电气系统设计论文范文

时间:2023-03-18 13:25:17

电气系统设计论文

电气系统设计论文范文第1篇

以杏南小区污水泵站建设工程为例,阐述污水提升泵站污水处理流程。该泵站中有两台潜水泵(一用一备),生活污水不断的注入集水池内,当集水池内水位升至一个高水位时,一台泵启动,水位下降至一个低水位时,泵自动停止工作。当集水池再次充满水时,起动另外一台水泵,直至停止工作。

2电气系统设计组成

根据污水泵站污水处理过程的流程和现场设备的要求,整个污水泵站污水处理站控制部分由电气部分、PLC控制系统以及监控系统。系统为集散型计算机控制系统。系统采用以太网和现场总线混合型结构,PLC作为现场总线中的一个站,又作为以太网上的一个站点,而监控中心不作为现场总线网络中的站点,只作为以太网中的节点,此网上的各站点相互之间的数据交换通过以太网进行,而现场的信息也通过以太网从PLC的寄存器中读取,控制现场的参数也由以太网送到主站PLC的寄存器中,再通过主/从协议传送到现场总线中的各从站。从而实现污水站的远程监视控制。

2.1电气部分设计。

由于污水处理是一个连续的非常重要的项目,如果在正常生产中有电源中断,那样会引起工艺状态混乱,需要很长时间才能恢复。所以供电负荷要求为二级,供电电源采用双回线路。泵站的主要用电负荷为一台90kW的潜水泵。电机实现手动/自动两种控制方式,手动方式下实现就地控制,正常运行情况下PLC控制为主。电机采用软启动方式启动。另外还要给轴流风机和泵站的一些正常用电配电。

2.2PLC控制系统设计。

在整个控制系统中,自动控制部分主要有集水池的液位控制、潜水泵本身的温度、漏油控制。下面仍以泵站中有两台潜水泵(一用一备)为例,具体的说明集水池的液位控制流程及程序设计。集水内安装2个浮球液位计和1个投入式液位变送器。投入式液位变送器预先设定启泵(-3.0m)和停泵(-5.95m)的数值(可更改的)。污水不断的注入集水池内,当集水池内水位升至-3.0m时,一台泵启动,水位下降至-5.95m时,泵自动停止工作。当集水池再次充满水时,起动另外一台水泵,直至停止工作。两台水泵可由程序控制自动切换使用,以保证各台泵平均使用;泵出口电动阀门与相应泵联锁。开泵过程为:先启泵后开阀;停泵过程为:先关阀后停泵。2个浮球液位计分别设在高低液位的两个值,当达到这两个值时,通过PLC与报警呼叫装置连接,通过通信网络传到监控中心。

2.3监控及安防系统设计。

污水站,除了有远程监控系统外,还必须有远程视频监控及防盗等的安防系统。

2.3.1周界防范报警系统。

周界防范报警系统通过在泵站的四周围墙上安置主动红外对射探测器,对周界分段警戒,防范闲杂人员翻越围墙进入泵站,当围墙上有人翻越时,泵站报警主机上会出现声光报警,同时报警信号自动传输到监控中心,并自动记录报警时间与保存报警信息。

2.3.2防盗系统。

在泵站的室内安装了幕帘式被动红外入侵探测器,用于防止他人未经许可进入房间实施破坏。

2.3.3远程视频图象监控系统。

远程视频图象监控系统是在污水泵站配电间、污水泵站院内等设置前端摄像机,将图象传送到监控中心,由监控中心对整个泵站进行实时监控和记录,使管理人员充分了解泵站的动态。该系统与泵站室内防盗报警、周界报警等系统联动,通过数字硬盘录像机,完成监视、报警、设防和监视图象的存储和检索。

3设计时应该注意的一些问题

这几年做污水提升泵站的电气系统设计,设计时出现过一些问题,值得大家以后在设计中应该注意的。

3.1电源的问题。

污水站属于二级负荷。在水专业的规范中有说明,在电气规范中没有说明,说以在设计时,我们都查了规范,可以没有看到是二级负荷,就没有按照二级负荷考虑电源的问题。根据民用建筑电气设计规范(JGJ16-2008)3.2.10,二级负荷的供电系统,宜采用两回线路供电。一定要跟高压部门结合好引电源的位置,是不是可以增容。

3.2配电柜内设备的问题。

从现场的实际来看,进线柜若是双电源切换柜,1000mm宽的柜子还是比较小,排的满满的,电缆在后面都没有多余的空间,所以柜体宽度最好为1200mm。

3.3自控设备的问题。

设计中采用了超声波液位计和浮球液位计,以后的设计中可以考虑雷达液位计、激光液位计等。设计时,可根据每个物业的情况选择相应的液位计。

3.4加装雨棚灯、院内照明的问题。

在做拥军污水泵站设计时给我们的图纸就没有雨棚,也没有道路规划,所以电气设计时就没有安装雨棚灯,也没有设计道路照明。在以后的设计中,细节的地方最好沟通一下,解决方法有很多:可以安装声光控雨棚灯;污水泵房顶四周增设投光灯;有砖围栏的,也可在围栏柱上安装灯具;站内道路也可以增设路灯。另外一定要注意的是:污水池内的照明灯具要选用防爆灯。从人性化的考虑,可以在大门处增加门铃,以便来访人员。

4结语

污水提升泵站电气系统在整个污水泵站的运行中起到非常大的作用,利用了当前先进的硬件、先进的控制系统软件、先进的网络总线技术,形成了一套先进、可靠、可利用性高、实时性好、操作简单、控制品质高、经济实用的控制系统。降低工人劳动强度,改善劳动环境,体现了良好的社会效益。

电气系统设计论文范文第2篇

关键词:电气;设计;安装

1工程概况

某工程位于长沙市CBD商务区内,占地面积9500m2,总建筑面积45000m2,地上19层,地下2层,为星级酒店和写字楼于一体的综合性商务楼宇。该工程电气设计按供配电一级负荷设计,采用两路10KV电源供电,供电线路采用电缆直埋方式,两路10KV电源一用一备。通过母连接,两路电源均能负载100%的负荷。供电制式为三相五线制TN-S系统,为满足高层建筑防火要求和提高变压器的过负荷能力,该工程选用二台1600KV干式变压器,变压器的负荷率平时保持在70%左右。

2大厦电气系统设计与验算

2.1系统设计

2.1.1照明系统

2.1.1.1系统概述

本工程的照明系统分为正常照明和应急照明。

正常照明主要包括舞厅照明,大厅照明,公共区域照明,客户照明等。为减小动力负荷频繁启动对照明质量的影响,设定了一专用变压器为照明系统供电。自酒店的中心配电室出线后进入配电竖井,经低压母线引至各楼层的总照明配电箱,然后由此分布到各区域配电箱。

因本工程为高档星级酒店与智能化办公楼,对供电要求较高,所以除配有自备发电机组外,楼层设有专用的应急照明系统,系统主要覆盖区域包括:酒店大堂,各餐厅、走廊、电梯间、楼梯间等。在设计时该系统的供电采用双电源,其中大堂,餐厅区域选择其中几个支路兼做正常照明,供电从本层配电竖井应急照明切换箱中出线。在此基础上,在各公共区域及通道设置具有蓄电池的事故照明灯具,在没有任何外供电源的情况下,该灯具能不间断供电1h。

2.1.1.2照度的确定

星级酒店的装修档次一般较高,为配合装修效果,充分体现酒店及办公气氛,本工程对酒店中各重点区域的照度均采用利用系数法进行计算。根据酒店各功能区的特点,各功能区的照度标准值见表1。

2.1.2动力系统

动力系统设备包括正常动力与消防电源两部分。正常动力包括:空调制冷机组,空调水泵,冷却塔,洗衣设备,污水泵,客用电梯,货梯,各层空调器,开水器等。因动力设备在地下2层分布较多,所以该部分设备的配电自酒店总配电室出线后在地下2层设动力控制中心。

消防电源包括:消防水泵,水幕水泵,消防电梯,喷淋水泵,排烟风机,正压送风机等。消防动力设备为双电源供电,一路引自由两路电源变压器供电的消防供电专柜上,另一路引自自备发电机组,两路消防电源分别由两回线路引到各个消防用电设备点上实行末端自动切换,以确保消防设备的供电可靠性及安全性。

2.1.3负荷计算

电力负荷一般由各专业提供技术要求及负荷大小:

2.1.3.1三相负荷计算:

2.1.3.2单向负荷计算:

①尽量将各单相负荷逐相均匀分配,以减少不平衡,计算时,将线负荷换算成相负荷,将各相负荷相加,取其最大单相负荷的3倍作为三相负荷。

②当回路中的单相负荷的总容量小于该回路三相对称负荷的总容量的15%时,按三相平衡负荷计算。

③只有线负荷时,将各线间负荷相加,选取较大的两项进行计算,现以Pab≧Pbc≧Pca为例:

按70%的负荷率,第二台变压器的容量为:1086/0.7=1552kVA,选用1600kVA变压器。

2.2防雷与接地

本工程联合接地电阻阻值要求小于1,利用钢筋混凝土箱型基础做自然接地体。钢筋混凝土柱内钢筋做防雷引下线,在建筑物四角距室外地坪0.5m处做测试点。为防止侧击雷进入酒店,酒店铝合金钢窗均与圈梁内钢筋可靠焊接。酒店中所有金属管道均与混凝土中钢筋焊接,以使整个大楼处于一种均压状态。考虑到弱电系统对接地的特殊要求,而弱电接地装置与强电接地装置的间距无法满足规范要求,不能设置单独弱电接地系统,只能选用联合接地。

3线槽敷设安装施工

智能化建筑弱电工程是当今建筑中很重要的一部分,衡量一个城市建筑的现代化标准,设计形态和智能化是其中的两个方面。智能建筑的弱电系统主要由以下各子系统组成:

(1)通信网络系统;(2)办公自动化系统;

(3)建筑设备监控系统;(4)火灾自动报警及联动控制系统;

(5)公共安全防范系统;(6)结构化布线系统;(7)弱电电源及接地系统。

如此之多功能设施,布线设计方案也成为电气设计的关键,因涉及专业多,施工时相互配合尤为重要。为保证大厦内部的美观,也为了更科学满足设施智能化的要求,方案选用地板内敷设地面线槽来达到各功能目的。

3.1地面敷设线槽的定义

地面线槽是一种封闭的、直接隐蔽于地面下的金属线槽,可以灵活方便地提供电源、电话、电视、计算机、话筒等线缆传输电能和信号接口。其设计是根据建筑物近期和发展需要布置线槽的纵横间距,根据穿线的根数、横截面积和工艺要求确定线槽的规格及槽数。按槽数可分为单槽、双槽、三槽,规格有50系列、70系列、100系列、230系列、300系列。

线槽适用于380/220以下强电和弱电的线路敷设。性能特点:地面线槽可供单一或多用途线缆、多回路敷设,终端元件布置平整美观。地面线槽是由线槽、分线盒、各种连接件、密封件、附件及电源头等组成。

3.2地面线槽规格型号设置与布线参数要求

内外均热浸镀锌,出线口处采用无螺纹接口,线槽标准长度为3m(可特殊加工),线槽出线口开孔尺寸:﹤48mm,线槽开孔间距分:3000mm、2400mm、1800mm、1200mm、600mm等。

主要配件有:线槽分线盒:线槽分线盒起到导线的相接、转弯交叉、屏蔽等作用。其中二槽、三槽的分线盒内设有屏蔽分离板,以保证强电、弱电的隔离与屏蔽。

线槽支架:分为单槽、双槽、三槽支架,它是用于线槽的支撑及高度调整,高度调节范围一般为20mm~150mm的热镀锌件。其它还包刮弯头、封头、出线圈等配件。具体穿线根数见表4。

3.3地面线槽的敷设安装工艺

3.3.1弹线定位:根据设计图纸确定线槽走向,从始端至终端找好水平线或垂直线,用粉线袋在线路的中心外进行弹线,按照设计图要求及施工验收规范规定,分别找出分线盒、分线口及支架的具置,用铅笔分别标注。一般支架间距为1.0-1.5m。

3.3.2线槽敷设:根据标准位置放置分线盒和支架,然后放置线槽和出线口,同时根据需要加各种配件,朝上的线槽不必立得太长,否则易被砸断。连接完毕后,调整支架和塑料盖,使出线口到适当高度。达到位置正确,固定牢固,走向合理。线槽水平或垂直敷设部分平直度和垂直度允许偏差不超过5mm。为防止灰浆进入,各连接处周边抹专用胶,各分线盒、出线口盒盖拧紧,并用铁丝绑扎,未端加塑料封堵。浇筑混凝土时设专人看护,发现问题及时处理。

3.3.3跨接地线焊接:依据施工规范,确定跨接线规格。地线两端焊接面不小于该跨接线截面的6倍,焊缝均匀牢固。

3.3.4槽内配线:首先清扫线槽,可先将带线穿插至出线口,然后将布条绑在带线一端,从中一端将布线条拉出,反复多次可将线槽内的杂物和积水清理干净,也可用空气压缩机将线槽内的杂物和积水吹出。放线前应先检查管及线槽连接处的护口是否齐全,其放线和导线连接部分与其它管路敷设形式大致相同。敷设线缆应注意以下基本原则:1、同一路径不同回路绝缘导线设计于同一线槽内,但同一槽内强电回路必须能同时切断电源;2、线槽内导线总截面不应超过线槽内截面的30%;3、强弱电回路应分槽敷设;4、不同电压回路交叉时应在分线盒处采用金属隔板隔开。

3.3.5线路检测:线路检查及绝缘遥测按相关规范操作。

3.3.6面板安装:配合装修,依据各出线口用途,安装相应的终端面板。

3.4地面线槽安装时具体注意事项:

3.4.1地面线槽表面混凝土厚度应大于20mm;

3.4.2线槽内外应光滑平整,无棱刺,扭曲、翘边等变形现象;

3.4.3支架与调整螺栓调整线槽高度一般以30-50mm为宜;

3.4.4线槽整体连结完毕后,应按设计检查确认,无误后对线槽及附件连结处用蜜封胶密封,对线槽首、末、分线盒、出线栓和未用出线孔用专用塑料防护盖封堵。

4结语

综上所述,现代高层建筑的电气设计由于智能化的需要而变得复杂,用电设备越来越多,对供配电系统设计和线路安装提出了许多新的要求,因此在电气设计和线路安装时,将供配电系统的可靠性、安全性、灵活性摆在突出位置,认真按照设计和操作规范进行设计优化和施工,从而将建筑智能化从设计和安装上推至臻美。

参考文献:

[1]建筑电气工程施工质量验收规范.GB50303-2002

电气系统设计论文范文第3篇

【关键字】10KV配电站,电气系统设计

中图分类号:F407.6 文献标识码:A 文章编号:

一.前言

随着经济的发展,各地对电力的需求缺口也越来越大,在这样的背景下,我国开始大力建设配电站。小型配电站因其建设周期快、成本相对较低,占建设数量的很大一部分,本论文主要所探讨10 kV配电站。对配电站电气系统的设计,主要是结合配电站输变电的等级要求,对相关电气系统进行功率设计,保证在安全稳定运行的前提下实现配电站效益的最大化。随着电力电子技术的飞速发展,以及计算机网络通信技术的发展,现在配电站越来越倾向于对电气系统实现远程监测与控制。本文从10 kV配电站电气系统的实际开发应用入手,对电气系统进行开发设计,并探讨电气系统设计过程中的一些问题,以此和广大同行分享。

二.配电站设备的选择

1.lOkV开关柜的选择

本设计10kV开关柜选用“五防”型KYN28A一12型户内金属铠装中置移开式开关柜,柜中配VD4真空断路器。进线柜、分段柜额定电流为1250A、额定开断电流为25kA。馈线柜、配变柜额定电流为630A,额定开断电流选用20kA,压变避雷器柜额定电流为630A。进线回路的电流互感器变比600/5A。馈线回路的电流互感器变比400/5A。

2.配变的选择

在配电站中,变压器是主要电气设备之一,担负着变换网络电压进行电力传输的重要任务。确定合理的变压器容量是配电站安全可靠供电和网络经济运行的保证。特别是我国当前的能源政策是开发与节约并重,近期以节约为主。因此,以确定保证安全可靠供电为基础,确定变压器的经济容量,提高网络经济运行素质将具有明显经济意义。根据变压器的台数、容量、形式、连接组别等选择原则,本设计选用两台S11一MR一800/10kV油浸式变压器(带油枕),连接组别选用D,ynl1。

过去也有工程选用Y,ynO结线组别的变压器,其原因主要是不清楚D,ynl1结线的优点。在GB50052—95《供配电系统设计规范》中第6.0.7条规定:“在TN及TT系统接地型式的低压电网中,宜选用D,ynl1结线组别的三相变压器作为配电变压器”。这里“宜选用”的理由,主要基于D,ynl1结线比Y,ynO结线的变压器具有以下优点:

(一)有利于抑制高次谐波电流。三次及以上高次谐波励磁电流在原边接成形条件下,可在原边形成环流,有利于抑制高次谐波电流,保证供电波形的质量。

(二)有利于单位相接地短路故障的切除。因D,ynl1结线比Y,ynO结线的零序阻抗小得多,使变压器配电系统的单相短路电流扩大3倍以上,故有利于单相接地短路故障的切除。

(三)能充分利用变压器的设备能力。Y,ynO结线变压器要求中性线电流不超过低压绕组额定电流的25%,见GB50052—95第6.0.8条,严重地限制了接用单相负荷的容量,影响了变压器设备能力的充分利用;而D,ynl1结线变压器的中性线电流允许达到相电流的75% 以上,甚至可达到相电流的100% ,使变压器的容量得到充分的利用,这对单相负荷容量大的系统是十分必要的。因此在TN及TT系统接地型式的低压电网中,推荐采用D,ynl1结线组别的配电变压器。

三.10 kV配电站电气系统设计

1.配电站电气一次系统设计

电压等级为110 kV设置2回进线,而10 kV则设置l6回进线,变压器采用三角星型接线方式,在进线端采用内桥接线方式,在出线端采用母线分段连接的接线方式。对于电气一次系统,主要从变电站层和间隔层两个角度人手设计,实现主接线电气设计。具体电气接线设计方案如图1所示。

图1 10 kV配电站电气接线原理示意图

1O kV配电站电气系统设计可以由以下几个层次构成,具体分析如下:

(一)变电站层

变电站层硬件可分为以下几个部分:

首先是监控终端主机。监控终端主机,也就是所谓的上位机,能够对来自底层的设备传感器采集的状态数据进线处理和分析,主要完成对电网电力数据的采集,以及对电网和主要电气设备运行过程的实施监测,并将需要保存的运行数据进行显示、存储、打印、图形化分析及超限报警等任务。

其次是工程师站,为每一个配电站网络节点配备工程师站节点,利用工程师站的节点计算机实现对日常维护工作的统一和协调。

再次是通信管理机。通信管理机的主要功能是实现对网络中的不同通信终端与主机之间的通信转换,包括通信规约转换、通信格式转换等。简单的说,通信管理机就是一个远程通信的调度管理器,将来自不同终端的网络设备彼此之间的通信,以及与主机之间的通信按照事先设计好的调度权重值进行通信调度和转换,从而实现整个配电站网络通信的顺利和通畅。

最后是网络设备及网络电缆。光纤网络设备主要是指完成相关数据传输传送的网络中间件,比如路由器、收发中转站等。网络层设备及其网络电缆的通信可靠性直接影响到配电站运行的稳定可靠。

(二)间隔层

间隔层从硬件角度来实现,主要依赖于最小单片机系统,采用16位的PIC系列单片机作为间隔层的CPU,通过配置片外ROM 和片外RAM,以及必要的输入通道器件和输出通道器件,实现由最小单片机系统对各电气设备之间的隔离和信号传输,同时最小单片机系统还承担着对变压器、继电保护器、进线、出线等电气设备的工作状态参数的实时监测和保护等功

能。

2.电气系统设计的要点

(一)分布式母线保护

分布式母线保护对于一次电气系统而言具有多重保护作用,主要负责保证主接线母线的稳定可靠工作,防止误跳闸。分布式母线保护主要由隔离保护模块和中央保护模块两个功能模块构成。间隔保护模块主要由光电隔离器实现对电信号传输链路的切断,从而阻隔了干扰的传输,而中央保护模块主要完成主接线母线负责的各子单元之间的同步协调和跳闸判断等等。倘若不采用分布式母线保护装置,一旦断路器保护装置失灵,将会有大量的干扰信号被引人到主接线母线中,造成电气一次系统无法正常稳定可靠工作。

(二)旁路保护

由于10 kV主接线采用双母线带旁路母线设计方案,因此需要对旁路进行保护,否则旁路容易因为受到被隔离在双母线之外的干扰信号的干扰而无法正常工作。在设计保护电路时,主要是通过隔离保护器和自动切换装置实现对旁路的保护。隔离保护器主要实现对干扰信号的隔离,而自动切换装置需要实时监测双母线的工作状态。一旦双母线出现故障时,要能够自动切换到旁路通道进行无缝连接工作,从而有效地保障了整个电气一次系统的正常温度可靠工作。

(三)直流电源保护

配电站一次电气系统中必须要对直流电源进行保护,倘若采用传统的直流电源滤波器,则会由于滤波需求而引入新的谐波干扰。因此尽量采用直流稳压开关电源对电气系统进行直流稳压供电。这样能够在实现供电的同时避免将纹波电流引入到电气系统中而造成新的干扰。

3.电气系统抗干扰设计

由于配电站电气系统中存在大量电气设备及感性负载,因此在实际运行过程中,不可避免地存在很多高频或低频谐波干扰,为了保证电气系统的稳定可靠运行,就必须对电气系统进线抗干扰设计。由于电气系统在设计时分为模拟传输通道和数字传输通道,因此在具体抗干扰设计时需要根据传输物理量的性质分别进线抗干扰设计。

(一)模拟通道抗干扰技术

一是使用隔离放大器实现模拟信号在相邻电气设备之间传输时的干扰,这是由于隔离放大器内部的隔离器(光电隔离器或者电磁隔离器)能够切断信号传输链路,从而切断干扰的传输路径,实现了对模拟信号的干扰隔离。

二是从传感器到传输装置,尽量采用电流型器件,或者尽量将电压型器件的电压信号转换为电流信号进行传输,这样能够有效地避免由于电压叠加而带来的叠加噪声干扰。

三是在信号传输链路上加入低通滤波器,实现对高频噪声干扰信号的过滤,提高信号的信噪比。

(二)数字通道抗干扰技术

数字通道抗干扰措施主要借助于数字抗干扰集成芯片,对整个配电站电网或者电力系统回路采取干扰补偿的方式将高频尖峰脉冲干扰或者低频纹波电流干扰滤除,从而获得稳定可靠的电气特性。

四.结束语

10KV配电站电气系统的设计是一个系统工程,应该努力做好这方面的设计,提高配电站的运行效率。

参考文献:

[1]吴轶强 某高校10KV变配电站的微机继电保护工程设计与建设南昌大学2007-12-10硕士

[2]寇渭新 10kV配电站计算机监控系统的电气设计橡塑技术与装备2005-10-20期刊

[3]关宏; 王庭佛; 郜树民; 朱吕胜 10kV和35kV变配电站的噪声影响和治理噪声与振动控制2002-10-05期刊

电气系统设计论文范文第4篇

关键词:电力系统;电气主接线;配电装置

随着社会经济现代化步伐的加快,电力需求往往供不应求,建立运行稳定安全的电站变的迫在眉睫。变电站是电力系统建立不可缺少的部分,而变电站的电气系统的安全平稳运行对整个电网的安全运行和发展起着决定性的作用。本文就对110KV变电站的电气系统设计的具体情况如变电站的组成与各个环节的链接方法、主要电气设备的选择和出现的问题及解决方案进行详细阐述。

在整个变电站的电器系统设计中,各个主要部分的链接是建立整个电力系统的关键所在,电气化系统的设计可以清晰明确变电站内部变压器和各种电压线路以及所需设备的链接是否正常,各个部件之间的链接是否达到最大限度得的联系,也可以载明变电站内各种设备之间的链接方式和方法。变电站电气设备主链接的设计思路主要是根据变电站的电压级别和变电站的性质选择出一套与变电站的电器设备相符合的电器设备链接方式。变电站的主链接方式的选择可以直接影响到所处整个电力系统的和变电站的运行安全与否,因此,在实际的工作中,我们要想保证电力系统的平稳安全运行就在做好基本工作意外还需要在一定程度上关注变电站对电气化设备的选择以及其他配电设备的的采用,比如想主变压器的采用设备的性能程度会直接影响到变电站乃至整个电力系统的安全性和经济性,必须引起重视。

首先、对变电站一次部分电气设计

由于在我国的农村电网设施以及变电站的设置较为偏少,电站之间的距离较长,对电路的耗损随之加大,这样势必会造成到用户的的电压过低的具体情况,在日常的生产生活中这种低电压肯定会影响到居民的生产生活质量。为了改变在广大农村存在电力的问题,我们力争改变目前的现状,在满足人民的基本生活的要求后,也要为农业的发展提供便利条件。因此,本论文认为应在我国的农村建立一批小型的变电站,所建立的电站的电压应保持在110KV,具体的地理位置应选择在里城市的发展区切交通较为方便的地方。

在建设的变电站电器的一次部分应采取110KV的进电,因为变电站的选址在交通较为方便的区域,所以变压器应为三相电。对变电站一次部分的电气设计的主要目的就是选择接线形式、设备等和对变压器出现路和继电的保护等。对电气的设计我们应以电力供应和传输的安全、平稳和低损耗为原则。

1、要根据所带负荷的程度来选择变压器,一般情况下,一次部分的电器设计所涉及的范围较广内容很多,另外还要根据不同的电压低等级和类型性质等进行具体侧重点的设计,应根据实际情况具体分析具体操作。

2、在设计过程中需要根据变电站的规模和具体情况进行设计,其中需要注意的是,设计中所选用的主变压器必须要满足在输送过程中队电容的需求,需根据电力系统的具体规定选择,再将变压器的允许负荷能力考虑进去。

3、变电站电气系统的设计的重要部分是电器主接线,这个应该根据具体的立项方案执行,所应准备多个主接线方案供参考,这主要是根据线路的出入回数、电压级别、变压器的台数等众多因素的不同设计的方案。对于方案的选择主接线的要求从技术上和可行性上两个方面进行论证。首先通过技术手段对所有的设计方案进行甄选,对于那些明显不合格的设计方案要先去除,接下来再运用具有可靠性的定量分析模型等进行计算比较,选择在技术上最优的两道三个主接线方案。对于变电站电气设备的选择就必须根据既定的额定电压和额定电流进行选择,在根据短路情况出现的条件检验他的相关稳定性。

等于允许值。

其次、电气二次部分的设计

经过我们对于110KV变电站的了解和研究,初步确定变电站电气二次部分的设计布置和各级电压的配置装备,另外就是随着电气化自动信息化的发展趋势,还应该对变电站电气系统的自动化系统的配置所要求的直流电的数据。我们从以下几个方面进行着重分析,1、从在电力调度方面来看,我们可以尽可能的借助现代化技术手段对变电站的分布进行远程控制,并在相关系统的配置运行上装备相关保护和预防装置。2、从负荷增长方面来看,我们需要提前讲明建立变电站的必须性,在确定前者后我们再根据将要建立变电站的总括和走线方向等方面进行考虑,经过对所能承载的负荷资料尽享详细分析,以及变电站的安全性和运行性考虑确定电力规格和电站的主接线,最后通过负荷计算出在一定区域内所需要的建立的变电站台数,以及所要配备的变压器和电容器等设备的数量和型号等。最后,在依据所拟建变电站的最大持续工作电流量和短路的计算分析结果做出相关保护措施,如:变压器保护、母线保护、防雷保护等。

另外,就是根据当前施行的电力系统设计要求的规定,设计一个110KV的变电站的电器设备二次部分里继电保护是电力系统安全平稳运行的一个重要环节和障碍,在本文的变电站电气系统的设计的继电保护的设计中我们结合了实践工作以及当前我国在继电保护利于的主要问题进行重点研究,对继电保护的安全及反应灵敏性都采用计算机技术进行监控,使其能够智能化的处理状况,对电气系统进行不要的保护。对于110KV线路的配置保护是采取定段距离保护,在内条线路上都装置上反应快速,能在故障发生的第一时间切除故障,对去挑变电站的电器设备进行保护的,且性能相对较好的故障录播装置系统,已达到对母线进行保护的目的。在电力系统设备中的电力变压器是整个系统中的重要电气设备,变压器的故障对整个供电系统的安全稳定性运行都会造成很严重的后果,其次还有变压器是是相当贵重的设备,所以,我没一定要根据变压器的保护对其负荷的电容和电压进行精确地控制,确保保持良好的运行。

最后、高低压配电设计

在对高低压配电的设计上所需用的配电装置必须满足在充分考虑经济性和安全性的基本的要求外,还需对高低电压等进行负荷等级的评估设计做出相关配电装置。所谓的一级配电设备是整个变电站的主动力中心,这些设备一起安装在电力系统的变电站,经此将电力发送给下级的各个配电设备。由于这套设备属于第一级降压设备,所对其的电气参数和电容等数据会要求很高。动力配电柜和电动机控制中心一起构成变电站的二级配电设备,配电柜的使用较为分散,且回路较少的环境,而电动机控制中心则恰恰相反没适用于较为集中的环境。他们按照以及配电设备的要求将电力分配到相应负荷的二级配电设备。高低压配电设计的目的是就是将上级的高电压电能通过高低压的配电装置将高压电转入低压电,在配送到下一级电网,这可以对负荷提供了保护监控等作用。最后一个配电设备也叫照明动力配电箱,里总配电中心较远,小小电容设备。

综上所述,在对110KV变电站电气系统的设计我们已经有了较为详细的方案,但在实际的工作中,我们还需要根基变电站的实际所处的情况和环境进行具体的分析和研究,相信在我国的电力系统不断发展的大环境下,变电站电气系统的设计将会更优化,取得令人满意的系统设计。本文介绍的110KV变电站电气系统设计的结构、布置、配置等实在长期工作实践的基础上得到的体会,望能为电力行业的同仁们参考,所设不足之处还望批评指正。

参考文献:

[1] 黄纯华.工厂供电[M].天津:天津大学出版社,2001.

[2] 水利电力部西北电力设计院.电力工程电气设计手册电气一次部分[Z].1985,12.

[3] 苏文成.工厂供电[M].北京:机械工业出版社,1981.

电气系统设计论文范文第5篇

【关键字】屏蔽门控制系统功能设计技术

中图分类号:TM921.5文献标识码: A 文章编号:

一、地铁屏蔽门控制系统、基本构成以及运行模式

1、地铁控制门系统

地铁屏蔽门系统是一个典型的机电一体化产品,包块机械和电气控制部分,其沿站台边缘布置,将车站站台与行车隧道区域隔离开,降低车站空调通风系统的运行能耗。同时减少了列车运行噪音和活塞风对车站的影响,防止人员跌落轨道产生意外事故,为乘客提供了舒适、安全的候车环境,提高了地铁的服务水平。

2、地铁屏蔽门控制系统的基本构成

地铁屏蔽门控制系统的基本组成包括硬件组成和软件组成。其硬件组成主要包括就地控制盘LCB、中央接口盘PSC、车站紧急控制盘PEC、配电屏、驱动ups、控制ups、蓄电池屏、、屏蔽门状态报警盘、屏蔽门操作控制开关等。软件组成主要包括电机控制、门宽参数自学习系统、障碍物检测系统、防挤压系统、开门程序控制系统、关门程序控制系统、总线控制系统等。如图:

3、屏蔽门控制系统运行模式

正常运行模式分为两种:

(1)在列车配备自动驾驶系统的情况下,来自系统级(列车信号系统)的控制。

(2)在列车无自动驾驶系统的情况下,信号系统发出“列车占位”信号,由授权的操作人员在站台控制面板(PSL)上控制屏蔽门的操作为站台级控制的正常运行模式。

3.2非正常运行模式

(1)故障运行模式

在以下故障情况发生时,进入故障运行模式:

a.滑动门关闭时探测到障碍物。

b.列车超过允许停车精度,列车门与滑动门错位。

c.个别滑动门不能打开。

d.控制系统发生故障。

(2)紧急工作模式

在以下故障情况发生时,进入紧急工作模式:

a.列车在隧道罩发生火灾。

b.车站内发生火灾。

c.其它以外突况。

(3)测试工作模式

当系统安装或维修时采用的工作模式。

二、地铁屏蔽门控制系统功能及其作用

电气设计中采用控制部分和监视部分分开,其中控制部分采用硬线连接,监视部分采用总线连接。

1、控制功能。在任何运行模式中,接收上级发来的各种命令,上报信息以及对各屏蔽门单元进行自动控制,完成相应的动作。

2、监视功能。具有监视功能的设备包括两部分:中央接口盘(PSC)和远方报警盘(PSA)。主要完成站台每侧屏蔽门单元相关信息的集成,主要有以下功能:(1)收集系统测试(PST)、手动解锁、就地控制(LCB)、车站紧急操作装置(PEC)、站台控制PSL的状态信息;(2)通过现场总线通信收集全部门控单元(DCU)信息;(3)允许对DCU参数进行修改;(4)存储屏蔽门故障诊断信息以及正常系统运行记录;(5)收集驱动电源信息。

3、屏蔽门控制系统作用

从屏蔽门控制系统的作用的角度来讲,屏蔽门系统的控制分就地级控制、站台级控制、列车信号系统级控制、火灾模式级控制。就地级控制是每个活动门模块可以独自机械,电气操作;站台级控制,列车信号系统级控制,火灾模式级控制都是通过PSC里的继电器控制活动门模块的运行,PSC是根据各级控制发出的命令对活动门模块进行操作、监视,是各级控制的集合体。优先级是就地级,其次是火灾模式级,然后是站台级,最后是列车信号系统级。火灾模式级是在车控室操作屏蔽门系统,支链打开屏蔽门。

现在有两种PSC设计方法,一种是把电气系统(主要是处理硬线命令的继电器组)和监控通讯系统组合在一个模块里,成为一个黑盒子。黑盒子的输出输入接口有电源,现场总线网络(监视网络),各级控制的命令、状态的硬线端口,门单元的命令、状态的硬线端口。可以既控制屏蔽门运行,也监控屏蔽门状态、故障,并把相关信息存贮起来。一种是电气系统和监控通讯系统各自独立,把电源,各级控制的命令、状态的硬线端口,门单元的命令、状态的硬线端口集合一起,把现场总线网络(监视网络)独自成一体,与各门单元,PSC里各重要继电器组有接口,从而全面监控系统,电气系统和监视网络收集的若干重要状态如“开门”状态,若干重要故障如“系统故障”通过PSC的指示灯面板反映。首先这样电气和监控通讯两个系统不会相互影响,独立开来以后维修、改造方便。其次减低维修成本,一个部件损坏不必整个PSC更换。

三、制系统的关键技术

1、伺服驱动系统

门机是屏蔽门系统的核心设备之一,门控单元(DCU)是门机的重要组成部分,向.门控单元的丰要部分是服伺驱动系统,包括电机和伺服驱动器。从成本来考虑,伺服驱动系统约占门机的l/2,约占屏蔽门系统每单元的1/6。目前,屏蔽门行业国内的生产厂商所采用的是大都是外购通用件,功能齐全,性能很好,相成地价格很高;有的还需要另外配置控制器,使得系统累赘和不可靠。相比之下,国外的屏蔽门厂商就有很大的优势,因为他们掌握了伺服驱动的核心技术,拥有他们自己的电机和驱动器,他们以最少的硬件投资成本,获得了最大化的利润,他们卖的是技术。冈此,如果能够自己研制伺服驱动系统,节省的成本将相当可观。

2、监控软件

运行于中央接口盘(PSC)上的MMS和远方报警盘(PSA)上的监视软件系统,它能够实时临测系统运行状态。编程语言的选择多为VB(Visual Basic),从软件的功能实现和系统的大小来说,VB也完全能够胜任,不过,已经有不少客户为了追求更好的性能,要求采用VC(Visual C++)。

3、现场总线

DCU的状态信息是通过通信网络传递到PSC的,对于通信网络的选择有多种,常见的有RS485、CAN总线、Profibus以及LonWorks等。由于地铁站台的距离一般较长,有的将近200米,为了通信的实时、稳定,现在多采用现场总线。每个DCU单元作为一个从设备(节点)挂在总线上,总线丰设备放在屏蔽门系统设备室,上设备收集到DCU的状态信息后发到PSC,完成通信。

四、控制系统设计特点

所有控制线路通过硬线连接,保证了控制系统的高可靠性,成本较低. 监控系统采用标准的国际工业网络数据总线进行链接,传输大量信息. 采用这种方式保证了系统操作的高可靠性、良好的功能和设备扩展,除门控器需要进口外,其他控制部件和软件都能由国内的专业公司提供。

总结

地铁屏蔽门是地铁环控系统的重要部件,其活动门数量多,运营中平均每2 min 就须开关门一次,其控制系统必须十分安全可靠. 地铁屏蔽门是一复杂的分布参数控制系统,它集建筑、机械、电子和控制等科学于一体,其信息传递速率、同步性、系统可靠性和电磁兼容性等要求十分严格. 本文在经过2 年多屏蔽门样品研制,参照国外屏蔽门工程实例,结合国内研究的基础上,较深入地研究了屏蔽门的控制原理。.

【参考文献】

[1] 张杰.地铁屏蔽门驱动系统的研究与探讨[期刊论文]-机电产品开发与创新2009,22(4)

[2] 饶美婉.地铁屏蔽门直法流系统设计[期刊论文]-都市快轨交通2009,22(4)

[3] 赵成光 广州地铁屏蔽门系统与现场总线技术[期刊论文]-工业控制计算机2001(4)

[4] 吴运成 现代地铁屏蔽门电气控制系统[期刊论文]-城市建设理论研究(电子版)2011(25)

电气系统设计论文范文第6篇

【关键词】L型前装机;转向系统;闭环控制系统

0 引言

自20世纪90年代以来,采矿设备的发展日新月异,世界上采矿设备生产巨头们像卡特彼勒、小松、久益环球、利勃海尔等公司纷纷推出自己的各种新产品,这些新的产品共同的特点是不断涌现出新结构和新元件时还广泛应用新的控制技术,技术发展的重点在于增加产品的电、液技术含量,应运更先进的电气、液压控制系统和更先进、灵敏的原件来实现对操作的优化。现在越来越多的控制技术和控制理论开始应运到前装机上,如变频调速控制系统、PLC控制系统、单片机控制系统、传感器控制技术等,这些技术的应用在控制精确度和效率上使前装机达到了一个前所未有的高度。

节能减排技术将是未来装载机行业的发展方向[1],更是采矿设备行业的发展方向。节能减排是个世界性的大课题,对于以柴油发动机作为主要动力源的前装机来说,这不仅因为节能和减排本身就是一对儿矛盾,而且还要考虑产品的性价比与可靠性。节能减排不仅仅关乎发动机、传动、液压和电控等系统,这是一个综合性的课题。对于装载机来说,合理的工作装置设计可以提高作业效率,减小作业阻力,降低油耗,但是控制系统的合理、先进设计同样对节能减排起巨大的作用。

本次选题准备以转向系统的控制设计为例来说明装载机目前的自动化控制水平和将来的发展方向。为了保证转向系统平稳、快速的运转,我们设计了本选题的电气控制系统和液压控制系统,在对各种电气和液压元件控制方法的工作原理进行了详细的分析的基础上,提出了L1150型前装机转向系统控制设计的选题。希望通过我们的研究能把前装机目前的自动控制技术提高到一个新的高度。

1 L型前装机转向系统总体模型设计

转向是电液控制的自动控制系统。则转向系统总体设计结构图如图1所示。

由上述结构图可以得出系统的传递函数为以下三部分组成,其中G1(S)是电气系统的传递函数,G2(S)是电液比例控制阀占空比对换向阀流量的传递函数,G3(S)是液压系统的传递函数,如图2所示:

所以本论文的设计分为俩部分,一部分为电气控制结构的设计,另一部分为液压控制结构的设计。

2 L型前装机转向系统控制设计

2.1 电气控制结构设计

电气控制是当操作手柄给左转向命令时,操作手柄移动被转换成CAN信息。CAN全称为Controller Area Network即控制器局域网[2],CAN总线是国际上应用最为广泛的现场总线之一。由操作手柄输出转向命令值输入到控制器,控制器接收到输入信号后输出PWM脉冲信号给控制阀,控制执行元件动作。转向位置传感器随时监控转向的位置角度并转化为电信号反馈给VCU,和操作手柄的给定值比较以便进一步的控制。该系统设计为负反馈闭环控制系统,所谓反馈控制系统,就是指根据系统输出变化的信息来进行控制,即通过比较系y行为(输出)与期望行为之间的偏差,并消除偏差以获得预期的系统性能。L型前装机转向系统的电气控制控制结构图设计如图3所示。

2.2 液压控制结构设计

液压技术的发展[3],可追溯到 17 世纪帕斯卡提出了著名的帕斯卡定律,开始奠定了流体静压传动的理论基础。液压系统:液压油从油箱流入转向泵的入口。转向泵输出液压压力油经控制阀和流量放大器后流入转向油缸,转向油缸动作从而实现转向运动。通过负载感知把负载的压力分别反馈回控制阀和转向泵,反馈回控制阀的压力油与给定值比较后进一步控制方向阀芯的开口大小从而进一步的控制压力油流向转向油缸的流量。由于液压系统运行时容易发热,为了节省功率和减少发热量负载反馈的压力油同时反馈给转向泵,从而可以控制转向泵斜盘角度,进一步控制转向泵的输出功率。该系统设计为负反馈闭环控制系统,所谓反馈控制系统,就是指根据系统输出变化的信息来进行控制,即通过比较系统行为(输出)与期望行为之间的偏差,并消除偏差以获得预期的系统性能。在反馈控制系统中,既存在由输入到输出的信号前向通路,也包含从输出端到输入端的信号反馈通路,两者组成一个闭合的回路。因此,反馈控制系统又称为闭环控制系统。反馈控制是自动控制的主要形式。在工程上常把在运行中使输出量和期望值保持一致的反馈控制系统称为自动调节系统,而把用来精确地跟随或复现某种过程的反馈控制系统称为伺服系统或随动系统。L型前装机转向系统的液压控制控制结构设计如图4所示。

图4 转向系统的液压控制结构图

3 转向控制系统的测试和分析

把设备所有的电气系统和液压系统以及其他的结构件等安装调试完成后,启动设备做了左转向、无转向、右转向等的一系列空载、有载测试,空载测试是指设备没有装载并处于平整的地面上,有载是指设备处于装载的工作状态,并处于工况不是很好的环境下,测试结果见表1所示。(下转第287页)

从表1中的测试结果可以看到当有禁止状态时,转向接口卡无输出。当发出左转向命令的时候,转向接口卡输出的电压为12V-18V;当操作手柄处于中位时转向接口卡的输出为12V;当发出右转向命令时转向接口卡的输出为6V-12V;这完全符合当初设计的期望值,在进一步的测试中该电路输出稳定、可靠符合要求。

4 结论

本论文的设计以L型前装机转向系统的设计为主题,主要包括电气系统和液压系统俩部分。电气系统采用LINCS II控制系统,由操作手柄通过CAN控制系统发出转向命令通过数字接口卡转化为数字信号后输入到VCU(VECHICLE CONTROL UNIT) VCU接受到信号后发出PWM输出信号给数字接口卡的转向接口卡通道,然后再传输到PVG32先导控制阀控制液压系统。转向位置传感器随时监控转向的位置角度并反馈给VCU和给定值比较以便进一步的控制。液压系统采用电液比例先导控制,液压油从油箱流入转向泵的入口,液压压力油从泵流过高压过滤器后到达流量放大器阀(Danfoss) 的HP口。当有转向命令时PVG32先导控制阀控制先导油推动流量放大器的方向阀芯后从泵出来的油经流量放大阀芯被导向转向油缸从而实现转向运动。

【参考文献】

[1]皮钧.工程机械的技术发展方向[J].工程机械,2012(11):27-30.

[2]杨洪.基于CAN总线的控制系统及应用研究[D].华侨大学,2014.

电气系统设计论文范文第7篇

关键词:挖泥船;泥泵离合器;智能控制;诊断

中图分类号:U664.5 文献标识码:A

1 前言

随着国内经济的飞速发展,挖泥船的应用越来越广泛,挖泥船大量用于河道疏通、挖沙清淤、吹填造地、筑路等,且随着工程需要,通过泥泵离合器智能控制系统控制本地泥泵执行机构,实现挖泥、吹泥等不同的工况。现在大多数耙吸式挖泥船多采用主机“一拖三模式”,采用双速比齿轮箱驱动泥泵,然后通过泥泵离合器智能控制系统操作合排,使主机驱动泥泵,进而实现多工况操作,本文就是针对这种双速比齿轮箱离合器研究开发出的一套智能控制系统,该系统将获取的状态信号进行采点、运算、诊断后执行对泥泵的控制,该智能控制系统不但能很好的控制高低速档合排、脱排,而且对合排过程中出现的故障能进行识别,并自行在诊断界面弹出故障点,能对离合器状态实时监控,此外在合排前后能配合功率管理系统实施功率管理。

2 智能控制系统的设计研究

2.1 控制对象

泥泵离合器是耙吸式挖泥船泥泵传动的中间连接核心部件,其结构如图1所示。泥泵通过主机,以离合器为纽带,通过控制驱动离合器合排使得泥泵实现转速输出。本文把离合器作为控制对象设计开发出一套智能控制系统,实现泥泵高、低速不同转速切换输出。

2.2 系统构成

根据系统的结构和控制不同特点,离合器控制系统可分气压系统和电气系统两大部分构成。

2.2.1 气压系统

气压控制是对离合器上的进气通路进行控制以响应相应高速档或低速档气路通断的操作,系统由滤器、压力表、恒压器、蓄能器、压力开关、电磁阀组件、消音器等组成,如图2为气压控制系统的工作原理图。其中,压力表示气源压力,滤器是将空气中的杂质过滤掉,通过减压阀把压力调到工作值,有一个安全阀保证气源压力不要过高,同时通过一个压力检测装置监测低于工作压力值时报警,按下合排按钮后控制空气通过两位两通阀和两位三通阀和节流阀后进入蓄能器瓶,其中压力监测装置监测高速合排时压力,压力监测装置监测低速合排时压力,当满足高速合排压力或者低速合排压力后,分别操作高速合排按钮和低速合排按钮进行合排操作,当有应急情况时,按下应急停止按钮控制两位两通阀泄放控制空气,离合器自动脱排。

2.2.2 电气系统

该电气系统通过采集功率管理系统、PCU主机推进系统、主机系统、液压PLC系统、MIMIC系统、泥泵离合器系统、泥泵齿轮箱系统、泥泵系统、AMS全船报警系统等各系统发出的信号来获得整个离合器的工作状态,如图3为电气系统框图。在对各个状态做出判定后,可操作相应的离合器动作。电气控制系统设计为三处控制模式,即可在机舱-离合器箱机旁控制,又可在集控室控制,也可在驾驶室-疏浚台远程遥控控制。离合器电气系统为了确保可靠性,有DC24V及AC220V电路,控制系统的电源均为UPS电源,保障系统在主配电板失电情况下依然能保持工作及监视状态,离合器系统信号均被采集到泥泵控制系统PLC柜,供全船的监控系统使用,此外系统还具有各种信号的报警功能,包括离合器电源故障、离合器主空气压力低、离合器控制空气压力低、离合器堵塞、离合器滑差、离合器紧急停止、离合器装置故障等。

2.3 软件系统

系统控制软件是整个智能控制系统的控制神经中枢,是系统的重要组成部分,根据不同船型选用合适的PLC控制模块作为控制单元,并能与上位机构成复杂的控制系统,离合器的合排/脱排联锁由泥泵控制系统PLC执行,泥泵离合器智能控制系统服务器方将各个系统信号采集处理后传送到泥泵PLC柜控制中枢的客户方,客户可在SCADA界面监测到整个系统状态图,进而进行操作。

2.3.1 系统设计的安全性-诊断保护

为了确保整个“一拖三”泥泵离合器智能控制系统的安全性,避免误操作引起离合器及相关设备损坏,在实际设计中采用多信号互相联锁诊断控制,只有在满足条件情况下方能操作离合器高低速档合排,只要有脱排操作条件,离合器将合排不成功。

2.3.2 系统高低速合排操作执行

智能控制系统对离合器的控制过程就是采集各系统发出的信号进行逻辑运算与判断,再根据不同工况来控制各个电磁阀的得电与失电,实现高速档或低速档气路的通与断,从而充气泥泵气胎离合器,推动泥泵齿轮箱和主机连接共同运动,完成输出泥泵转速的过程。当离合器合排条件吻合后,按下“低速”合排按钮,低速比离合器将合上;按下“高速”合排按钮,离合器高速档将合上。

3 应用情况

广州文冲船厂为上海航道局建造的科技含量非常高的万方大型耙吸式挖泥船 “新海牛”、“新海马”,分别于2009年11月、2010年2月交付使用,而后同类型挖泥船“新海虎4”、“新海虎5”也分别于2011年9月、2011年12月交付使用。该4艘挖泥船参加了长江口深水航道治理、唐山曹妃甸、天津临港工业区等重点工程项目建设,并成功进入美洲等海外地区,4艘挖泥船均采用了本文所述的泥泵离合器智能控制系统,该系统性能安全稳定,施工可靠,操作和诊断方便,达到了国际同类产品的先进水平,船东对此智能控制系统及诊断流程十分满意。

该系统具有如下特点:模块化设计;采用PLC程序;控制箱采用可靠的UPS电源,保障断电情况下泥泵离合器不会脱排导致泥浆罐在泥管里;具有多处控制操作功能,可在本地机旁控制、集控室控制、驾驶室控制;系统具有简单友善的诊断界面,减少工作人员故障诊断反应和处理时间等,大大提高了设备使用的安全性,减少工作人员劳动强度。

4 结论

随着船舶自动化程度越来越高和设备的增加,原有的控制系统设计已满足不了设备的兼容性和存在安全漏洞,为有效的减少设备操作流程,减轻施工人员工作量及提高系统安全性,我们研制了本文所述的离合器智能控制系统,它很好的适应了目前耙吸式挖泥船双速泥泵齿轮箱的特点,既具有高、低速合排诊断功能,又有泥泵在单泵高档、单泵低档、双泵高低档串并联控制诊断功能,并给疏浚台操作人员提供简洁的可视化信息界面和故障处理信息界面,由于简化了施工和故障诊断操作,劳动效率大大提高,进而缩短了施工项目完成时间,为船东产生了巨大效益,同时也产生了巨大的社会效益。

参考文献

[1] 于再红, 刘厚恕.国内外中小型耙吸式挖泥船动力配置综述[J]. 上海造船, 2010, (5).

[2] 刘厚恕. 耙吸挖泥船在我国的发展及大型化展望[J]. 上海造船, 2003,(1).

[3] 王永华. 现代电气控制及PLC应用技术(第2版)[M]. 北京: 北京航天航空大学出版社, 2008.

[4] 高伟. 国内外疏浚挖泥设备的对比与分析[J]. 中国港湾建设, 2009, (2).

[5] 田俊峰, 丁树友. 软件与计算机辅助疏浚系统[A]. 中国土木工程学会第十届年会论文集[C], 2002.

[6] 张贻飞,王晓明. LT型高弹性摩擦离合器在挖泥船泥泵传动中的应用[J]. 船舶工程, 1997, (02).

[7] 董鹏. 应用于泥泵双速齿轮箱的智能控制系统的研究与开发[J]. 机械设计与研究, 2012, (02).

[8] 陈国平, 王庆丰, 陶国良. 挖泥船作业综合监控系统的研究与开发[J].船舶工程, 2004, (03).

电气系统设计论文范文第8篇

关键词:35kv变电所 电气部分设计 方法 过程

现代社会,科技不断发展、经济持续进步,对电力系统、电能供应质量等的要求越来越高,电力网络系统也正在逐渐走向发展与完善,变电所电气部分设计中,接线设计占据十分重要地位,因为接线系统设计水平会极大地关系到电气系统的运行质量、工作状态,因此,必须加强对变电所电气接线的设计。

一、35kv变电所电气一次部分设计的整体分析

所谓35kv变电所电气一次部分就是一次接线,高压电器设备通过连接线构成的电路,其能够接收并分配电能。一次接线能够从总体上反应不同设备的功能、链接方式、不同电路间关系等等,对应构建出变电所电气主要构造。电气主线在整个电力系统中发挥着关键而重要作用,因为电气主线设计与链接质量直接影响着供电质量、线路运行状况等重要因素,甚至关系到配电设备的布局、继电保护的装配等等,因此,电气主线的设计必须要达到以下标准:安全稳定、自由灵活调动、便于检修等等,只有这样才能体现出其经济性特征。

1、电气主接线的设计标准

(1)确保安全供电,维护电能质量

电力系统运行的根本就是要安全、稳定,减少停电次数与规模,从而减少发电厂自身以及其他用电行业客户的损失,而且故障性断电还可能造成供电设备损坏、报废,社会安定受到影响等等。这其中所带来的损失是巨大的。

所以,电气主接线的设计必须本着供电安全稳定的原则,其中要确保电压合理、频率合理、供电线路连接正确等等,只有具备这几点基本要求,才能确保电能质量,主接线必须在不同工作状态中达到这些基本标准。

(2)富于灵活性、便捷性

电气主线在供电运行过程中安全、稳定的同时,也要具有一定的自由度和灵活度,例如:当电力系统出现故障时,电气设备需检修时,电气主线能够方便、灵活地被调度,能够及时转变运行方式来维持供电系统持续供电,尽量控制停电范围与时间。

(3)成本合理、经济廉价

在确保供电安全、稳定、高质的前提下,主接线设计也要本着经济实惠的原则,要确保对设备的成本投入最少,所占空间最小、转移费用最低,为了控制设计成本,尽量一次性设计成功,并实施分期投资战略,这样才能有效控制成本投入量,创造良好的经济效益。

(4)具有可塑空间

任何电气部分的设计都不是一成不变的,需要随着时代的发展、科技的进步实时变化,这就需要在主线设计方面留出可塑空间,一方面要顾及到最终接线能够顺利运转,另一方面也要考虑到分期过渡的情况,要为日后的电力系统施工检修等提供方便。

2、具体设计方法

电气主接线的设计过程与方法应该包括以下方面:

第一,综合、全面地分析设计原则、设计图纸以及其他相关资料信息。

第二,科学抉择所需配置的发电机数量、单个发电机的容量,编制出科学的、适合性的主接线模式。

第三,对主变压器的数量与容量大小做出正确的判断与选择。

第四,厂用电源的引接。

第五,深入分析情况,判断有无限制性短路电流接入的必要,对应采取科学的解决对策。

第六,将所选择的设计方法、组织方案等进行综合对比分析,从经济、技术这两大方面进行对比,从而得出一套最科学的接线方法。

二、35kv变电站电气一次部分设计研究

1、主线设计主体设计方案

要想确保主接线安全、稳定地运行,首先要确保电气设备运行的安全可靠,因此,要优选质量好、安全系数高的电气设备,从而使接线简单化,一方面要保证主接线安全稳定、灵活变通,另一方面又要确保其成本低廉、投入小,占地面积小。

本着以上标准和要求展开电气设计,才能打造出科学、合理,令人满意电气设计类型。

2、具体设计过程

遵照上面的设计方案,对于35kv变电所电气部分主接线的具体设计步骤体现为:

引入一台半断路器进行接线设计,如果进出线回路数大于或等于6回,可以选择此断路器接线,相反,则可以选择双母线接线法,但是前提是要确保其能够维护电力系统的安全、持续、稳定运行。

在一台半断路器接线过程中,电源线需要同负荷线成双成对,形成串,而且同名回路要装设于不同串中。例如:如果电源线同负荷线所成串只有两个时,同名回路则需对应链接在不同侧的母线上,而且进出线需要配置隔离开关,如果接线串在三个或更多时,同名回路则应该接在同一侧母线中,此类情况下可以不设隔离开关。

此外,在接线设计过程中,还应根据接线地区的地理环境、自然条件以及电力系统的实际状况等进行有针对性地选择与设计。

3、35KV变电所电气接线中的问题分析

要严格依照我国在变电站电气设计方面的相关规定进行电气接线设计,其中需要注意的是,如果机组的容量在200MW甚至更高时,需要装配交流保安电源,而且要对应要配置柴油发电机组,同时要确保其能够在短时间的被启动,以此发挥监控与保安功能,并对应配置能够永久、持续供电的电源设备,35kv变电站适合这一选择,具体的工作安排体现为:

第一,各个发电机组都装配一套柴油发电机组,并确保其能够及时、灵活地被启动,这个发电机组就为持续供电提供保障,参照具体的负荷要求,来选择其容量。

第二,在两个发电机组的保安pc中间增设开关,以此将两个发电机组联系起来,这样就能够保证一台机组电力无法供应时,启动另一台机组,从而确保电能的持续供应。

第三,增设预防断电的电源系统。任何一个机组都应配一个能够确保持续供电的电源设备,例如:DCS系统、热工控制仪表、自动化设备等等,而且要确保所输出的电压在220v,容量达到100kva.

第四,单位机组中配设2个保安段,机组保安负荷在保安段,有柴油机引接,当线路依照常规规则运行时,机组的两个锅炉工作段发挥供电功能,当出现故障问题时,则应立刻转入柴油机发电机,确保供电持续进行。

总结:

35kv变电所电气部分设计中,一次接线设计是重要的设计工作,必须提高接线设计水平,确保接线设计达到安全、稳定的水平,因为接线设计水平直接影响到整个电力系统的运行状态与工作水平,甚至会威胁到电气系统的运行质量,必须首先制定出科学的设计方案,对设计方案作出科学化、合理化的选择,同时明确设计过程中可能遇到的各种问题,针对这些问题事先采取有效的解决对策,这样才能切实提高变电所电气设计质量。

参考文献:

[1]蒋年德,魏育成:变电站综合自动化系统体系结构研究[J].电网技术.2011年10期.

[2]贾玲珍.变电站综合自动化设计中若干问题的研究[J].华北电力大学,2012年.

[3]王超.严敏.王凡.唐培康.胡月丹.徐桥安.WANG Chao.YAN Ming.WANG Fan.TANG Pei-kang.HU Yue-dan.XU Qiaoan降压变电所电气设计[期刊论文]-上海船舶运输科学研究所学报2010,33(1)

[4]许桧.王赫玲.任守涛.XU Hui.WANG He-ling.REN Shou-tao 220kV降压变电所电气设计方案――电气主接线的选择与确定[期刊论文]-电气开关2011,49(1).

电气系统设计论文范文第9篇

伴随社会经济的全面进程,新建成的楼宇设施也大量融合的科技元素,近年来集成化的楼宇设施监控系统也被逐渐重视。例如电梯系统、配电系统与照明、供暖、制冷系统,上述集成化设备监控系统在楼宇中具有非常重要的作用,经对楼宇内电气设施的全面管理,能够从根本深化电气设备监控系统的有效性,同时为节约型社会的发展奠定良好的基础。

关键词:

集成化;楼宇电气设备;监控系统

1集成化的楼宇电气设备监控系统的现状

自上世纪八十年代,楼宇电气设备监控系统在国内得到广泛应用。此系统的构建机制是依附于差异化功能系统予以区分,也就是电气设备的构建及管理分为两个体系,同时设计以及施工直到完成所有过程,即经差异化的施工单位所完成。这就导致了下述问题:(1)因为生产商存在差异,造成设备间出现不兼容现象,因此造成系统交互过程出现问题;(2)因为子系统的功能存在差异,同时系统之间存在独立特性,造成资源在予以互换时出现问题。此类构建举措致使楼宇的电气设备在使用环节存在隐患。所以集成化的楼宇电气设备需要每一个子系统结构互同,协议与接口也要有统一的指标,因此规避子系统互联与硬件设施互操作所存在的弊病,达到资源与信息共享的目的。

2集成化的楼宇电气设备监控系统结构

集成化的楼宇电气设备监控系统的功能室能够控制管理楼宇中的给排水、空调以及照明等电气设施。为确保楼宇的电气设备可靠运行,我们要深化软硬件的稳定性。举例说明,为楼宇实施最简单的供电及配电过程中,我们要保障电路与电流的稳定。同时对升降压设施温度指标,电流的稳定性等因素都要予以实时的管理及检测。为匹配于可持续发展的相关需要,楼宇要侧重于节能减排,楼宇能耗主要来源于空调、照明以及供暖等电气设施,为控制资源浪费,对集成化的楼宇电气系统控制的研究势在必行。举例说明在楼宇内,我们要对卫生间、走廊以及停车场等地予以电路设计,可以择取声控传感设备;同时拟定相匹配的电路监测,予以各水位及压力的控制,达到节能控制的基本要求;针对空调系统,设计完善的启动与停止控制系统,不但可以减少楼宇的负荷,同时可以达到节能减排的要求。

3集成化的楼宇电气设备监控系统设计

集成化楼宇电气设备监控系统,是把电气监控系统与智能化控制进行有机的结合,自动检测楼宇的基础电气设施,同时予以控制及保护,举例说明,供配电系统的监测,检测过程可以利用通信系统的综合性以及自动性,为信息与资源的共享奠定良好的基础;而且,通过互联网,对网络内外的资源与予以全面利用,因此达到自动化与集成化的要求,可以很好的为信息集成提供依据;经上述举措,能够实现电气设施的集成化管理,而且最大化的节能。在监督合控制功能的基础上,达到全面监视楼宇内电气设备的工作情况,我们要予以参数采集。因为在实施参数收集与监控要经通信对参数予以传输,此措施不但有远程通信的优势,同时还具有一定的广度。在此环节,要予以大量的参数处理。因为具有一定的监控广度,参数存在繁琐的特性,所以不能只追求响应速度,在求得响应速度的基础上要确保全硬件的监控有效性,而且,要保障系统的稳定性。

4集成化的楼宇电气设备监控系统设计的一些建议

站在行业角度来分析,全面利用现前沿的技术,对常规技术实施改造。举例说明,把信息技术与集成化技术进行有机结合,对常规的电气产业予以智能化的改造。空调与配电设施经改进后会有自动监测及控制功能;综合建筑内,把一些设备予以联网改造,能够达到集成化管理的要求。为匹配于科技的发展,一些生产厂房在予以楼宇电气设备的生产过程中,进行了一系列功能完善,其中包括空调的生产。在配电设施的智能化功能方面,能够在常规的基础上,深化智能化的检测控制系统,这样不但能够具备基础功能,还可以传输相关电量参数,同时予以远程控制设备。常规的空调设施以及配电设施等加装智能化系统,所生产的产品本身具备智能化的监控功能,在楼宇应用过程,无需设置BA系统,仅将设备予以联网,就能够实现集中管理的电气设备自控系统。现阶段一些大型的楼宇电气设备生产企业已经以此为侧重点予以研究,比如空调冷机厂商,目前的产品大部分均为具有智能化控制系统的设施,其控制设施能够对所有设备予以整体的监控,所控制的设备其中涵盖冷水出口温度、压缩机、冷却水出口温度、冷水入口温度、阀门开度、冷却水入口温度与冷冻泵等设施,经整体开、停控制,达到启动速度快与停机时间缩减的目的,可以解决耗能,深化了中央空调系统的稳定性。而且实施各机组间设备的启、停具有连锁及时间顺序控制、相关机组运行时间自动调节,同时可以确保机组的稳定运行,对相关数据予以了保护。对相关参数予以长久的在线储存,构建历史报表以及历史趋势指标。重要的参数能够经网络传输至控制中心,在控制中心予以遥控等操作,具有智能化特点,具备BA系统所有的监控及管理功能,同时较之常规的楼控系统对设备的管理更为全面。举例说明,智能化的开关配电设施,是在常规的开关柜上,予以智能化系统的完善,在常规配电柜的先决条件上架设了智能化的监控模式,不仅能够实现常规BA系统的电量参数传输以及交流接触设备远程控制等功能,同时还具备常规BA系统所没有的管理功能,其中包括故障录波等,使设施趋于全智能化,同时使配电柜本身具备远程监控能力,这样就能够在中心控制室内对配电设施予以整体性管理。在柜电柜、冷冻机以及电梯等设备上,现阶段很多产品都已具有一定程度的智能化控制,不过在相关动力以及组合式空调机控制等,自身具备智能化系统的设施现阶段还较少,如一台组合式的中央空调机组,其予以室内温度以及湿度收集,同时和设定的温度与湿度进行对比,依附于公式,对相关加热器、调节阀以及加湿器等设施予以控制,调节温度、湿度,以达到相关需要,上述功能已然要利用加装的BA系统完成。而很多空调及电气设施在一幢大厦内,具有分布零散的特性,所以,需要加装安装的BA系统对其予以整体的管理。空调以及电气设施制造企业在此类产品中,已然有一定的开发空间,所以要深化智能化系统在上述设备中的应用价值。目前各厂商所开发具有智能化控制系统的楼宇电气设备,在应用环节,怎样将相关电气系统集中至一个建筑设施监控体系的平台中,是亟待解决的一个内容。要达到相关电气设备的集成,那么就要在研发智能楼宇电气设备过程中,全面顾及到设备要具备一个指标化的终端接口。例如产品接口支持微软OPC功能,这是一类相对理想的解决措施。OPC功能能够经软件在中央控制系统上对下属系统OPC接口予以参数交互,仅需向集成用户出示接口技术的相关规格以及说明即可,在此基础上用户经接口软件通过监控系统对系统予以网络监控。只要在产品研发过程中顾及到此类接口功能,那各厂家的设施就可以十分方便的集成到一起,进而达到建筑设备监控系统的相关需要。择取指标化的现场总线技术实施楼宇电气设备及集成,这也是未来发展的大趋势。在研发楼宇电气设备过程中,各电气系统全部依附于指标的现场总线技术予以设计,这样能够便捷各厂商的设备的集成。如通过LONWORKS技术的智能楼宇电气设备,只要匹配于LONMARK认证指标,则相关系统就能够很便捷的集成至一个平台,进而达到建筑设备监控系统的相关需要。近年来有一些产品匹配于LONMAR论证,空调设备与配电系统等厂商在研发产品的过程,要尽可以应用此技术。

5总结

综上所述,为确保楼宇的电气设备可靠运行,我们要深化软硬件的稳定性。举例说明,为楼宇实施最简单的供电及配电过程中,我们要保障电路与电流的稳定。同时对升降压设施温度指标,电流的稳定性等因素都要予以实时的管理及检测。为达到可持续发展的相关需要,楼宇要侧重于节能减排,楼宇能耗主要来源于空调、照明以及供暖等电气设施,为控制资源浪费,对集成化的楼宇电气系统控制的研究势在必行。把电气监控系统与智能化控制进行有机的结合,自动检测楼宇的基础电气设施,同时予以控制及保护,举例说明,供配电系统的监测,检测过程可以利用通信系统的综合性以及自动性,为信息与资源的共享奠定良好的基础;而且,通过互联网,对网络内外的资源与予以全面利用,因此达到自动化与集成化的要求,可以很好的为信息集成提供依据;经上述举措,能够实现电气设施的集成化管理。因为在实施参数收集与监控要经通信对参数予以传输,此措施不但有远程通信的优势,同时还具有一定的广度。在此环节,要予以大量的参数处理。因为具有一定的监控广度,参数存在繁琐的特性,所以不能只追求响应速度,在求得响应速度的基础上要确保全硬件的监控有效性。现阶段很多产品都已具有一定程度的智能化控制,不过在相关动力以及组合式空调机控制等,自身具备智能化系统的设施现阶段还较少,如一台组合式的中央空调机组,其予以室内温度以及湿度收集,同时和设定的温度与湿度进行对比,依附于公式,对相关加热器、调节阀以及加湿器等设施予以控制,调节温度、湿度,以达到相关需要,上述功能已然要利用加装的BA系统完成。空调与配电设施经改进后会有自动监测及控制功能;综合建筑内,把一些设备予以联网改造,能够达到集成化管理的要求。为匹配于科技的发展,一些生产厂房在予以楼宇电气设备的生产过程中,进行了一系列功能完善,其中包括空调的生产。而很多空调及电气设施在一幢大厦内,具有分布零散的特性,所以,需要加装安装的BA系统对其予以整体的管理。在柜电柜、冷冻机以及电梯等设备上,现阶段很多产品都已具有一定程度的智能化控制,不过在相关动力以及组合式空调机控制等,自身具备智能化系统的设施现阶段还较少。要达到相关电气设备的集成,那么就要在研发智能楼宇电气设备过程中,全面顾及到设备要具备一个指标化的终端接口。

参考文献:

[1]宏文;消防电子产品和通信技术的研究基地——科研所研究成果介绍之二[J];消防科学与技术;2015年04期

[2]河南金融管理干部学院计算机教研室陈学军河南省华兴建设监理公司孙向阳;从模拟到数字[N];网络世界;2013年

[3]冯玉萍;由天津万丽宾馆施工图设计引发——对建筑施工图设计细节问题的思考[J];工程建设与设计;2014年S1期

[4]吴成富;杨雪玲;李炳林;陈绍伟;当前民用建筑施工图设计中的常见问题与思考[J];广东建材;2011年05期

[5]赵起升,朱静孙,王平;智能建筑中的楼宇自动化设计及其应用[J];华中科技大学学报(城市科学版);2013年03期

[6]吴国松;周水兴;顾安邦;立交桥异形块集成CAD系统的开发思路和技术关键[A];中国土木工程学会桥梁及结构工程学会第十三届年会论文集(下册)[C];2015年

[7]敖清;石洞;童頫;CAD专家系统工具ESTEA的初建——图形功能与系统集成环境的实现[A];中国土木工程学会桥梁及结构工程学会第十二届年会论文集(下册)[C];2012年

[8]齐笑;争做一流的楼宇自控产品生产厂商——访北京信和瑞丰科技有限公司总经理姜永东[J];智能建筑;2013年02期

[9]吴炜;王玮珠;上海市浦东新区社会发展局计算机广域通讯网的设计和实现——一个开放结构系统的集成设计和实现[A];系统工程与可持续发展战略——中国系统工程学会第十届年会论文集[C];2013年

电气系统设计论文范文第10篇

【关键词】太网,DCS,控制系统

中图分类号:F407文献标识码: A

一、前言

随着电厂生产水平的不断提高,人们对电厂DCS控制系统的要求也越来越高。因此,我们要加强先进设计理论与先进技术的学习与应用,不断进行基于以太网的电厂DCS控制系统的探讨,使电厂DCS控制系统的更加适用、安全、可靠与经济。

二、电厂DCS控制系统的概述

电厂辅助系统主要有水网、煤网、灰网、脱硫、脱销系统等,对于300MW及以上的机组来说,辅助系统大都已采用计算机控制,随着网络技术、计算机技术及DCS控制技术的日益成熟,这就为这些辅助系统实现自动化控制打下了坚实的基础,并且加速了辅控系统纳入全厂管控一体化的进程。

过去电厂辅控常采用传统PLC实现独立且分散的控制,这种控制模式由于使用较多的运行人员,加上各系统间联系不方便,备品备件种类多,难于管理及设备投资大等缺点已经基本不被采用。辅助网络控制采用新一代DCS系统后克服了原有独立且分散的控制系统的缺点,可最大可能的将运行人员减到最少。使控制系统在基本不提高造价的情况下,使辅助网络控制系统的水平达到与主机DCS控制系统相当的水平,为实现全厂管控一体化打下良好基础。本文重点介绍DCS在湖南创元电厂2×300MW火电机组水网中的应用。水网是辅网中最复杂的系统,通常包括锅炉补给水系统、凝结水精处理系统、汽水分析和化学加药系统、制氢站、综合水泵房、废水处理系统(含工业废水处理、生活污水处理、含煤废水、含油废水)等。

三、常用电气系统控技术比较

1、为采用常规的电气纳入DCS系统监控的方式

目前,大容量机组的电气系统纳入DCS监控的主要方式为:发变组保护、综合自动化装置、厂用电系统的保护及自动装置的动作情况是通过各独立的装置动作信号以及电气设备的位置状态等开关量作为输入量(即DI)送至DCS系统;模拟量(如电流、电压、有功、无功)通过电量变送器输出4~20mA标准信号送至DCS系统:DCS的控制命令作为输出量(即DO)引至电气设备,各电气设备与DCS系统的联系采用硬接线方式,即由电气设备现场用电缆将电气量信号一对一地送至DCS系统的I/O柜上。

2、高低压电动机通过现场总线接入DCS

每台电动机的智能终端模块与DCS的联系信号除起动/停止指令、运行/停止状态反馈、遥控状态、电源监视、电流共七个信号外,增加了保护动作信号、设备故障信号、设备起动次数、参数设定、累计运行时间等现场设备信息,大大丰富了DCS的监视内容。其中的设备起动次数、累计运行时间等信息采集及分析,为提高电厂管理和维护水平创造了有利条件。由于智能终端模块集成了通讯、保护、二次控制电路等多项功能,其中低压智能终端模块还集成了电流互感器,10kV、6kV智能终端模块还提供故障录波功能(上位机支持),采用交流采样技术,通过现场总线接入DCS,节省了控制电缆,取消了电量变送器及控制用中间继电器,使电气开关柜内接线大为简化,安装及设备制造的工作量比采用常规的“硬接线”方式大大减少。目前,满足现场总线要求的智能化的中压开关柜及低压开关柜得到了广泛使用。

3、整个系统由三个功能层构成

第一层:测控保护层。由大量的保护和自动装置构成,主要由分散安装于就地开关柜的智能终端装置、发变组保护、AVR,ATS,ASS等组成,保护功能完全独立,利用现场总线技术,采用光纤或屏蔽双绞线连接至通信管理层,可以实现这些装置的分散监控。

第二层:通信管理层。该层将DCS对测控保护层的控制命令,或电气后台工作站发出的修改定值命令等,下发至各有关装置,同时,将各装置上送的信息送至DCS系统或电气后台工作站。通迅管理层具有通信接收、发送、规约转换等功能,通迅管理层与上位机系统连接采用以太网,通迅管理层一般配置前端机或通迅管理单元,提供12~16个通迅接口。

第三层:上位机系统。包括DCS系统和电气后台工作站系统。电气后台工作站系统主要负责电气系统设备的管理维护、电能计量、故障录波和保护定值修改及下达等工作,由DCS系统来完成画面显示、报表生成、打印、控制、事件记录报警等。

四、基于以太网的电厂DCS控制系统研究

1、电厂DCS系统的网络设计分析

DCS系统的网络设计是整个DCS系统设计的基础和核心,对DCS整个系统的实时性、可靠性及扩充性起着决定性的作用。

由于系统网络的实时性是衡量系统网络性能的指标,因此,DCS系统的网络设计必须满足实时性的要求,即在确定的时间限度内完成信息的传送。

系统网络的设计还必须具有良好的可靠性,保证网络通信一直处于良好的联通状态,可以通过采用双总线、环形或双重星形的网络拓扑结构来实现。

2、电厂DCS系统的功能设计研究

根据我国当前电厂DCS系统的发展状况,结合电厂的现实情况,对电厂DCS系统的功能设计主要包括数据采集系统(DAS)、模拟量控制系统(MCS)、顺序控制系统(SCS)、数字电液调节系统(DEH)和锅炉炉膛安全监控系统(FSSS)。

(一)、数据采集系统(DAS)

数据采集系统(DAS)又被称为计算机监控系统,其基本功能就是对机组整个生产过程的参数进行在线检测,经过相关的处理运算后以CRT的画面形式提供给操作员。在此系统中,可以实现自动报警、制表打印和性能指标的计算等功能,以提高操作员实际操作的准确性。

(二)、模拟量控制系统(MCS)

模拟量控制系统(MCS)是将汽轮发电机组的锅炉和汽机当作一个整体来进行控制,分为炉侧、机侧模拟量控制系统两部分。其中,炉侧MCS系统包含了几个重要调节系统,机炉协调控制系统、汽温调节系统、送、引风调节系统、启动分离器储水箱水位控制系统及蒸汽温度控制系统;而机侧MCS系统除了锅炉给水系统全程调节和除氧器水位调节是串级调节外,其它都是一些单回路调节系统,如除氧器压力、水位调节系统、凝汽器水位调节系统和闭式水箱水位调节系统。

MCS系统主要负责生产过程中水、风燃料等系统的主要过程中变量的闭环自动调节及整个单元制汽轮发电机组的负荷控制任务。

(三)、顺序控制系统(SCS)

顺序控制系统(SCS)也称程序控制,是将机组的部分操作按热力系统(或辅助机械设备)划分成若干个局部子系统,按照事先规定的顺序,通过对各设备运行状态的逻辑判断来发出操作指令,进而对机组设备的各部分实施顺序启动,以实现顺序控制的目的。其主要任务就是负责电厂厂房内主机或辅机的自动启停、参数监视及联锁保护工作。

由于SCS系统中指令的优先级是实行分层设计的,炉侧顺序控制的范围包括:送风机、引风机、炉膛吹灰系统等方面;机侧顺序控制系统的范围包括:汽机油系统、内冷水系统、胶球清洗系统等方面。

虽然SCS系统是一个内容庞杂而控制逻辑相对简单的系统,但联锁保护逻辑的设计作为其核心内容,必须结合现场设备的实际情况进行设计,其设计的合理性不仅关系到辅机本身的安全,还关系到机、炉主设备的安全。

(四)、数字电液调节系统(DEH)

数字电液调节系统(DEH)是汽轮发电机组的重要组成部分,其主要作用是调节汽轮机的转速、功率和控制汽轮机前的压力,同时还可以实现机组启停过程和故障时的控制和保护功能。

(五)、锅炉炉膛安全监控系统(FSSS)

锅炉炉膛安全监控系统(FSSS)又称为燃烧器管理系统(BMS),该系统能在锅炉正常工作、启停等各种运行方式下,连续、密切的监视大量燃烧系统的参数和状态,通过不断地进行逻辑判断与运算,使得必要时发出动作指令,结合各种顺序控制和连锁装置的设计,使燃烧系统中的相关设备严格按照一定的逻辑顺序进行操作或处理未遂事故,以保证锅炉的安全。

五、结束语

通过对新时期下,电厂DCS控制系统的分析,进一步明确了电厂DCS控制系统的设计方向,为电厂DCS控制系统的优化完善奠定了坚实基础,有助于提高电电厂生产水平的提高。

参考文献

[1]刘景芝,孙伟.一电厂热工控制DCS系统设计[J].自动化技术与应用,2007

[2]孙星.分布式控制系统DCS研究[J].科技创新导报,2011

[3]潘菊初;新型分散控制系统DCS的研发与探索[A];第八届工业仪表与自动化学术会议论文集[C];2007

[4]潘菊初;分散控制系统DCS中的实时网与非实时数据网[A];第十八届多国仪器仪表学术会议暨展览会学术论文集(应用篇)[C];2007

作者简介:

1、石常魁 男2011年毕业于 中国矿业大学 热能与动力工程专业

上一篇:低功耗设计论文范文 下一篇:单片机技术论文范文