脉冲在光纤中传播时强度会减弱(中继器)。

3.2量子点激光器

由直径小于20nm的一堆物质构成或者相当于60个硅原子排成一串的长度的量子点,可以控制非常小的电子群的运动而不与量子效应冲突。科学家们希望用量子点代替量子线获得更大的收获,但是,研究人员已制成的量子点激光器却不尽人意。原因是多方面的,包括制造一些大小几乎完全相同的电子群有困难。大多数量子装置要在极低的温度条件下工作,甚至微小的热量也会使电子变得难以控制,并且陷入量子效应的困境。但是,通过改变材料使量子点能够更牢地约束电子,日本电子技术实验室的松本和斯坦福大学的詹姆斯和哈里斯等少数几位工程师最近已制成可在室温下工作的单电子晶体管。但很多问题仍有待解决,开关速度不高,偶然的电能容易使单个电子脱离预定的路线。因此,大多数科学家正在努力研制全新的方法,而不是仿照目前的计算机设计量子装置。

4微腔激光器

微腔激光器是当代半导体研究领域的热点之一,它采用了现代超精细加工技术和超薄材料加工技术,具有高集成度、低噪声的特点,其功耗低的特点尤为显著,100万个激光器同时工作,功耗只有5W。该激光器主要的类型就是微碟激光器,即一种形如碟型的微腔激光器,最早由贝尔实验室开发成功。其内部为采用先进的蚀刻工艺蚀刻出的直径只有几微米、厚度只有100nm的极薄的微型园碟,园碟的周围是空气,下面靠一个微小的底座支撑。由于半导体和空气的折射率相差很大,微碟内产生的光在此结构内发射,直到所产生的光波积累足够多的能量后沿着它的边缘折射,这种激光器的工作效率很高、能量阈值很低,工作时只需大约100μA的电流。

长春光学精密机械学院高功率半导体激光国家重点实验室和中国科学院北京半导体研究所从经典量子电动力学理论出发研究了微碟激光器的工作原理,采用光刻、反应离子刻蚀和选择化学腐蚀等微细加工技术制备出直径为9.5μm、低温光抽运InGaAs/InGaAsP多量子阱碟状微腔激光器。它在光通讯、光互联和光信息处理等方面有着很好的应用前景,可用作信息高速公路中最理想的光源。

微腔光子技术,如微腔探测器、微腔谐振器、微腔光晶体管、微腔放大器及其集成技术研究的突破,可使超大规模集成光子回路成为现实。因此,包括美国在内的一些发达国家都在微腔激光器的研究方面投人大量的人力和物力。长春光机与物理所的科技人员打破常规,用光刻方法实现了碟型微腔激光器件的图形转移,用湿法及干法刻蚀技术制作出碟型微腔结构,在国内首次研制出直径分别为8μm、4.5μm和2μm的光泵浦InGaAs/InGaAsP微碟激光器。其中,2μm直径的微碟激光器在77K温度下的激射阔值功率为5μW,是目前国际上报道中的最好水平。此外,他们还在国内首次研制出激射波长为1.55μm,激射阈值电流为2.3mA,在77K下激射直径为10μm的电泵浦InGaAs/InGaAsP微碟激光器以及国际上首个带有引出电极结构的电泵浦微柱激光器。值得一提的是,这种微碟激光器具有高集成度、低阈值、低功耗、低噪声、极高的响应、可动态模式工作等优点,在光通信、光互连、光信息处理等方面的应用前景广阔,可用于大规模光子器件集成光路,并可与光纤通信网络和大规模、超大规模集成电路匹配,组成光电子信息集成网络,是当代信息高速公路技术中最理想的光源;同时,可以和其他光电子元件实现单元集成,用于逻辑运算、光网络中的光互连等。

5新型纳米激光器

光电子器件范文第5篇

论文摘要:纳米光电子技术是一门新兴的技术,近年来越来越受到世界各国的重视,而随着该技术产生的纳米光电子器件更是成为了人们关注的焦点。主要介绍了纳米光电子器件的发展现状。

1纳米导线激光器

2001年,美国加利福尼亚大学伯克利分校的研究人员在只及人的头发丝千分之一的纳米光导线上制造出世界最小的激光器-纳米激光器。这种激光器不仅能发射紫外激光,经过调整后还能发射从蓝色到深紫外的激光。研究人员使用一种称为取向附生的标准技术,用纯氧化锌晶体制造了这种激光器。他们先是"培养"纳米导线,即在金层上形成直径为20nm~150nm,长度为10000nm的纯氧化锌导线。然后,当研究人员在温室下用另一种激光将纳米导线中的纯氧化锌晶体激活时,纯氧化锌晶体会发射波长只有17nm的激光。这种纳米激光器最终有可能被用于鉴别化学物质,提高计算机磁盘和光子计算机的信息存储量。

2紫外纳米激光器

继微型激光器、微碟激光器、微环激光器、量子雪崩激光器问世后,美国加利福尼亚伯克利大学的化学家杨佩东及其同事制成了室温纳米激光器。这种氧化锌纳米激光器在光激励下能发射线宽小于0.3nm、波长为385nm的激光,被认为是世界上最小的激光器,也是采用纳米技术制造的首批实际器件之一。在开发的初始阶段,研究人员就预言这种zno纳米激光器容易制作、亮度高、体积小,性能等同甚至优于gan蓝光激光器。由于能制作高密度纳米线阵列,所以,zno纳米激光器可以进入许多今天的gaas器件不可能涉及的应用领域。为了生长这种激光器,zno纳米线要用催化外延晶体生长的气相输运法合成。首先,在蓝宝石衬底上涂敷一层1 nm~3.5nm厚的金膜,然后把它放到一个氧化铝舟上,将材料和衬底在氨气流中加热到880℃~905℃,产生zn蒸汽,再将zn蒸汽输运到衬底上,在2min~10min的生长过程内生成截面积为六边形的2μm~10μm的纳米线。研究人员发现,zno纳米线形成天然的激光腔,其直径为20nm~150nm,其大部分(95%)直径在70nm~100nm。为了研究纳米线的受激发射,研究人员用nd:yag激光器(266nm波长,3ns脉宽)的四次谐波输出在温室下对样品进行光泵浦。在发射光谱演变期间,光随泵浦功率的增大而激射,当激射超过zno纳米线的阈值(约为40kw/cm)时,发射光谱中会出现最高点,这些最高点的线宽小于0.3nm,比阈值以下自发射顶点的线宽小1/50以上。这些窄的线宽及发射强度的迅速提高使研究人员得出结论:受激发射的确发生在这些纳米线中。因此,这种纳米线阵列可以作为天然的谐振腔,进而成为理想的微型激光光源。研究人员相信,这种短波长纳米激光器可应用在光计算、信息存储和纳米分析仪等领域中。

3量子阱激光器

2010年前后,蚀刻在半导体片上的线路宽度将达到100nm以下,在电路中移动的将只有少数几个电子,一个电子的增加和减少都会给电路的运行造成很大影响。为了解决这一问题,量子阱激光器就诞生了。在量子力学中,把能够对电子的运动产生约束并使其量子化的势场称之成为量子阱。而利用这种量子约束在半导体激光器的有源层中形成量子能级,使能级之间的电子跃迁支配激光器的受激辐射,这就是量子阱激光器。目前,量子阱激光器有两种类型:量子线激光器和量子点激光器。

3.1 量子线激光器

近日,科学家研制出功率比传统激光器大1000倍的量子线激光器,从而向创造速度更快的计算机和通信设备迈进了一大步。这种激光器可以提高音频、视频、因特网及其他采用光纤网络的通信方式的速度,它是由来自耶鲁大学、位于新泽西洲的朗讯科技公司贝尔实验室及德国德累斯顿马克斯·普朗克物理研究所的科学家们共同研制的。这些较高功率的激光器会减少对昂贵的中继器的要求,因为这些中继器在通信线路中每隔80km(50mile)安装一个,再次产生激光脉冲,脉冲在光纤中传播时强度会减弱(中继器)。

3.2 量子点激光器

由直径小于20nm的一堆物质构成或者相当于60个硅原子排成一串的长度的量子点,可以控制非常小的电子群的运动而不与量子效应冲突。科学家们希望用量子点代替量子线获得更大的收获,但是,研究人员已制成的量子点激光器却不尽人意。原因是多方面的,包括制造一些大小几乎完全相同的电子群有困难。大多数量子装置要在极低的温度条件下工作,甚至微小的热量也会使电子变得难以控制,并且陷入量子效应的困境。但是,通过改变材料使量子点能够更牢地约束电子,日本电子技术实验室的松本和斯坦福大学的詹姆斯和哈里斯等少数几位工程师最近已制成可在室温下工作的单电子晶体管。但很多问题仍有待解决,开关速度不高,偶然的电能容易使单个电子脱离预定的路线。因此,大多数科学家正在努力研制全新的方法,而不是仿照目前的计算机设计量子装置。

4 微腔激光器

微腔激光器是当代半导体研究领域的热点之一,它采用了现代超精细加工技术和超薄材料加工技术,具有高集成度、低噪声的特点,其功耗低的特点尤为显著,100万个激光器同时工作,功耗只有5w。

该激光器主要的类型就是微碟激光器,即一种形如碟型的微腔激光器,最早由贝尔实验室开发成功。其内部为采用先进的蚀刻工艺蚀刻出的直径只有几微米、厚度只有100nm的极薄的微型园碟,园碟的周围是空气,下面靠一个微小的底座支撑。由于半导体和空气的折射率相差很大,微碟内产生的光在此结构内发射,直到所产生的光波积累足够多的能量后沿着它的边缘折射,这种激光器的工作效率很高、能量阈值很低,工作时只需大约100μa的电流。

长春光学精密机械学院高功率半导体激光国家重点实验室和中国科学院北京半导体研究所从经典量子电动力学理论出发研究了微碟激光器的工作原理,采用光刻、反应离子刻蚀和选择化学腐蚀等微细加工技术制备出直径为9.5μm、低温光抽运ingaas/ingaasp多量子阱碟状微腔激光器。它在光通讯、光互联和光信息处理等方面有着很好的应用前景,可用作信息高速公路中最理想的光源。

微腔光子技术,如微腔探测器、微腔谐振器、微腔光晶体管、微腔放大器及其集成技术研究的突破,可使超大规模集成光子回路成为现实。因此,包括美国在内的一些发达国家都在微腔激光器的研究方面投人大量的人力和物力。长春光机与物理所的科技人员打破常规,用光刻方法实现了碟型微腔激光器件的图形转移,用湿法及干法刻蚀技术制作出碟型微腔结构,在国内首次研制出直径分别为8μm、4.5μm和2μm的光泵浦ingaas/ingaasp微碟激光器。其中,2μm直径的微碟激光器在77k温度下的激射阔值功率为5μw,是目前国际上报道中的最好水平。此外,他们还在国内首次研制出激射波长为1.55μm,激射阈值电流为2.3ma,在77k下激射直径为10μm的电泵浦ingaas/ingaasp微碟激光器以及国际上首个带有引出电极结构的电泵浦微柱激光器。值得一提的是,这种微碟激光器具有高集成度、低阈值、低功耗、低噪声、极高的响应、可动态模式工作等优点,在光通信、光互连、光信息处理等方面的应用前景广阔,可用于大规模光子器件集成光路,并可与光纤通信网络和大规模、超大规模集成电路匹配,组成光电子信息集成网络,是当代信息高速公路技术中最理想的光源;同时,可以和其他光电子元件实现单元集成,用于逻辑运算、光网络中的光互连等。

5 新型纳米激光器

光电子器件范文第6篇

关键词:工程技术型人才;工程素质;实践能力;课程改革实践

光电信息科学与工程是21世纪在全球迅猛发展的光电信息产业带动起来的一门综合性、运用性、技术性学科。国内的光电产业自2000年以来迎来最好的发展时期,同时也促进了与产业紧密相连的光电学科的发展、建设,到目前为止,全国已有近170多所高校(其中接近100所是地方新建本科院校)设置了光电及其相关专业,并将《光电子器件》作为光电信息科学与工程及其相关专业的主干课程。该课程教学的实施不仅有利于巩固、衔接学生所学的光电子技术、光电显示、视频接口与驱动、光电传感器、数模电路、单片机等专业核心课程的知识内容,而且对拓展专业工程实践运用,培养专业学生工程实践能力、为区域光电产业输送工程技术型光电人才起到承上启下的作用。在早先的《光电子器件》课程日常的理论教学中,从教学大纲、教案到课件参照了重点大学光电专业的教学模式,将每节课都用来讲解光电器件的理论知识、器件背景知识、制造器件的材料、半导体制造工艺、器件的热、光、电学性质、性质的理论公式推导以及一些理论模型的建立分析,课堂的教学内容多、杂、难。课程的实践实验教学也是按照实验室购买的实验仪器开设一些常规类的实验实践教学项目,按部就班进行。在实验实践教学过程中学生按照实验步骤连接实验线路,测试实验数据,在完成实验的整个过程中很多学生不知道自己用的是什么类型的光电器件、实验要做什么、测量什么数据、有什么用。在学习过程中学生学习兴趣、效率越来越低,专业的工程技术能力没有被培养起来反而变得很薄弱。在国家建设职业型、应用型大学培养模式的大环境下,以三明学院运用型人才培养模式改革为契机[1],对《光电子器件》课程进行有别于老本科院校学术型、研究型高级光电人才培养目标,在课程的教学内容、实验、实训教学、考核方式等方面进行改革与实践,积极探索工程技术型光电人才培养新模式,迎合包括三明在内的海西光电产业集群对光电人才的需求。

1以理论知识实用、够用为课程教学原则改革课程教学内容

《光电子器件》是光电专业的基础核心课程,是一门集理论性和实践性都非常强的专业课程,课程全面地介绍了光电子技术的基本原理、聚集了数量繁多且工程技术上常用、实用的光电器件、罗列推导了繁杂难懂的器件及相关性质的方程公式,且课程内容缺少所涉及的光电器件在现代光电工程中的运用实例。这样的课程教师难教,学生难懂、难学、难用。以学院特色的“3355”应用型人才培养模式为课程改革动力,配合“教学型、运用型、服务型”的学院人才培养模式,以培养具有创新意识和较强实践能力的高素质工程技术型光电人才及高效服务行业社会为课程教学价值目标,优化《光电子器件》教材,改革课程理论教学内容。《光电子器件》现有的教材对光电器件进行介绍时一般从两个方面进行:器件原理公式推导证明,对应的测量电路。一方面对于本科层次的教材,大部分的教材在器件原理及测量电路这两方面就占了很大的篇幅,且大部分为复杂的材料原理及电路原理公式推导,而对于大部分从事光电行业的企业、事业单位,只具备本科学历的光电毕业生并不是其产品研发的主力军,而是作为工程技术型人才使用。因此用人单位对毕业生的能力要求主要体现为能够掌握光电器件的基本原理、能运用特定的光电器件来实现光电信号的传输、转化、控制以及对现代光电工程进行铺设、检测、维修,这也正是作为一个地方性的本科高校培养人才的精准定位。这就要求专业课程的课堂教学内容应以实用为主,围绕器件在光电工程中的应用范围,应用实例为主线对教材内容进行优化,摒弃了以复杂公式的详细推导为重点的授课方式。另一方面目前教材涉及的光电子器件类型很多,从远红外到紫外光甚至还介绍X射线探测与成像器件,有些光电子器件学生无论是在实践、设计课程,还是今后毕业走上工作岗位都很少会涉及到,因此本着课程内容够用的原则,删除了这方面的知识,留出更多的课堂时间分配到常用的光电器件上[2]。同时由于目前半导体材料技术的进步发展,光电器件的类型不断更新,许多新型光电器件不断研制、运用例如:灵敏度可变的光探测器(VSPD),有源像素图像传感器(APS)等,这些学科专业最新的发展动向正是高素质运用型人才所必须的专业软实力,因此需要将光电器件的前沿增加到光电子器件的课堂教学内容之中,以拓宽学生的专业知识面。

2全面开放专业实验仪器资源为课程实践教学改革服务

目前通过学院多年的累积经费投入建设,三明学院的光电专业拥有数量较多和类型较齐全的专业实验仪器设备,这些实验仪器设备通常只为单一专业课程服务,以太阳能光伏发电实训设备为例,设备只在专业学生第七个学期开设相关课程的时候用到,其他的时间、其他专业年级的学生都很少接触到这批实验设备,一方面在《光电子器件》课程教学改革的重点是针对各类型的专业工程技术型实践项目训练,和太阳能光伏有关的工程技术实践项目比较常用且运用广泛,另一方面对于光电专业的学生而言太阳能光伏知识的运用是学生专业知识的重要组成部分,因此有必要让学生尽早接触这批实验设备,并对太阳能光伏相关的知识运用有一定的了解,才能使后期学生实践实训项目顺利推进,所以必须对光电专业的传感器系统实验装置、太阳能光伏发电实训设备、单彩、全彩LED点阵显示实验仪器设备、光电技术创新实训平台扩展实验仪器、光电技术创新实训平台、液晶模块应用实验系统、彩色面阵CCD综合实验仪、多功能CPU单片机实验系统等实验仪器资源进行有机整合,把《光电器件》课程教学改革中需要涉及的实验仪器全部开放运行使用,充分利用资源,为后期的实践训练项目提供硬件条件支持。

3以学生工程素质培养和提升为目标改革实践教学环节

工程素质是指从事工程实践的工程专业技术人员的一种能力,在专业工程实践中表现出来的一种思考问题、解决问题、建立长久工程问题反应机制的能力,需要从专业课堂、专业实践、工程实践中长期积累。用人单位对专业人才的专业能力期望值往往较高,而地方本科院校大部分的毕业生在解决工程实际问题的实践能力方面普遍较差,因此往往不能令用人单位满意,这两者之间的失衡归根结底是专业学生的工程素质缺失。因此在日常的专业课程教学中培养学生的工程素质成为地方新建本科高校为地方企业输送优秀专业人才的关键。以光电信息科学与工程专业课程体系中的《光电子器件》课程教学为例,主要从以下几个方面训练学生在相应的光电工程实践能力并提升其工程素质:

(1)有机整合现有的基础性、验证性实验项目,剔除偏理论、无应用的实验项目,大量增加综合性设计性实验项目,大力改革创新现有的专业实践教学体系。虽然基础性、验证性实验是验证理论,对学过的知识进行巩固的阶段,但是这些实验项目存在实验内容单一滞后、实验手段单一等问题,学生很容易失去兴趣。例如:光电子器件基础实验中前五个实验:光敏电阻、光电二极管、光电三极管、pin光电二极管、硅光电池特性测试及其变换电路。这几个实验除了所用的器件类型不一样外,其他的实验测试电路和内容几乎类似,因此可以整合成一个课程大实验,而把剩下的时间用来开发、增加一些综合性设计性实验,譬如:利用红外光电三极管可以设计一个红外无线耳机,利用硅光电池可以设计一个光照度测量仪,利用光电烟雾传感器设计动车车厢的烟雾报警器等,在提升了专业实验的设计性同时,极大激发了学生制作设计兴趣。培养了学生的工程素质,起到事半功倍的效果[3]。

(2)探索一套以培养学生从“模仿”—“独立创新设计”的实践能力提升训练模式。目前很多专业大部分课程的实践、课程设计的原课题都是已有的,因此在实践教学或者是课程设计的时候,经常性的做法就是让学生去模仿现有的、别人的东西,模仿也是培养实践动手能力的必经过程,只是在全盘接受模仿之后,教师和学生应当进行设计反思,将课题中所用的方法,器件、电路排布进行相应的改进、替换、优化,去粗取精,转变创新。而恰恰大部分老师和学生忽略了这点,因此需要建立由“模仿”—“独立创新设计”的实践能力提升训练模式。例如在“太阳能光电智能车”设计的过程中,循迹这部分功能的实现就有很多种解决的方案,学生可以用摄像头、光电红外对管、激光、特殊传感器四种方案来实现,循迹可以是四方形,8字形及其他更为复杂的路线,循迹的背景可以是最简单的白底黑线、稍难白底绿线、更难的绿地红线等。教师在布置设计方案的时候可以先从最简单的白底黑线、椭圆形轨迹开始,在学生成功实现该设计要求之后,再逐渐增加设计的难度,譬如更换循迹光电传感器,但是不同的光电器件在对光信号进行电信号转化的方式、信号的放大处理方式、误差的处理方式都不相同,一旦更换器件,就要求后面的数模转化,电路设计、以及单片机程序都需要重新设计,因此“独立创新设计”在培养学生的工程素质方面起着决定性的桥梁作用,只有将这一步做好,才能发现问题,分析问题,解决问题,最后运用自己的方法、自己拟定的器件去独立设计行业产品,不断训练,不断进行专业知识运用经验的日积月累,厚积学生的专业工程素质。

(3)以“贴近生产、贴近运用”为专业实践实训课程宗旨,建立起一套分级、分阶段课程实践实训题库并定期更新。题库中的训练项目全部来源于已经解决的光电工程运用实践案例,题库分基础型《光电子器件》课程实验实践项目和拔高型《光电子器件》课程实验实践项目,基础型训练项目要求每位学生一人一题独立完成一个实践训练项目,对专业的每一位学生进行系统的实践能力训练,让每一位学生的能力通过课程都能得到锻炼。拔高型训练项目以三个人为一组,项目的题目主要以历年全省、全国的电子设计竞赛、光电竞赛、单片机、工程竞赛题目为主,拔高型训练项目相较于基础型训练项目其所涉及的专业知识面更宽,对学生的工程实践能力要求更高,因此需要每个组员通力支持、分工协作才能完成,充分锻炼学生的团队协作能力和社交能力[4]。无论是基础型还是拔高型专业训练项目,都能引导学生把专业知识运用到生活生产实践中,以解决专业的工程技术运用问题为点,带动学生专业运用创新能力的激发为面,以点带面,增强光电专业实践课程工程与具体光电工程案例之间的亲和力,激发专业学生无穷创造力,驱动学生的工程素质得到飞跃发展。

(4)探索光电专业的实践教学体系如何融合到学校、学院的第二课堂活动、开放实验室、各类型专业竞赛,专业教师的校内、课内横纵向、产学研课题项目中,并将专业学生与项目无缝对接,不断从实践中总结、反馈和提高,形成专业实践教学训练对学生实践应用能力提升的巨大推力,做到培养体系改革和学生能力提升的良性循环[5]。积极走访光电企业,建立实践基地,校企合作项目,以企业对光电专业人才能力的具体要求为重中之重,聘请企业专业工程师参与专业实践教学体系的形式和具体内容的制定,以此来调整和优化专业培养方案,科学设置实践环节的内容,做到理论与实践相结合,课内与课外相结合的协同促进机制,大力推动课程教学改革。

4改革考核评价制度,促进学生全面发展

任何一门课都需要相应的考核制度,理论知识闭卷考试是最为常见的一种衡量学生对该课程掌握程度的考核方式,但《光电子器件》课程知识的应用性较强,在教学中往往会发现有的学生虽然理论课程成绩一般,但是其在实践、产品设计方面有着非常强的动手能力,这正是实践能力强的工程技术型人才的典型代表,所以《光电子器件》课程改革的另一重要环节就是改革课程的考核评价制度,打破以期末成绩作为评判学生专业素质的唯一指标,《光电子器件》课程的考核方式除了期末的试卷考核方式外,增加个性化考核方式和过程考核方式。对于工程实践能力强的学生,在考核期末课程总成绩的时候,应当将这部分学生的理论成绩在总成绩中的比重降低,比如闭卷分数占40%,理论验证性实验占10%,光电专业课程设计占50%[6],对于理论学习能力强的学生进行课程的过程考核,考核方式为:(1)《光电子器件》课程按知识点分布安排至少考试3次。(2)课堂随机考察方式,建立课程专业的问题库,记录学生的等分记录,每生每学期不少于10次。按照这两种考核方式的学生期末试卷成绩占总成绩的比重可降低为40%。通过多样化的考核方式,充分考虑了学生的个性化,激发他们的专业积极性的同时反过来促进专业理论课程的学习,使得学生的工程实践能力和专业知识能力都得到充分融合,更好地培养学生的综合实践能力,为培养工程技术型光电人才奠定基础。

5结语

围绕专业理论知识实用、够用,实践技能下得去、上得来的递进式提升方式、课程考核方式个性化定量以及为地方高校培养具有创新意识和较强实践能力的高素质工程技术型光电人才的目的,对《光电子器件》课程从教学内容、专业实验室资源整合、实践环节及考核制度这几个环节开展教学改革与实践活动。在课程实践改革的过程中,学生的课堂听课效率提高了,学习态度向着更好方向发展,专业理论知识和实践能力得到一定的锻炼和提高,学生参加各类型的专业竞赛也获得了较好成绩,课程的教学改革实践初见成效。

参考文献:

[1]刘健.致力转型发展提升办学水平[N].中国教育报,2014-10-27(08).

[2]叶莉华,崔一平,胡国华.光电子技术课程教改探索[J].电气电子教学学报,2007,29(2):10-12.

[3]苏俊宏.光电子技术基础[M].北京:国防工业出版社,2008.

[4]狄红卫,张永林.光电子技术人才培养的教学改革与实践[J].高等物理教育,2003(6):36-38.

[5]蒋行国,王彩燕,雷芝峥.光电信息技术课程教学的实践与思考[J].桂林电子科技大学学报,2008,28(4):359-361.

[6]周文富.应用型本科教学质量保障与监控体系构建与实践[M].厦门:厦门大学出版社,2012.

光电子器件范文第7篇

【关键词】光电子器件 双语 创新 小班化教学

【中图分类号】G64 【文献标识码】A 【文章编号】2095-3089(2015)10-0223-02

一、《光电子器件》双语课程的特点

科学技术的不断发展,让人类社会步入了信息量爆炸性增长的阶段。世界再也不是绕着圆形的地球在运转,人们将其描述为:“the world is flat”,即世界扁平化。信息传送不分昼夜,没有时差和地域的分别。面临这一特殊新时期,对于高科技工程领域而言,专业英语将是获得、掌握、利用这些信息、紧跟时展步伐的重要国际交流工具。当前,双语教学已经成为各大高校专业人才培养的关键,我国各高校根据自身情况开展双语教学课程具有重要意义[1-3]。

南京邮电大学长期以来一直高度重视双语教学在课程建设中的作用。在光学专业领域,先后开设了《应用光学》、《光电子学》和《光电子器件》等双语课程。其中,《光电子器件》双语课程作为光电信息工程专业的选修课程,旨于培养光电子科学与技术领域具有国际视野和竞争能力的科研与技术开发的后备人才。类似于其他工科类双语课程,该课程需要灵活地应用两种不同语言向学生传授知识理论,与学生进行交流和沟通,培养其双语信息的获取、处理、交流和创新能力。让学生掌握光电子技术专业理论知识的同时,了解该领域国际学术前沿,成为真正的创新型人才。此外,以小班为单位进行教学。不同于以往的大班授课模式,由于课堂规模的变化,对教师教学、课堂组织、课程考核等提出了新的要求,为培养创新型人才提供了一种新的方式。

二、《光电子器件》双语课程小班化教学的特殊性

新时期我国高等教育应用型人才的培养,应该以“综合素质”为方向,以应用为目标,以“能力”为主线和核心。不是培养只求一个职业饭碗、缺乏事业志向的人,而是培养具有知识、能力、观念,具有解决实际问题、应对实际工程问题的技术人才。和其他高等教育课程一样,《光电子器件》双语课程是一门应用型、实践性强的工程技术课程,强调理论联系实际,以培养光学工程领域应用型创新人才为目标,内容涉及光电子器件(如光源、光纤和光电探测器、光电调制器等器件)的工作原理和实际器件的设计与选型。部分内容需要紧跟技术发展前沿,体现最新技术的发展动态和现状。《光电子器件》双语课程采用小班化教学,由于其授课对象和课程安排的特殊性,为实现培养创新型人才的教学目标,需要在实际的教学实践中探索与研究有效的教学模式。

在大班双语教学课堂上,由于人数众多往往只采取一种教学策略:以教师为重的单向授课。采用一刀切的考核模式,教学空间的设置并不理想。由于双语课程语言使用的特殊性,学生的英语水平参差不齐,部分书面成绩优异的学生还存在口语表达能力方面的不足,授课过程被动接受将大大降低学生的学习效率,让其失去学习信心。此外,学生还存在团队合作能力不高、沟通能力较低、表达能力差、专业阅读量较少,解决实际问题的能力较差的不足。开展小班化教学的本质,并不仅仅体现在人数上。在学生较少的班级中,开展教育教学活动的教学内容、教学模式和评价方法都将产生全新变化,教育观念将更新,其关键在于促进每个学生的个性化发展。实施小班化教学,首先应树立:“学生为主导”的意识,即学生是教学的主体,处于教学活动的中心地位。主要体现于:学生有更多的时间与教师交流,得到教师的个别化教育,能充分享受教育的资源;其次,实施小班化教学,教师必须树立服务意识,需要根据每个学生的特点、需求,制定教学手段,创设和谐的教学意境,提高教学效率;最后,教师在小班化教学中的主导地位,主要体现于引导学生积极探索、有效地组织教学活动,例如准备课堂问题、组织课堂讨论、反馈学生问题等,培养学生知识探索的精神和学以致用的能力。小班教学中,师生交流的机会明显增多,学生最终的学习效率也将提高。

三、《光电子器件》双语教学小班化教学实施方法

以培养个性化创新型人才为目标,将小班化教学引入《光电子器件》双语课程,实施方法主要包括以下几个方面:

(1)教学活动中加入文献阅读、汇报,引入实际应用相结合的案例教学:前者是指教师布置专业英文文献阅读作业,学生在规定时间内完成阅读报告,并在课上用PPT向全班同学汇报阅读成果;后者旨于引导课后自主学习,多层次递进式教学,注重学用结合,发挥优秀学生的学习潜能,提高水平较弱学生的学习兴趣,教师积极给予学生鼓励。课上介绍实际应用案例,课后引导自主学习。例如:讲解光伏探测器在社会产业中的应用实例,让学生通过文献查阅、思考并总结如何提高电池效率以节约能源。这些实际问题需要应用光电子器件理论所学习到的相关知识去解决,使学生意识到,所学的知识与实际应用是紧密相连的,激发他们的学习兴趣。提出案例的伊始,并不在课堂上立即进行讲解,让学生课后思考。如激光器的封装需要考虑哪些因素?应采用什么结构?在下次课讨论时,学生的方法将丰富多彩,让其在掌握基本知识,学以致用的同时,了解了最新的光电子器件的发展现状。

(2)利用小班教学的优势,实施差异性教学:基于拓展性课题的研究性学习:安排拓展性课题,部分内容超出教学教材,由学生根据教学进度在不同周分组研究完成。让学生抽取题目,根据要求,完成资料搜索、整理、归纳总结知识点并完成报告。(目的:让学生在理解课堂教学内容的基础上展开课外的团队式探索学习、文献分析等活动,在扩充学生知识面的同时,强化其对所学理论知识的理解和应用。在传递知识的同时,通过安排探索性的学习任务培养学生科学严谨的思维习惯,为其将来的科学研究与工作打下良好基础)。如此方式安排难易不同的拓展性课题供学生选择,为优秀学生提供拓展思维、独立探索和发挥才能的机会;让水平弱一些的同学看到自身学习课程的收获。培养思考问题、解决问题的兴趣、提升主动学习的机会。根据学生差异、兴趣爱好和需求,进行同质或异质编组。同质:有利于教师重点辅导,使每个学生获得成功;异质:有利于同学互相帮助、合作互补,并且可在教案的制定上体现出不同分组和不同要求的特点。这种方式能够体现“以人为本”,“因材施教”的差异化培养理念,促进课程教学中的“教与学”、“教学和科研”的融合与相互促进。

(3)合理组织课堂的语言和内容安排:据情况合理搭配语言模式,根据不同学生的外语水平,在一个学期的不同阶段,合理搭配英语授课比例教学法,即每节课首先用英语复习上节课的内容,然后用中文讲授新课。注重活跃课堂气氛,进行师生同堂授课或者角色互换,体现教学民主、教学相长,营造温馨、愉快的氛围。许多研究都体现了师生互动、生生互动、学生―媒介―环境等多维互动对双语教学的重要性。

(4)重构《光电子器件》双语课程的考核模式:实现从注重知识点的考核向知识与能力并重考核的转变。例如,在掌握光电转换基本原理的基础上,要求学生通过文献阅读和课堂讨论,总结与思考,以撰写大论文的方式,递交基于理论知识获得的最新的关于光电子器件(如半导体激光器、光电导探测器等)的设计方案。安排课后作业采用英文题目,要求以英文形式完成,使学生学会使用一些简单句型来表达专业问题。课堂汇报则旨于提高学生独立思考及口语表达能力。教师结合课堂表现、课后作业、演讲汇报等内容进行综合考核,包括现场打分和汇报材料打分。以现场打分为主,包括汇报格式规范、思路清晰、表达流畅程度、对问题的分析应对能力、团队成员的协调能力等;在材料打分方面,主要为大作业报告及其演讲汇报材料的评判,主要评估对所选主题的理解是否透彻,是否抓住了问题的本质。是否具有创新性等。改进后的课程考核方式,将最终考核转变为过程考核占主导地位,体现学生的综合能力,发挥考试的真实体现价值。

(5)精选教材、丰富教学资源:采用难易适中的英文原版教材或原版教材搭配中文参考书的形式。选用原版教材的原因有原版教材内容更详尽,理论更系统更具前沿性,加快了国内与国际接轨教学。将教学过程分为课堂教学和课外学习网站,通过后者将每章的知识点、重点及难点提供给学生,让学生预习。在课堂上采用多维互动教学模式,系统针对性地进行知识点讲授,使学生在较短时间内掌握主要知识。最后,设计教学问卷,内容包括改课程的学习是否能提高英语水平、所选教材是否合适、授课方式是否合理、对授课内容(包括多媒体课件与板书等)是否满意、学生对老师的语言和专业知识是否肯定等。

四、总结

综上所述,双语教学是我国与国际接轨、教育改革发展的必然趋势。《光电子器件》双语课程作为一门培养工程技术领域国际化创新型人才的课程,需要充分考虑到班级学生的个体差异性,发挥小班教学在《光电子器件》课程教学中的优势,促进教育机会的平等,合作学习,保护学生的个性差异,增加师生互动和师生关系的融洽与和谐,增加学生学习的信心,成为创新型的个性化人才。

参考文献:

[1]张志颖,李忠,余丹.高校双语教学的问题与对策[J].黑龙江教育:高教研究与评估2012 (3):27-28.

[2]龙国智.我国高校双语教学的现状评析[J].改革与开放,2011,2: 173-174.

[3]袁永锋,郭绍义,杨金林.工程材料课程开展双语教学的探讨[J].科教导刊,2014 (35).

作者简介:

万洪丹(1984-),女,讲师。

施伟华(1969-),女,副教授,硕士生导师。

光电子器件范文第8篇

关键词:自由空间光通讯;激光器;光电探测器;光学滤波器

中图分类号:TN929.11

自由空间的光通信技术是一种以激光为主要的信息载体的通信技术,按不同的传输介质可以分为大气激光和星际激光通信。而且由于自由空间光拥有速率高和频带以及安装方便,还有一定的高度保密性等的特点,近年来已经受到了人们的重视,得到了很好的发展。大气激光通信因为受到大气的信道和不良环境的影响,所以一般只能是作为短距离间的通信和应急的通信手段,因为宇宙空间是在真空的状态下的,所以激光束在这个空间是受不到任何的干扰的,所以星际的激光通信就越来越受到人们的关注,许多的国家都开始在加大对星际激光通信的研究,也取得了许多好的成果。由于通信技术的不断的发展,保密通信也开始运用到现代化的战争中,以前的有线和无线技术的保密性都够强,容易泄露军事机密,而自由空间的光通信是一种保密性嫉妒强的通讯技术。本文主要就是分析自由空间光通信技术中的主要的光电器件的现状。

1 自由空间光通信系统中的激光器

自由空间光通信系统中的激光器的作用就是产生激光信号并且形成一道光束发射到空中,激光器是整自由空间光通信系统中关键性的器件,自由空间光通信系统中的激光器的好坏会直接的影响到通信的可以达到的最远距离,还会对通信的质量造成很大的影响,对于整个通信系统的整体的性能也有较大的影响,所以选择好的激光器是十分的重要的。一般对于激光器的要求首先就是要有良好的输出功率,而发射出的波长要与传输的介质的低耗能区相配,其次发射的频率必须性对稳定,调节与设置比较的方便,有比较大的调制速率,最后就是体积一定要轻,重量要比较轻,耗电量要最少,使用寿命要长,运行的效率要高,还要方便集成和保养维护。当下在光通信中的最常见的激光器是CO2激光器和半导体的激光器等。

1.1 CO2激光器

CO2激光器是一种辉光放电混合体性质的激光器,它的激光辐射不仅仅是可以很好的透过大气传进行远距离的输送,它光束的相干性也十分的好。CO2激光器发射光的频率十分的稳定,还可以实现单模式的运行,它可以进行连续不断的辐射,还可以进行脉冲式的辐射。CO2激光器因为对能量有良好的转换效率,而且发射出的光束的质量好,运行的功率大,又可以连续的输出以及脉冲式的输出,运行所需的费用也比较的低,所以成为用途最广泛的一种激光器。伴随着对CO2激光器的不断研发,新的技术也开始运用到其中,将会研发出体积更小和功率更强以及光束质量更好的不同类型的CO2激光器。

1.2 半导体激光器

已有的半导体的激光工作物质有几十种,而且对其的研究也已经十分的成熟,比如砷化镓和掺铝砷化镓等。和其他的不同种类的激光器相比,这种半导体式的激光器是经由电子―光子的转换器,所以它的转换效率是极高的,而且半导体式的激光器可以覆盖的波段的范围也是十分的广泛的[1]。利用不同的半导体有源材料和多远化合物半导体不同的组分,可以得到更广的激光辐射波长,所以可以满足不同的需求。随着半导体激光器辐射的波长的不断的增大,半导体的使用的寿命也会增长许多,最长的使用寿命可以达到106个小时,因为半导体激光的体积和重量都很小,所以整个的半导体的激光器的制作工艺是可以和半导体的电子器件与集成电路的生产工艺进行结合的,这就给其他的器件实现单片光电子集成提供了很大的便利性。最近这几年随着对超晶格技术和器件结构研究的不断成熟,半导体激光器可以连续输出的功率增加到了120瓦,目前半导体激光器因为体积和重量小,还有对电光装换的效率极其的高,使用的寿命也长并且比较容易调节控制等一系列的优点已经成为了激光大气通信的首先激光器。半导体式的激光器有一个明显的缺点就是容易受到环境温度的影响。

2 自由空间光通信系统中的光电探测器

光电探测器是激光通信系统中的核心的部件,它是利用干光信号进行接收与转换的,一般对光通信系统候中光电探测器的要求就是能够对所有的光波有高度的敏感度,要与光源进行发射的谱线相匹配,而且要有足够的频带宽度可以满足接收的光信号的带宽,在对信号接收的整个的过程中,接受的信号中所夹杂的噪声要小,而且对于外界的环境的敏感度不可以太高,也就是在外界的环境有所改变时还是要保持一定的稳定性。

Si光电二极管是光伏探测器的一种,光伏探测器在对比较微弱的快速的光信号探测方面有很好的效果,而且伴随着光电技术的不断的发展,光信号在探测的灵敏度与频率等方面都有很好的提高,Si光电二极管拥有效率高和噪声小以及反映快等优点,而且它的耗电量少并且体积小寿命长,结构也十分的简单,使用起来也很方便。虽然它的光―电转换的速度缓慢以及探测是进行调制的频率也比较的低,但是还是利大于弊的。

3 自由空间光通信中的光学滤波器

自由空间中光通信中的光学滤波器可以对光源发出的光场进行接收时,可以最大限度的减少噪声。在光电通信系统中,对光学滤波器的要求有,首先是要有良好的波长,还要与激光器相适应。由于激光器的波长会随着温度的变化而改变,在对温度没有进行控制的情况下,如果外界的环境发生较大的改变,那么就会影响到激光器的波长产生改变,最终会影响对信号的有效接收。

干涉滤波器主要是运用反射的波之间的相互延长与抵消来提供选择性的滤波,这种光学滤波器可以设计成在某些波长的内部反射中,而且在波长上还可以进行相互的抵消,这种干涉滤波器可以被设计成很多的不同种类的多层的介质滤波器,经过适当的对折射率的安排,可以从衬底上反射的场所需要的波长进行一定程度的波长加强。一般的带有尖锐的干涉滤波器只是会沿着准直轴进入到滤波器的聚光的设计中,一般适度的相移都是经过材料的不同的厚度来维持的[2]。

在空间的激光通信的过程中,有许多的随机和持续性的干扰,一些太阳的辐射在进行通讯的过程中就会利用星际和其他的散射体的散射在进入接受天线的过程中,就会造成很强的噪音。在整个的通信过程中,因为光通信信道已经建立了,所以使得通信激光的额发散角变小。在这种情况下,只有通过空间的滤波,才可以使得少量的背景光可以进入到接收机内,而且进入到接收机内的通信激光是比较的强的。所以在通信机中运用纳米宽带的干涉滤光器能够很好的消除背景光的干扰。

4 结束语

通过对自由空间光通信中光电子器件的现状的分析,可以看出目前在光通信中经常使用的激光器是CO2激光器,它是达到远距离的通信效果的首先设备。半导体的激光器因为其在方向性和相干性等方面比较的弱,所以是近距离之间的通信光源的首先。光电探测器是整个激光通信系统的核心部件,Si光电二极管因为光电转换速度较慢和探测调制频率较低等缺陷,所以比较的适应与小容量的光通信系统中。干涉滤光器是空间通信中十分常见的一种滤波器,它可以有效的减少背景光的干扰,可以很高的对准系统,可以接受的信号的噪比十分的高。自由空间光通信技术在将来会成为一种十分有效的通信手段。

参考文献:

[1]黄德修,刘雪峰.半导体激光器及其应用[M].北京:国防工业出版社,2009.

[2]杨祥林.光纤通信系统[M].北京:国防工业出版社,2010.

作者简介:王子龙,男,河南舞钢人,研究方向:网络工程。

光电子器件范文第9篇

【关键词】 国内LED 国外LED 国内LED的发展

1 国外普通LED的测试标准有

(1)IEC60747-5半导体分立器件及集成电路;

(2)IEC60747-5-2分立半导体器件及集成电路零部件5-2:光电子器件―分类特征及要素(1997-09);

(3)IEC60747-5-3分立半导体器件及集成电路,零部件5-3:光电子器件―测试方法(1997-08);

(4)IEC60747-12-3半导体分立器件12-3:光电子器件―显示用发光二极管空白详细标准(1998-02);

(5)CIE127-1997LED测试方法(1997);

(6)CIE/ISOLED强度测试标准。

随着半导体照明产业的快速发展,发达国家非常重视LED测试标准的制订。如美国国家标准检测研究所(NIST)正在开展LED测试方法的研究,准备建立整套的LED测试方法和标准。同时,许多国外大公司的研究和开发人员正在积极参与国家和国际专业化组织,制订半导体照明测试标准。如2002年10月28日,美国LumiLEDs公司和日本Nichia宣布双方进行各自LED技术的交叉授权,并准备联合制订功率型LED标准,以推动市场应用。 在照明用白光LED标准的推动方面,进展最快的国家是日本,其中日本照明学会(JIES)、日本照明委员会(JCIE)、日本照明器具工业会(JIL)以及日本电球工业会(JEL)在2004年已订出四团体共同标准《照明用白色LED测光方法通则》,成为目前唯一针对照明用白光LED所订定的测量标准,其在初版时就已率先制订数项未曾规范过的项目,如标准LED之制造、小型模块光强度的测量法以及寿命评估方式等。

2 从八十年代初起,我国相继制定了一些与发光二极管相关的行业标准和国家标准

国内现有与LED测试有关的标准有:

(1)Sj2353.3-83半导体发光二极管测试方法;

(2)Sj2658-86半导体红外发光二极管测试方法;

(3)GB/T12561―1990发光二极管空白详细规范;

(4)GB/T15651-1995半导体器件分立器件和集成电路:光电子器件(国家标准);

(5)GB/T18904.3―2002半导体器件12-3:光电子器件显示用发光二极管空白详细规范(采用IEC60747-12-3:1998);

(6)半导体分立器件和集成电路第5-2部分:光电子器件基本额定值和特性(国家标准;制订中);

(7)半导体分立器件和集成电路第5-3部分:光电子器件测试方法(国家标准;制订中);

(8)半导体发光二极管测试方法(中国光协光电器件分会标准;2002)。

3 其中半导体光电子器件功率发光二极管空白详细规范规定内容如下

本空白详细规范是半导体光电子器件的一系列空白详细规范之,并应与下列标准一起使用。

(1)GB/T 4589.1-200X半导体器件分立器件和集成电路总规范(eqv IEC6-747-10:1991);(2)GB/T12565-1990半导体器件光电子器件分规范;(3)GB/T 4937-1995半导体器件机械和气候试验方法(idt IEC 60749:1984);(4)SJ/T 2355-200X半导体发光器件测试方法。

该标准适用于功率级LED,与GB/T 18904.3-2002“半导体器件第12-3部分:光电子器件显示用发光二极管空白详细规范 ”相比,在标准中补充了功率LED区别于普通LED的热学方面的测试要求,及用于照明领域时光度学、色度学的测试要求。同时与新的 “ 半导体发光二极管测试方法”配套使用。

光电子器件范文第10篇

关键词:电子科学与技术 光电子材料与器件 理论教学 实验教学

中图分类号:G423 文献标识码:A 文章编号:1674-098X(2014)09(b)-0154-02

电子科学与技术(以下简称“电科”)专业是以培养具备微电子、光电子、集成电路等领域宽厚理论基础、实验能力和专业知识,能在电子科学与技术及相关领域从事各种电子材料、元器件、集成电路、电子系统、光电子系统的设计、制造、科技开发,以及科学研究、教学和生产管理工作的复合型专业人才为目标的工程专业。作为电科专业教育中重要内容的光电子技术,不仅是当代信息技术两大支柱之一,而且随着现代科学技术的发展持续焕发着生命活力。而让光电子技术保持如此强劲发展势头的主要原因之一,正是光电子材料与器件的广泛应用,例如激光器与新型光电探测器的应用的人你还。另外,诸如纳米光电材料与器件、光子晶体及相关器件、超材料及相关器件与表面等离子体激元及器件等新型光电子材料与器件的研究与应用,是目前国际上光学与光电子学研究领域的前沿热门方向。由此可见,学习光电子材料与器件的相关知识,不仅对电科学生知识体系的构建与就业方向的确定具有积极的影响,也为那些将来希望从事新型光电子材料与器件科研工作的学生,提供了坚实的理论基础与知识储备。然而,根据笔者的调研,虽然国内许多重点大学的电科专业都开设了光电子技术课程,但很少有大学专门开设光电子材料与器件这门课程。而由于光电子技术的内容多、涉及知识面广,教学课时又往往有限(一般为32或48个学时),因此在光电子技术的实际教学过程中,讲授教师往往重视光电子技术基本概念与理论知识的教学,而轻视光电子材料与器件的教学。该文从光电子材料与器件的研究内容、应用及发展等方面说明其在电科专业教育中的重要性,并结合自身光电子材料与器件课程的教学经验,研讨电科专业中光电子材料与器件的教学方法。

1 光电子材料与器件简介

光电子材料是指能产生、转换、传输、处理、存储光电子信号的材料。光电子器件是指能实现光辐射能量与信号之间转换功能或光电信号传输、处理和存储等功能的器件。自1960年美国科学家梅曼发明世界上第一台红宝石激光器以来,光电子材料与器件如雨后春笋般发展迅速。在短短的50多年里,光电子材料与器件经历了从红宝石激光器的发明,到半导体激光器、CCD器件及低损耗光纤的相继问世;从各种光无源器件、光调制器件、探测与显示器件的小规模应用到系统级集成制造实用化阶段;从大功率量子阱阵列激光器的出现再到光纤激光器、光纤放大器和光纤传感器的诞生。光电子材料与器件从未停止过发展的脚步,并正在不断深刻影响着人类社会的方方面面。在实际需求的引导下,各种新型光电子材料与器件层出不穷,性能也不断提高。尤其是近年来,随着微米及纳米级加工技术的成熟,新型的微纳光电子材料与器件的研究异常活跃。纳米光电材料、光子晶体、超材料、表面等离子体器件等领域的研究成果丰硕,为未来光电子器件的微型化、集成化发展奠定了坚实的基础。

综上所述,光电子材料与器件在当代信息产业与科学技术中具有极其重要的地位,因此,光电子材料与器件这门课程不仅应当单独作为一门课程独立教学,而且应该作为重视工程教育的电科专业的核心课程。

2 光电子材料与器件课程教学研究

2.1 光电子材料与器件课程的教学形式、课时安排与教材选择

光电子材料与器件课程不仅包含丰富的理论知识,例如光电子材料的物理特性以及光电子器件的工作原理等,而且与实际应用结合精密,因此,本课程宜采取理论教学与实验教学相结合的教学形式。

在课时安排方面,作为电科专业的一门核心专业课程,光电子材料与器件课程的总课时应不低于32学时(2学分),理论课学时不低于26学时,实验课不低于6学时。

另外,在教材选择方面,由于光电子材料与器件是光电子技术中的一部分内容,而目前国内关于光电子技术方向的参考书籍很多,其中亦不乏一些光电子技术课程的经典教材,例如西安电子科技大学安毓英主编的《光电子技术》[1],西安交通大学朱京平主编的《光电子技术基础》[2]等。虽然这些光电子技术参考书中或多或少都会介绍与光电子技术相关的材料与器件,但是,目前专门介绍光电子材料与器件方向的教科书却是少之又少,市面上仅有国防工业出版社2012年出版的侯宏录主编的《光电子材料与器件》[3]一书。加之,该书中所涉及的理论知识较深,基础浅薄的本科生很难驾驭。由此可见,对于光电子材料与器件这门新兴课程而言,设立统一的教材并不合适。因此,笔者建议该课程的讲授教师根据理论教学与实验教学的内容,自行编写该课程的讲义与课件。

2.2 光电子材料与器件课程的理论教学

按照电科专业的专业定位以及培养目标,光电子材料与器件课程的理论教学也应该突出“工程”内容。传统的光电子技术教学中所重视的原理、定律与规律等内容,在光电子材料与器件教学中要弱化;而传统光电子技术教学中往往被弱化乃至忽视的光电子材料与光电子器件的相关知识,要在光电子材料与器件课程教学中占主体地位。如此才能保证在有限理论课时的前提下,让学生对光电子材料与器件有一个全面的认识。

在教学内容的设置方面,由于光电子材料与器件主要应用于光电子技术之中,因此,为了便于学生的理解与知识体系的构建,笔者建议光电子材料与器件课程理论教学的章节设置按照光电子技术的章节设置进行。以笔者讲授光电子材料与器件理论课程(共26学时)为例,该理论课程共被分成了绪论(2学时)、激光原理与典型激光器(5学时)、太阳能电池(4学时)、光通信器件与材料(5学时)、光探测器件(5学时)、光电显示器件(3学时)与光存储器件(2学时)等七个章节,这七章内容基本囊括了光电子技术中光产生、光转化、光传输、光探测、光显示以及光存储等各个重要环节中最为典型的器件以及所用到的材料。另外,在每章内容的设置上,也尽可能突出“工程”内容,弱化“理论”知识。下面,笔者将详细介绍笔者在光电子材料与器件教学中各章的教学内容。

第一章绪论主要包括光电子材料与器件课程简介以及光电子技术的基本知识简介。在光电子材料与器件课程简介中,向学生介绍课程设置的目的和意义、课程的主要内容、教学与考试方式与参考资料等。通过这部分内容的介绍,让学生对本课程的意义、内容、侧重点有一定的认识。在光电子技术基础知识简介中,重点向学生介绍光电子材料与器件与光电子技术的关系,并通过对光电子技术的概念、特征、发展等方面的介绍,让学生对光电子技术以及光电子材料与器件有一个整体的认识。

第二章激光原理与激光器重点介绍几种典型激光器的材料、结构与工作特性,其主要内容包括三个部分:激光原理简述、典型激光器与激光器的应用。在激光原理简述部分,由于多数电科专业在学习光电子材料与器件课程之前已经修过激光原理等类似课程,所以该部分内容为简略介绍的内容,主要帮助学生回顾激光的特征、历史与光辐射理论等知识点。而第二部分内容典型激光器是本章内容的重中之重,在该部分内容中,将依次向学生介绍固体、气体、液体与半导体这四大类激光器中的典型激光器的结构、特征与工作特性等知识。由于发光二极管与半导体激光器结构与工作原理上的相似,在介绍完半导体激光器后,可以顺理成章地介绍发光二极管的结构与特征。另外,本章最后还简单介绍了激光器的几种常见应用。

太阳能电池虽然是光电探测器中光伏效应的一种特殊应用,但是由于它在现如今光电子技术产业以及光电子器件中的重要地位以及良好的发展趋势,该部分内容被独立成一章。在第三章太阳能电池中,主要分两小节给学生介绍,第一小节介绍当今能源与环境问题以及太阳能的开发和利用,让学生了解当今能源资源的现状以及新能源研究与应用的迫切需求,然后介绍太阳能利用的历史以及发展趋势;第二小节正式介绍太阳能电池的工作原理、结构以及特性等知识。

第四章光通信器件与材料主要介绍的是光通信系统中所用到的有源与无源光器件。本章内容共分为两小节:第一小节介绍光纤通信的基础知识,包括光纤通信的定义,光纤的结构、导光原理、发展历史,以及光纤通信系统的组成与特点。第二小节正式介绍光纤通信系统中所用到的各类光电子器件以及构成这些器件的核心材料。在光纤通信中,最重要的器件当属光纤,所以,本节开始就着重介绍光纤的相关知识,包括它的结构、原理、分类、特征参数与传输特性。然后,又将光纤通信系统中的其它光电子器件分为有源与无源器件两类,并分别介绍了这两类光器件中的代表器件:掺铒光纤放大器与波分复用与解复用器。最后,在本章结尾还介绍了光纤通信系统中其它几种常用光器件,例如光耦合器、光衰减器、光环行器等。

第五章光探测器首先介绍了光电探测器的物理效应、性能参数、噪声;其次,按照光电探测器物理效应的不同一一介绍了几种典型的外光电效应探测器(光电管与光电倍增管)与内光电效应探测器(光电导、光电池与光电二极管)。教学的重心仍然放在对探测器结构、工作原理以及特性等方面。

第六章光显示器件重点介绍四种光显示器:阴极射线管、液晶显示器、等离子显示器与电致发光显示器。

第七章光存储器件主要介绍了现如今最常用的一种光存储系统―― 光盘系统以及其中最总要的器件光盘。

2.3 光电子材料与器件课程的实验教学

光电子材料与器件实验课程的教学要与理论教学紧密相连,并重点介绍理论课上讲解过的光电子材料与器件,实验课程的学时应不低于6学时,开设的时间最好在理论教学完成之后,以保证学生在实验前已对实验器件与实验原理有一定的了解。在实验项目的设定方面,既要保证与理论课程内容的相辅相成,又要尽量避免与其它课程实验项目的重复,造成资源的浪费。例如,许多大学的电科专业都已经将激光原理一课作为该专业的核心专业课程,并配备了相应的激光器实验。在这种情况下,如果在光电子材料与器件实验教学中再次引入激光器的实验内容,不仅消耗了宝贵的实验时间,实验效果也会大大降低。

下面跟大家简单介绍笔者在光电子材料与器件实验教学(6学时)中的实验安排。

(1)实验内容:共包含六个实验项目,它们分别是:光控开关实验、光照度计实验、红外遥控实验、PSD位移测试实验、太阳能充电实验与光纤位移测量系统实验(每个实验1学时)。各实验中都应用到了一个或几个核心光电子器件,这些光电子器件基本涵盖了学生在理论课程中所学到的最为重要的几类器件,例如光控开关实验应用到了光电探测器中的光敏电阻作为核心元器件;而红外遥控实验中用到了发光二极管光源与红外探测器等光电子器件。

(2)实验要求:以往的光电子技术实验往往重视现象的观察与定性分析,但经笔者调研,这种实验方法很难最大限度激发学生的求知欲与动手能力,因此,在对原有的实验指导书进行改良后,笔者自行编写了实验的指导书,并在每个实验项目中加入了一些测量与定量分析的实验内容。例如太阳能充电实验,原来的实验指导书只是观察太阳能充电的效果,但是,在新改良的实验指导书中,要求同学测量不同光源照射下太阳能电池的输出电压与输出电流,并要求学生分析比较其差别。通过这种方式,充分调动学生的实验积极性,在具体的实验教学中也取得了很好的效果。

(3)实验方式:分组实验,共同撰写实验报告。这样,不仅提高实验效率,还能够锻炼学生的团队协作意识。

(4)考核方式:根据每位学生实验完成的情况与实验报告撰写的情况综合评分。

3 结语

光电子材料与器件在信息产业的发展与现代科学的研究中都具有举足轻重的地位。它不仅是电科专业知识体系中的重要环节,也为电科专业学生提供着良好的就业竞争力与科研基础。本文通过对电子科学与技术专业特点与光电子材料与器件课程内容的分析,讨论了光电子材料与器件在电科专业教育中的重要性,并根据笔者自身的授课经验,提出了光电子材料与器件在电科专业中的教学形式、课时安排、教材选择以及理论与实验课程内容设置的一些意见与建议。

参考文献

[1] 安毓英,刘继芳,李庆辉.光电子技术[M].3版.北京:电子工业出版社,2013.

[2] 朱京平.光电子技术基础[M].2版.北京:科学出版社,2003.

上一篇:光电池范文 下一篇:光电检测技术范文