电解电容范文

时间:2023-03-09 01:18:01

电解电容范文第1篇

【关键词】DC-Link电容;薄膜电容;电解电容;替代

随着各国出台新能源相关政策以及新能源产业的发展,该领域的相关产业的发展也带来了新机遇,电容器作为必不可少的上游相关产品行业也获得了新的发展机遇。在新能源及新能源汽车运用中,电容器在能源控制、电源管理、电源逆变以及直流交流变换等系统中是决定变流器寿命的关键元器件。变流技术在上述系统中普遍得到运用,然而在逆变器中直流电作为输入电源,需通过直流母线与逆变器连接,该方式叫作DC-Link或直流支撑。因逆变器在从DC-Link得到有效值和峰值很高的脉冲电流的同时,会在DC-Link上产生很高的脉冲电压使得逆变器难以承受。所以需要选择DC-Link电容器来连接,一方面以吸收逆变器从DC-Link端的高脉冲电流,防止在DC-Link的阻抗上产生高脉冲电压,使逆变器端的电压波动处在可接受范围内;另一方面也防止逆变器受到DC-Link端的电压过冲和瞬时过电压的影响。

为新能源(含风力发电和光伏发电)以及新能源汽车电机驱动系统中DC-Link电容器的运用示意图图1、2。

图1为风力发电变流器电路拓扑图,其中C1为DC-Link(一般整合到模块上),C2为IGBT吸收,C3为LC滤波(网侧),C4转子侧DV/DT滤波。图2为光伏发电变流器电路拓扑图,其中C1为DC滤波,C2为EMI滤波,C4为DC-Link,C6为LC滤波(网侧),C3为DC滤波,C5为IPM/IGBT吸收。图3为新能源汽车系统中主电机驱动系统,其中C3为DC-Link,C4为IGBT吸收电容。

在上述提到的新能源领域运用中,DC-Link电容作为一个关键器件,不管是在风力发电系统、光伏发电系统还是在新能源汽车系统中都要求高可靠性及长寿命,其选型显得尤为重要。下面介绍薄膜电容与电解电容的特性对比及在DC-Link电容运用中两者的分析对比:

1.特性对比

1.1 薄膜电容

首先介绍薄膜金属化的原理,薄膜金属化技术的原理:在薄膜介质表面蒸镀上足够薄的金属层,在介质存在缺陷的情况下,该镀层能够蒸发并因此隔离该缺陷点起到保护作用,这种现象被称作自愈。图4为金属化镀膜的原理图[1],蒸镀前薄膜介质先进行前期处理(电晕或其他方式)以便金属分子能够附着在上面。金属通过在真空状态下高温溶化蒸发(铝的蒸发温度1400?C~1600?C,锌的蒸发温度400?C~600?C),当金属蒸气遇被冷却的薄膜后凝结在薄膜表面(薄膜冷却温度-25?C~-35?C),从而形成金属镀层。金属化技术的发展提高了单位厚度的薄膜介质的介电强度,干式技术脉冲或放电运用电容设计可以达到500V/?m,直流滤波运用电容设计可以达到250V/?m。DC-Link电容属于后者,根据IEC61071对于电力电子运用电容的要求可以承受较为苛刻的电压冲击,可以达到2倍的额定电压[2]。因此使用者只需考虑其设计所需的额定工作电压就可以了。金属化薄膜电容器具有较低的ESR,使其能承受较大的纹波电流;较低的ESL满足逆变器的低电感设计要求,减少了开关频率下的震荡效应。

薄膜介质的质量、金属化镀层质量、电容器设计及制造过程工艺决定了金属化电容器自愈特性的好坏。Faratronic生产的DC-Link电容用的薄膜介质主要为OPP薄膜。

1.2 电解电容

电解电容使用的介质为铝经过腐蚀形成的氧化铝,介电常数为8~8.5,工作的介电强度约为0.07V/A(1?m=10000A),按照计算对于900Vdc的电解电容需要的厚度为12000A。然而要达到这样的厚度是不可能的,因为为了获得好的储能特性所用铝箔要进行腐蚀形成氧化铝膜,表面会形成许多凹凸不平的曲面,铝层厚度会降低电解电容的容量系数(比容)。另一方面,低电压的电解液电阻率为150Ωcm,高电压(500V)的电解液的电阻率则达到5kΩcm。电解液较高的电阻率限制了电解电容所能承受的有效值电流,一般为20mA/?F[3]。

基于上述原因电解电容的设计最高电压典型值为450V(有个别厂家设计600V)。因此,为了获得更高的电压必须用电容器串联实现,然而因各个电解电容的绝缘电阻存在差异,为了平衡各串联电容的电压,各电容必须连接一个电阻。此外,电解电容为有极性器件,当施加反向电压超过1.5倍Un时,会发生电化学反应。当施加的反向电压时间足够长,电容将发生爆炸,或冒顶电解液将外溢。为了避免该现象发生,使用的时候要在每个电容旁并上一个二极管。除此之外,电解电容的耐电压冲击特性,一般为1.15倍Un,好的可以达到1.2倍Un。这样设计师在使用时就不但要考虑稳态工作电压大小,而且还要考虑其冲击电压大小。

综上所述,可以得出薄膜电容与电解电容如下特性对比表,见表1。

2.运用分析

DC-Link电容作为滤波器要求大电流和大容量设计。如图3提到的新能源汽车主电机驱动系统就是一个例子。在该运用中电容起到退耦作用,电路特点工作电流大。薄膜DC-Link电容具有较大优势,能承受较大的工作电流(Irms)。以50~60kW新能源汽车参数为例,参数如下:工作电压330Vdc,纹波电压10Vrms,纹波电流150Arms@10KHz。

那么最小电容量计算为:

。这样对于薄膜电容设计很容易实现。假设采用电解电容,如果考虑20mA/?F,那么为了满足上述参数,计算电解电容最小的容值为:。这样需要多个电解电容并联获得该容值。

在过电压运用场合,如轻轨、电动巴士、地铁等,考虑这些动力通过受电弓连接到机车集电弓,在运输行进过程中受电弓与集电弓的接触是间续的。当两者不接触时通过DC-Link电容进行支撑供电,当两者接触恢复时过电压就会产生。最坏的情况是断开时由DC-Link电容完全放电,此时放电电压等于受电弓电压,当恢复接触时,其产生的过电压几乎就是额定工作时的2倍Un。对于薄膜电容DC-Link电容可以处理不需额外考虑。如果采用电解电容,过电压为1.2Un。以上海地铁为例,Un=1500Vdc,对于电解电容要考虑电压为:。那么要用6个450V的电容进行串联连接。若采用薄膜电容设计在600Vdc到2000Vdc,甚至3000Vdc都容易实现。此外,在电容完全放电情况下能量在两电极间形成短路放电,产生很大冲击电流通过DC-Link电容,通常电解电容很难满足要求。

另外,相对于电解电容DC-Link薄膜电容器通过设计可以达到很低的ESR(通常低于10mΩ,更低的

3.结论

作为直流支撑滤波用电容,DC-Link电容早期考虑到成本及尺寸因素大部分选择电解电容。然而电解电容受到耐压、电流承受能力(相对薄膜电容ESR高很多)等因素的影响,为了获得大容量和满足高压使用要求,则必须要用多个电解电容进行串、并联。另外考虑到电解液材料的挥发,所以要定期进行更换,新能源运用一般要求产品寿命要达15年,那么在这段时间内必须更换两到三次,因而在整机售后服务方面存在不小的费用和不方便性。随着金属化镀膜技术及薄膜电容器技术的发展,采用安全膜蒸镀技术已经可以用超薄OPP膜(最薄2.7?m,甚至2.4?m)生产出电压450V到1200V甚至更高电压的大容量直流滤波电容。另一方面通过DC-Link电容与母排整合,使得逆变器模块设计更加紧凑,大大降低了电路的杂散电感使电路更加优化。以此同时,薄膜电容制作成本在不断下降,相比电解电容更凸显其经济性,在要求工作电压高、承受高纹波电流(Irms)、有过电压要求、有电压反向现象、处理高冲击电流(dV/dt)以及长寿命要求的电路设计中,选择DC-Link薄膜电容替代电解电容将成为设计者今后设计选择的一种趋势。

注释:

①指的是DC-Link用电解电容.

②指的是DC-Link用薄膜电容,一般以OPP膜为介质.

③C3A ESR测试频率为10kHz.

④?最大峰值电流(C×dV/dt).

⑤Imax最大允许电流有效值.

⑥C3B ESR测试频率为1kH.

参考文献

[1]Applied Films GmbH & Co.KG.《MULTIMET 650 Operating Instructions》,2001,66.

[2]IEC61071 INTERNATIONALSTANDARD For Capacitors for power electronics,2007.

[3]Gilles Terzulli,Billy W.Peace.FILM TECHNOLOGY TO REPLACE ELECTROLYTIC TECHNOLOGY,2005.

[4]厦门法拉电子股份有限公司.《薄膜电容器》for Power Electronics,AC Motors &Lamps,2013:26-40.

电解电容范文第2篇

关键词: 电容测量; ESR测量; BUCK变换器; 数字电源

中图分类号: TN710?34 文献标识码: A 文章编号: 1004?373X(2015)24?0148?04

An online monitoring method for output?end electrolytic capacitor of

switching mode power supply

LI Qi, YANG Biao, YU Hao, FENG Lian

(School of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, China)

Abstract: The performance degradation of the electrolytic capacitor in switching mode power supply is an important factor to result in power failure, so a method of monitoring the capacity of output?end aluminum electrolytic capacitor and series equivalent resistance (ESR) on line is proposed for the digital?controlled switching mode power supply in allusion to BUCK topology, which can realize the real?time monitoring to the performance degradation of the output?end capacitor. When the load occurs step decline, by integrating the current of the capacitor, the capacitance is calculated in combination with charge conservation theorem, and the ESR value of the capacitor is calculated based on the voltage in both ends in charging process of the capacitor. The method is verified by the experiment, in which STM32F4 is used as the controller. The results show that the proposed method can measure the ESR and capacitance, and monitor the performance degradation of the capacitor in real?time. The algorithm of the method has low complexity, simple hardware structure, little error and strong feasibility.

Keywords: capacitor measurement; ESR measurement; BUCK converter; digital power supply

0 引 言

开关电源是目前应用最广泛的电源,应用表明电解电容的寿命是开关电源寿命的主要瓶颈。在工作过程中电解电容等效电路模型中的串联等效电阻(ESR)会不断增大,容量下降[1],使得开关电源输出纹波增加,甚至使电子、电气设备损坏,造成损失。目前对铝电解电容的失效机理与故障预测已经有很多研究[1?3],但预测电解电容寿命需要对开关电源的输出纹波进行长期的监测、统计,然而分析这些数据并得出预期寿命需要比较大的计算量与复杂的硬件电路,多用于工业生产成品开关电源的产品寿命预测。例如文献[4]使用了CPLD和32位微控制器采样纹波信号,基于改进的EMD算法和基于改进 EMD的Hilbert变换算法提出一种实时估测ESR值的方法,算法的时间和空间复杂度都很高。文献[5]提出了一种基于开关电源稳态输出电压纹波的监测电容容量与ESR值的方法。在开关电源运行中进行硬件实时监测是低成本的有效方案,可与上述电源寿命预测的方法相互补,达到了避免开关电源因电解电容退化而失效的目的。本文提出了一种在线式监测开关电源输出端铝电解电容容量与ESR值的方法,以此监测电容的退化情况。该方法不影响电源系统的正常运行并能很好地与现有的数字电源控制技术相结合,有一定的可行性,算法复杂度低。本文使用STM32F4作为控制器进行了实验验证,该方法有很好的实时性和一定的精确度。

1 电容容值的测量

1.1 理论基础

如图1所示,对于一个典型的BUCK拓扑的开关电源,其中Vi是输入电压,Vo是输出电压,Io是输出电流,L是拓扑中电感的电感值,D是占空比,k为开关周期的次数。在处于稳态时,电感电流iL(t)在开关管开通时以斜率[Vi-VoL]上升;在开关管关断时以斜率[-VoL]下降[6]。

图1 BUCK变换器的拓扑结构

电感电流在开关管QH开通、关断时的表达式为:

[iLt=Vi-VoLt+Io-Vo1-D2Lfs, 0≤t

拓扑中的电容起到吸收电感电流iL(t)中交流分量的作用,使得输出电流Io稳定。

[iCt=iLt-Io] (2)

由式(2)可得电容电流iC(t)的表达式为:

[iCt=Vi-VoLt-Vo1-D2Lfs, 0≤t

如图2所示,当负载电流io(t)在t1时刻发生向下的阶跃变化,从Io1~Io2的变化量为Δi,而电感电流iL(t)不能突变,因此电容电流iC(t)也发生阶跃变化,使得输出端电容电压Vo升高,达到Vom。

图2 电感电流、负载电流与输出端电压的关系

刘雁飞等提出了电荷平衡法[7?9],当负载发生阶跃变化时,进行非线性控制,使得负载阶跃变化前后电容充放电电荷平衡,从而使电容电压回到稳态输出电压Vref。本文所采用的监测电容的方法基于电荷平衡的控制方法,当电源负载电流发生阶跃变化时,强制开关管QH关断,使得电感电流iL下降,跌落至负载电流Io2以下,这时相应的电容电流为:

[iCt=Vi-VoLt1-Vo1-D2Lfs-VoLt2, 0≤t1

这样,根据t1~t2时刻的电流积分与测量到的电压峰值Vom,基于电荷守恒定理可以得到式(5),由此式求得电容值C。

[C=t2t1iCtdtVomax-Vref] (5)

1.2 电容电流积分方法

在本文所提出的方法中,式(5)中电流积分的精确度很重要。检测电容电流iC(t)需要添加额外的检流电阻且会影响电源的性能,因此在假设电感电流纹波率很小的条件下,本文中电容电流通过其他量间接测得。

1.2.1 第一种方法

第一种方法假设输出电压Vo是理想的,基本不变,根据负载阶跃下降时电流的变化量Δi和电感电流变化率[k=-VoL,]通过三角形面积公式即可求得电容电流的积分量,如下:

[t2t1iCtdt=Δi22k] (6)

1.2.2 第二种方法

第二种方法是从负载发生阶跃下降时刻开始计时,测量从负载阶跃下降时刻t1到电容电流过零时刻t2所用时间即T,结合电流阶跃变化量Δi可得式(7),这样根据式(5)便可求得电容值C。

[t2t1iCtdt=ΔiT2] (7)

1.2.3 斜率修正法

实际的输出电压Vo是变化的,为了准确地求解电感电流,以Vo为中间变量,在电感电流下降时得到式(8)。

[LdiLtdt=1Ct1t2iLt-Io2dt+ESRiLt-Io2] (8)

图3中的理论值为使用式(8)中的微分方程来计算电容电流积分,从而得到的输出电压Vo曲线(其他参数:电容值C为100 μF,ESR的值为10 mΩ,电感值L为2 μH,输出电压Vo为1 V,电流阶跃下降量Δi为4 A)。可见方法一比方法二误差大,但使用方法二需要对电流过零时间进行检测,增加了额外的硬件电路。因此本文提出了电感电流斜率修正法,在方法一的基础上预先对曲线积分近似法进行拟合,使用电感电流修正斜率kC,使得式(9)成立,这样便可使用kC替代式(6)中的k计算电容电流积分。

[kC=Δi2t2t1iCtdt] (9)

图3 两种积分方法与理论值的对比

如图4为使用修正斜率方法与方法二和理论值的误差,可见选择恰当的kC可使得积分误差很小,但随着电容退化,其容值C的下降,使用斜率修正法的误差会逐渐向正方向增加;第二种方法的误差也向正方向增加,但在一定电容容值范围内斜率修正法造成的误差比第二种方法小。

图4 斜率修正方法与方法二的对比

2 ESR的测量

对于一个实际的电容,有如图5(a)所示的理想元件等效模型[10]。其中ESR为串联等效电阻,ESL为串联等效电感,EPR为并联等效电阻。通常EPR很大ESL很小,所以两者可以忽略不计。由于电容中ESR的存在,实际测得的电容电压值中还包含了ESR的电压分量VESR。在开关切换瞬间突变的iC电流在ESR上产生电压,而理想电容Creal两端的电压不能突变,使得在电容电流阶跃变化时电容电压也有小幅的阶跃变化。如图5(b)所示,ESR上的电压随着电容电流的下降而下降,在t2时刻,理想电容两端的电压VC等于输出电压Vo。

图5 电容的理想元件等效模型与电压关系

基于上文的斜率修正方法,电感电流以固定的斜率kC下降,根据三角形相似公式可以求出td时刻的理想电容电压 VC(td)为:

[VCtd=Vom1-td2T2] (10)

因此在td时刻由测量的输出电压Vo(td),结合计算出的电感电流iL(td)即可由式(11)求得ESR的值RESR。

[RESR=Votd-VCtdio2-kCtd] (11)

在开关切换的一瞬间ESR所产生的电压最大,此时还会有因开关管状态切换而产生的电压尖峰,因此测量时刻td应选择在尖峰电压产生的振荡衰减之后。触发电路及控制器的中断响应会产生一定的延时,必要时还应额外的增加延迟。

3 实验验证

实验电路参数如表1所示。

表1 实验电路参数

本文使用STM32F407VG作为数字电源的控制器进行实验,使用了前文所述的电感斜率修正的方法,图6为算法流程图。

图7为电路框图,其中电压跟随器与检流放大器使用高精度仪表运算放大器INA128,微分电路使用LM358搭建,栅极驱动器使用IR2110S,峰值保持器使用AD783。

图6 算法流程图

图7 系统结构框图

在电源负载稳定时,STM32F4作为电源的PID控制器,在负载发生阶跃变化时微分电路将输出脉冲触发控制器的外部中断EXIT1,使用STM32F4中三个独立的ADC模块采样输出电压Vo、峰值电压Vom与输出电流Io。在中断函数中,采样输出电压Vo(td)、峰值电压Vom、负载阶跃变化前输出电流Io1、负载阶跃变化后输出电流Io2,按前文方法可计算得到电容的RESR与电容值C。经验证,本文所提出的方法可以在5 μs内完成计算,具有一定的实时性。

表2为负载阶跃减小Δi=5 A时的实验结果,表3为负载阶跃减小Δi=3 A时的实验结果。

表2 Δi=5 A时的实验结果

表3 Δi=3 A的实验结果

4 结 语

通过电容的电荷守恒原理提出了一种在线式的监测开关电源输出端铝电解电容容量与ESR值的方法,并基于BUCK拓扑进行了理论推导与实验。本文对电容电流积分的计算方法进行了分析,并提出一种高精度的斜率修正方法。

仿真表明该方法精确度高,实验验证表明该方法算法复杂度低,有很好的实时性。但在电容值C较小、ESR值较大时仍有较大误差,因此改进电容电流积分方法、提高电压测量的精度仍然是后续研究工作的重点。此外,加入数据的统计处理功能,消除因外部干扰导致的不合理误差也是很有必要的。

注:本文通讯作者为杨彪。

参考文献

[1] 马皓,王林国.铝电解电容器退化分析与故障预诊断[J].电力系统自动化,2005,29(15):68?72.

[2] 周慧德.开关电源中铝电解电容可靠性的研究[D].哈尔滨:哈尔滨工业大学,2010.

[3] 刘郑辉,席自强.基于Buck电路的开关电源纹波的计算和抑制[J].湖北工业大学学报,2007,22(5):22?24.

[4] 王国辉,关永,郑学艳,等.开关电源中铝电解电容ESR实时估测[J].电源技术,2014,38(6):1114?1117.

[5] YAO K, HU Wenbin, TANG Weijie, et al. A novel online ESR and C identification method for output capacitor of buck converter [C]// 2014 IEEE Energy Conversion Congress and Exposition. Pittsburgh: IEEE, 2014: 3476?3482.

[6] MANIKTALA S. Switching power aupplies A to Z [M]. USA: Butterworth?Heinemann, 2006.

[7] JIA L, WANG D, MEYER E, et al. A novel digital capacitor charge balance control algorithm with a practical extreme voltage detector [C]// 2010 IEEE Energy Conversion Congress and Exposition. Atlanta: IEEE, 2010: 514?521.

[8] MEYER E, LIU Y F. A practical minimum time control method for Buck converters based on capacitor charge balance [C]// 2008 Twenty?Third IEEE Applied Power Electronics Conference and Exposition. Austin: IEEE, 2008: 10?16.

(上接第151页)

[9] MEYER E, ZHANG Z L, LIU Y F. An optimal control method for Buck converters using a practical capacitor charge balance technique [J]. IEEE Transactions on Power Electronics, 2008, 23(4): 1802?1812.

电解电容范文第3篇

[关键词]铝电解电容 低阻抗

中图分类号:TH551 文献标识码:A 文章编号:1009-914X(2017)01-0400-01

一、引言

高频低阻铝电解电容器在高频下的阻抗值大小,是这类电容的主要电性能指标,在电子产品使用过程中时常发生因铝电解电容器阻抗偏高,在高频下抗纹波能力差,出现铝电解电容器提前失效现象。为提高铝电解电容的抗纹波能力,在铝电解电容的制造过程一般是要想办法降低铝电解电容的阻抗值。本文是就个人的经验和大家探讨几种通过设计和工艺改善来降低高频低阻电容阻抗的方法,实现小型化大纹波电流。

二、 铝电解电容器的芯子结构及阻抗构成

2.1 铝电解电容器的芯子结构

铝电解电容器的芯子结构主要组成部分有:正极导针、负极导针、正极箔、负极箔、电解纸、电解液;

铝电解电容器的正极是正极箔,箔表面经过化成工艺产生一层铝的氧化物Al2O3,通过正极导针引出;铝电解电容器真正的负极是电解液,为了便于与外部电路连接,故通过一层负极箔由负极导针引出。

为了避免铝电解电容器内部正极和负极直接接触造成短路,正极箔和负极箔之间夹了一层电解纸,电解纸主要起到吸附电解液和隔离作用。

2.2 铝电解电容器的阻抗构成

为了研究铝电解电容器的阻抗,先来看一下铝电解电容器的内部等效电路:

从图1可看出,铝电解电容器的内部除了电容以外还存在等效串联电阻、寄生电感。其中等效串联电阻主要由以下几部分产生:引线电阻、刺铆接触电阻、金属氧化膜介质电阻、电解液电阻、电解纸电阻等。等效串联电阻带来的阻抗值加上寄生电感产生的感抗值(主要在高频条件下体现)共同组成了整个铝电解电容器的阻抗值。

三、铝电解电容器的低阻抗设计对策

为了降低铝电解电容器的阻抗值,就必须降低等效串联电阻和寄生电感。

3.1 等效串联电阻

3.1.1 引线电阻

铝电解电容器的引线如下图2所示,它由铝线(部分被压成引线舌片)与镀锡铜包钢(CP线)对焊而成:

引线电阻主要来源于铝线与镀锡铜包钢线的焊接带来的接触电阻,需要采用高纯度高品质的铝材,保证引线的镀锡、镀铜工艺,以提高对焊质量,来降低整条引线的电阻。

3.1.2 刺铆接触电阻

刺铆接触电阻指的是引线舌片与正极箔、负极箔铆接时产生的接触电阻,铆接部位细节。

由于高频低阻电容器多采用高电导率电解液,含水量较大,容易发生水合作用,刺铆工艺控制不好,引线舌片和电极箔之间存在较大间隙,如下图5,接触面积较小,接触电阻就大,同时含浸时电解液渗入空隙处进一步加剧接触电阻变大,对等效串联电阻影响非常大。

3.1.3 金属氧化膜介质电阻

金属氧化膜介质电阻是指铝箔表面形成的金属氧化膜本身带来的等效串联电阻,主要与化成箔工艺、铝箔材料有关,需要化成箔生产厂家努力降低铝箔表面金属化氧化膜介质损耗,来达到降低等效串联电阻的目的。

3.1.4 电解液电阻

电解液电阻是工作电解液带来的等效串联电阻。降低电解液的电阻率均是通过提高电解液的电导率来实现,但是电导率与电解液闪火电压是成反比的,因此如何做到在保证必需的闪火电压的前提下尽可能使工作电解液具有更低的电导率,一直以来都是各电容器生产厂家深入研究的课题。

3.1.5 电解纸电阻

电解纸会产生一部分阻抗,选用密度低,厚度更薄、渗透性好的纤维材质做成的电解纸能有效降低电解纸电阻。

3.2 感抗

电感是由电流流过电极箔、引线时产生的,铝电解电容器的感抗主要来源于引线的电感和芯包卷绕产生的寄生电感,尤其在高频条件下,感抗占主导地位。

对于引线式铝电解电容器,选择短而粗的引线能有效降低感抗值;芯包卷绕应该尽量保证卷绕圈数越少,则寄生电感就越小,因此矮而胖结构的铝电解电容除了铆接点数少导致等效接触电阻偏大以外,圈数太多,高频寄生电感太大也会导致铝电解电容器整体阻抗值变大。

因此设计选型时在考虑电源板尺寸限高的同时,也一定要注意兼顾铝电解电容器的阻抗值特性,高频滤波部分优选结构细而长的铝电解电容。

四、典型应用案例

为提高电源板机插率,减小PCB面积降低成本,研讨二次滤波高频低阻铝电解电容器由卧式改为立式机插方案。现有35V470uF规格高频低阻铝电解电容器,尺寸为10*20mm,容量再大尺寸只会更大,立式机插后均超过电源板12.5mm限高要求,只能采用卧式插件,为达到可立式机插方案,联合铝电解电容器厂商研讨解决方案,确定选用小型化大纹波高频低阻抗系列产品,具体如下:

4.1 改善措施:

根据上文分析,为了提高铝电解电容器的抑制纹波能力,减小发热量,需要降低高频阻抗,具体措施如下:

1.1 采用高耐热超低阻抗电解液,降低电解液电阻;

1.2 采用低阻抗电解纸,降低电解电阻;

1.3 采用高气密性封口丁基胶胶塞,提高气密性,延长铝电解电容器寿命,提高耐纹波电流;

1.4 同时为了满足限高要求,物料高度控制在12.5mm;

1.5 优化刺铆工艺,降低接触电阻值

4.2 常规参数对比:小型化大纹波35V330uF高频低阻产品,与原35V470uF普通高频低阻产品关键参数对比如下:

35V/330uF小型化高频低阻铝电解电容器,通过电容器材料及工艺上的改善,从以上参数测试可知,阻抗和纹波电流均优于容量更大的35V470uF普通高频低阻产品,同时尺寸10*12.5贴板机插后满足电源板限高要求,达到可立式机插降成本方案。

五、小结

铝电解电容器的内部阻抗值对产品性能影响较大,对整个开关电源滤波效果起到关键作用。降低铝电解电容器的阻抗值需从原材料、生产工艺、内部结构设计等多方面因素入手,而不能仅仅简单的通过增大电解液含水量来降低阻抗。

同时电源设计选型时也需重点关注滤波电容的阻抗值参数,选择低阻抗的铝电解电容器才能达到更好的滤波效果,有效提高电源工作效率。

参考文献

[1] 林学清,洪雪宝 铝电解电容器工程技术 厦门大学出版社

[2] 陈国光,曹婉真 电解电容器 西安交通大学出版社

电解电容范文第4篇

【关键词】:直流电解电容;交流薄膜电容;老化

0 前言

电容在UPS系统中的应用广泛,大功率电容器主要分为交直流两种,虽然型号众多,但在线式UPS系统中,电容的功能相同的,主要用于整流滤波、稳压等。

在线式UPS的主要部分为:(1)整流器,用于将输入交流变换为直流。(有些设计还会在整流器前增加交流电容器,用于输入端滤波)(2)CB02直流母线电容,在整流器和蓄电池之后,用于维持直流母线电压稳定以及直流滤波。(3)逆变器,用于将直流母线电压逆变成交流输出。(4)CB03输出交流电容,用于输出端滤波。

直流电解电容,介质材料为三氧化二铝,铝箔为电极,用于直流滤波。交流薄膜电容介质材料为聚丙烯,用于交流滤波。如果没有电容滤波,那么UPS系统输出的电能质量会很差,无法满足供电可靠性要求。

1 电容老化击穿事故

直流电容接在整流器输出端正负极间,当电容老化击穿,则直接导致直流正负极短接,造成主回路损毁。因为此处还与蓄电池直连,故障时会直接跳开主回路进线开关和蓄电池进线开关。但此时仍可由静态开关切至旁路运行。

但一些老式的UPS,电容设置在主回路和旁路的总输出回路上,在负载之前,这种设计下,电容短路会导致负载直接失电,且无法切至旁路。

交流电容同样存在这种击穿的可能性,导致交流输出端短路。电容器老化最严重的故障就是上述击穿导致隔直失效,造成正负极极间短路。在UPS历史中,电容击穿导致设备损毁的案例不胜枚举,在排除偶然性故障后,最多的就是因为电容自然老化导致击穿。对电容器这一元件的特性认识不足,导致在预防性维修工作中,没有考虑电容寿期,最终导致巨大损失。

2 电解电容老化的原因分析

交直流电容的老化源于两个基本原理:第一是化学反应,热量和元件内部化学杂质,会导致介质材料的绝缘恶化,例如氧化物,水分,湿气,卤素等等。第二种是漏电,电容介质材料在施加电压后,虽然可以被认为是绝缘的,但仍有微小电流,这种电流即漏电流,这种电流量级非常小,但仍会导致局部热量升高或导致材料电子活跃度增加。漏电流和化学反应都会导致电容容值下降和等效电阻增加。

对于电解电容来说,老化主要源于内部电解质散失,随着电解质减少,电容值减少。工作时内部温度越高,老化过程进行越快,因此,电解电容的老化过程与其内部温度密切相关。除此之外,电容在制造过程中,难免会在内部留存化学杂质。因此,我们目前所使用的电解电容和薄膜电容,都会有这样的老化过程,因此在运行过一段时间后,电容的故障概率会逐渐增大。而且,因为一组电容器通常不止含有一个电容,整租电容中的一个发生击穿,就能导致事故发生。

另外,纹波电流的大小也是造成电容寿命降低的原因之一,由纹波电流产生的热损耗,是影响电解电容器使用寿命的重要因素,当环境温度一定时,在允许的范围内,流过的纹波电流越大,电解电容器使用寿命越短,其原因在于电解电容散热性较差,当纹波电流流过电容器时,在等效串联电阻上将电能转化成热能,因此温度上升,导致寿命降低。

相比较来说,电解电容体积远大于薄膜电容,且在寿命、安全性等方面不如薄膜电容。而且薄膜电容具有耐压高、电流承受能力强、能承受反压而且可以长时间储存等优点,因此在实际应用中,薄膜电容正在逐步替代电解电容。

3 电容寿命的估计

电容器寿命的计算有很多种方法:例如通过计算电解质剩余提交来估算剩余寿命;通过计算电容的等效串联电阻来实现损伤评估;通过计算点解电容核心温度的的理论计算方法,对于使用阿伦尼乌斯方程的电解电容寿命评估方法,并采用参数辨识的方法对电解电容的等效串联电阻进行提取,以之作为估算电解电容损伤;通过直流纹波电压和电流的基波比值,计算等效串联电阻,并在纹波电压和电流中滤除其之路成分,防止负载变化的干扰。

但是由于电容寿命评估只是一个指导原则,且理论计算只是考虑理想运行环境及固有特性前提,因此数据缺乏准确度,在使用量庞大的电容中,无法预知第一个电容会在什么时候出现故障失效,因此需要根据电容寿命的评估,在寿期末定期进行更换,才能确保供电系统安全稳定运行。

对于薄膜电容,尽可能在容值最大损失5%到10%可以进行更换,对铝电解电容最大损失15%-20%来更换,因此,在预计的电容寿期末,需要定期对电容进行测量。除此之外,还要测量等效串联电阻的值,如果该值增加较大,铝电解质电容超过200%,薄膜电容超过100%,就可以进行进一步评估,是否需要更换。

4 总结

电解电容范文第5篇

关键词:变频器;电解电容器;性能研究

对于变频器中的电解电容器分析,主要是通过确定电解电容器的电容量、额定电压等参数进行确定,通过将电解电容器应用为整流滤波电容器,这主要是由于单相整流电路影响所导致的。通过研究电解电容器,充分发挥电解电容器的作用,能够更好的发挥变频器的功能,保证工业自动化程度的不断提高。

一、电解电容器概述

电解电容器的内部可以对电荷中的电解质材料起到存储作用,分为正极和负极,不能接反。正极是粘上氧化膜的金属基板,而负极则是通过金属极板和电解质连接。无极性电解电容器的结构为双氧化膜,它的两个电极与金属极板分别相连,两组氧化膜的中间属于电解质[1]。有极性电解电容器在电源电路或者低频及中频电路中起到电源滤波的作用。在额定环境温度下或者是最低环境温度下,可以对电容器的最高直流电压有效值进行连续叠加,并将其直接标注在电容器的外壳上面。但如果工作电压超出了电容器的耐压,就会导致电容器被击穿,从而造成永久性损坏[2]。

电解电容器上面的直流电压,作用在电容上,会产生漏电电流,直流电压和电容器之间的比,就是绝缘电阻。在电容很小的时候,应当对电容表面的状态进行分析,若电容量>0.1uf,就应当对介质的性能引起关注,应尽量让绝缘电阻变大。在电场的影响之下,电容在一定时间内会产生发热现象,而发热又会导致能量的消耗。在实践中,每个电容都会对其在频率范围之内的损耗值做出规定,通常情况下,电容的损耗中包括了介质损耗、能量损耗以及电容中金属本身电阻的损耗。另外,漏导损耗是电容器损耗的主要表现形式,而电容器损耗又是在直流电厂作用下产生的。但是在因为交变电场的影响,导致电容的损耗不止与漏电消耗有关,还和周期性极化有着密不可分的关系。电解电容器的主要作用是去耦、滤波、耦合、隔直流以及温度补偿等,应当保证电解电容器的电压在其耐压值的范围内,不然会出现故障。

二、变频器用电解电容器性能的影响因素

通过对电解电容器进行分析可知,电解电容器的应用对于保障变频器的正常运行具有重要意义,因此,应当加强对影响电解电容器的因素进行分析,并据此采用相应的控制措施,以加强电解电容器性能控制,从而提高变频器的运行发展水平。

1、电解电容器参数

电解电容器的主要参数包括额定纹波电流、寿命、ESR(等效串联电阻)等,这些参数在不同的囟然肪诚拢也会有不同的纹波电流被称系数,进而对电解电容器的性能产生影响。对于电解电容器的参数,应当根据电解电容器的运行情况进行严格控制,从而保证变频器的运行需求[3]。

2、电解电容器ESR

在变频器的运行过程中,纹波电流都会经过电解电容器,在通过电解电容器的ESR时会产生功能号,进而形成热量。比如将30kW的变频器,连在直流母线上的电解电容器ESR为60-90mΩ,而且如果纹波电流如果超过80-90A,则会在两个并联和两个串联的电解电容器上面产生功耗,约40-70W,这样,每一个电解电容器所产生的损耗大约为10-20W[4]。如果所应用的电解电容器的散热性能较差,则会导致电解电容器运行过程中产生更多的热量,温度升高,从而影响到电解电容器的使用寿命。

3、电解电容器阻抗频率的特性

电解电容器的感抗作用,表现在其阻抗频率特征之中,很多生产厂家并没有对寄生电感进行分析,并给出准确的参数。但在变频器的实际运行过程中,寄生电感会对逆变器的性能产生严重影响。如果两只串联的电解电容器,其所产生的寄生电感为200mH,那么如果此时的电流变化率为500A/μs,那么在直流母线上产生的感生电势则有100V,这势必会导致逆变器受到开关损耗,并由此产生较大的电磁干扰,不利于电解电容器的正常运行,更会对变频器运行产生影响[5]。要想充分了解电解电容器ESR对逆变器性能产生的影响,可以在直流母线上面接上变频器专用的缓冲电容器,以对直流母线的阻抗起到降低作用。

三、电解电容器性能控制

对于变频器的运行来说,选择电解电容器应用是根据变频器的需要来决定的,这组要是由于ESR的性能要求直流母线内的电阻不能过低,尤其是低温环境下更不能过低,但如果是数十纳亨的单体ESL,再加上连线结构的因素影响,会导致直流母线中的寄生电感增加到数百纳亨,这样,如果电流变化率增大,则会导致产生的感生电势非常高,从而导致开关时会产生较大的开关应力,并造成巨大的损耗[6]。对此,需要应用专门的直流母线对电解电容器产生适当的缓解作用,在这个过程中,出现的最大的问题就是电解电容器的寿命问题。对于电解电容器的制造和生产,要充分考虑制造成本,在此情况下,电解电容器的纹波电流的承受能力会更加的接近极限,这样即便是在常温的环境条件下,内部温度也会随着纹波电流的影响而出现明显上升的情况,从而导致电解电容器的常温条件也会导致其使用寿命受到严重影响,最终会对变频器的使用寿命产生影响,大大降低变频器的应用时间。

变频器中的电解电容器对于变频器的运行影响较大,这是有目共睹的事情。但对于变频器的设计,更多的工程师主要是关注电力半导体器件的研发,但对于电力电子领域中的元件革新却缺乏深度。而当电力半导体器件发展到一定条件下时,电力电子的电路性能就会受到元件的影响和约束,电解电容器便是这个条件下产生的制约产物。当前,元件制造技术也不断发展,会逐步退出更多适合变频器运行的电容器,以解决应用电解电容器所无法解决的问题。

结束语:

通过对变频器用电解电容器的性能进行分析,可以明确电解电容器在变频器中应用的重要性及功能发挥,并通过对电解电容器的性能影响因素进行控制,从而强化电解电容器在变频器中的应用,以更好的满足工业自动化发展,并实现工业自动化发展水平的提升。

参考文献:

[1]陈永真. 第7讲 电解电容器基础知识(二)――一般用途电解电容器[J]. 电源世界,2015,(05):63-65.

[2]郑红梅,吴玉程,黄新民,胡学飞,刘勉诚,杨蓓蓓. 铝电解电容器用电子铝箔的性能分析与比较[J]. 功能材料与器件学报,2012,(01):10-16.

[3]郭敏. 腐蚀频率对铝电解电容器用低压铝箔性能的影响[J]. 电子元件与材料,2011,(07):39-41+46.

[4]陈晓军,喜P. 铝电解电容器套管检测自动化生产线控制系统设计[J]. 制造业自动化,2010,(04):78-79+172.

[5]赵石华,赵勇刚,周庆波. 变频器用螺栓型铝电解电容器长寿命技术的研究[J]. 电子质量,2009,(06):59-61+76.

电解电容范文第6篇

“军工电容”在显卡上安营扎寨,并迅速开花结果,蔓延升来。最近,就连一向沉稳的电源也下茸寂寞用起了固态电容,那么将固态电容用在电源上究竟是雪中送炭,还是噱头一场外行蒋的是“闹热”,而只有内行才能说出萁中的门道――于是我们请到航嘉电源研究中心的姚雪峰女士来给大家一个明确的答察。

电容是储存电荷的容器,工作时它的正,负极(板)上能够聚积大量的电荷,在需要的时候释放这些电荷,在这样一张一弛之间就可以实现储能、平滑电流输出等多种用途。在开关电源产品中,需要使用到电容的地方就是输入和输出整流滤波电路。

输入滤波电路当中的电容就是我们常说的高压滤波电容,根据电路拓扑结构及电源功率大小的不同,输入滤波电容一般由一到两颗大电容来担当。它们是整个电源中体积最大的电容。于是得了一个雅号“大烟囱电容”,我们很容易将它们识别出来;输入滤波电容的耐压值比较高,从200V~450V不等,容量在几百微法(μF)左右。输入滤波电容在电路中的作用就是储能,它们将脉动直流电变成相对恒定的直流电。

输出滤波电容位于低压电路,也就是给计算机各零配件供电的+12V、+5V等低压电路。根据输出电压和电流大小的不同。输出滤波电容采用的规格从(耐压)6.3V~25V不等,容量从几百到几千μF不等,例如在磐石800上就使用了25V/3300μF、16V/470uF、10V/680μF、6.3V/1500μF等多种规格的输出滤渡电容。它们的作用就是将脉动电压变成恒定的电压,并过滤掉其中的杂渡,然后将纯净的电压输出给CPU、内存、显卡等配件。从这个角度来说,输出滤波电容的质量和稳定性直接关系到整个PC平台的工作稳定性。

业界专家眼中的液态电容与固态电容

在工业上最常使用到的就是铝电容,与此同时按照内部电解质材料的不同,铝电容又可以分为普通铝电解电容和固态铝电解电容。用来表示电解电容性能好坏的参数有很多,我们经常用到的有电容量,额定电压(耐压值),额定纹波电流值,ESR(等效串联电阻),工作温度范围以及寿命等,在选择具体的零配件时,这些参数就是我们的挑选依据。

ESR值降低之后发热问题也迎刃而解,较低的ESR值还使固态电容在耐纹波电流方面表现更加优异,事实上固态电容的额定纹波电流是普通液态电解电容的4~5倍。

普通铝电解电容的全名叫做“液态铝质电解电容器”,固态电容的全名叫做“导电高分子铝质固态电容器”。虽然名字上有些绕口,但它们在结构上非常相似,主要差别就在于填充的介电材料不同――普通电解电容以液态的电解液作为介电材料,而固态电容则以固状的功能性导电高分子聚合物作为介电材料。正是这种材料上的差异,造成了普通电解电容与固态电解电容在性能上的巨大差异。

A、ESR和额定纹波电流对电源稳定性的影响

ESR是“等效串联电阻”的意思,它是电容的一个重要参数。如果电容的ESR值不稳定就会影响到输出端的纹波电压,而且ESR是引起电容发热的主要原因――电流经过电容时就会产生热量P=12PRssn,这个热量会导致电容的内部温度升高,并缩短电容的使用寿命。业界一直在想办法降低电容的ESR值,但受限于液态电解液的材料很少有质的突破;有机聚合物材料的导电j生能是普通液态电解液的104倍,所以使用这种材料的固态电容就可以比传统的液态电解电容实现更小的ESR参数。

B、高低温环境卡的电容可靠性

普通液态电解电容很容易受到使用环境温度和湿度的影响,在高低温环境下的稳定性难以令人满意,相比之下。固态电容在高低温环境下都具有非常优秀的性能表现。

我们知道,传统的液态铝电解电容在低温时电解液会发生凝固、导致ESR增大,固态电容的导电高分子聚合物就不存在低温凝固的问题――容量为10μF的固态电容即使是在-55℃~105℃的范围内,ESR阻抗不会超过0.1欧,ESR变化曲线非常平缓,而同样容量的普通铝电解电容的变化幅度却是固态电容的几十倍(图6)。

传统液态电容在工作时产生的热量会导致电解液逐渐较少,进而造成电容的容量不断降低、损耗逐渐升高,这样很容易陷入一个恶性循环,而且高温时的液态电解液十分活跃,很容易达到沸点并形成极大的内压力,如果外壳无法承受这种压力就会出现爆浆的-情况;而固态电容的导电高分子材料在高温下相对稳定,无论是粒子膨胀还是活跃性都很低,再加上它的沸点大约在350℃,因此几乎不存在爆浆的可能。

另一方面,如果液态电解电容长期不通电电容器内部很容易发生水合反应进而造成漏电流回升,日后开机时(或通电时)就容易产生气鼓,这就是我们常说的’电容炸了,固态电容采用高分子材料作为介电材质,该材料不会与氧化铝发生反应,所以可以避免此类事故的发生。

C、寿命长的才是硬道理

大家都听说过固态电容的寿命比较长,那么究竟长多少呢?很多人没有一个明确的认识。

其实,这是一个相对的概念:假如我们把两颗同样标称2D00小时(h)耐热温度105℃的电容放在起,那么工作温度每下降20℃,液态电容的寿命增加4倍,而固态电容的寿命则增加10倍(如表1所示)。这说明如果工作环境的温度越低,那么固态电容的寿命就要比液态电容更长,在95℃85℃75℃、65℃下,固态电容的寿命将是液态电容的1.5信、2.5倍、4倍和6.25信。我们在正常使用情况下很少碰到超高温(100℃以上)的情况,由于电容本身的发热问题,也很少遇到超低温的情况,最多的反而是6℃~90℃的情况。

通过上面的介绍我们已经对液态电解电容与固态电容的优缺点有了一个大致的了解,我们将它们总结一下(如表2所示)。

从这个表格中我们可以看到,固态电容的耐压值受材料影响很难提高,所以我们在电源开关的输入端短时间内还没有办法使用固态电容。而现在很多电源产品所采用的固态电容,也都是放在输出端(低压部分)。

既然是有用的甜饼,那甜饼有多大?

现在我们知道了固态电容是一个很有用的东西,那么它的好处有多大?值得消费者为之买单么?下面我们就用实验来说明这个问题,我们选择的对象是即将上市的磐石800电源――选择这款产品的原因在于这是一款大功率的部门级服务器电源,而服务器电源要求全天连续稳定运行,且现在在节能方面也有很高的要求(典型负载超过85%,轻 载和满载也达到了82%)。以下是我们使用固态电容与液态电源电容进行对比。

使用固态电容最突出的优点表现在纹波电压上。开关电源产品的输出纹波电压一般由三部分组成:其一是纹渡电流对电容的充放电引起的电压变化;其二是纹波电流流经ESR产生的电压变化,其三则是开关机引起的噪声。使用液态电解电容的产品,由于液态电解电容随着温度的降低容量大幅度下降、ESR显著增大,进而纹波电压增大,使得常温下满足纹波电压要求的电源,在低温下纹波电压就有可能超标,这是一个比较严重的问题。

我们选择磐石800电源的+5V输出电路作为测试对象(图8),测试分两步进行,首先C1和C2选择10V/3300μF、10V/200μF普通液态电解电容,然后将Cl和C2换成10V/680μF、10V/680μF的固态电容,所得测试结果如图9、图10所示。

输出滤波电容的优劣直接影响到电源的输出纹波,而纹波的太小又直接关系到计算机系统工作时的稳定性。普通液态电解电容很容易受温度的影响而造成电解液干涸,进而导致电源产品出现这样或者那样的问题,随着使用时间的延长故障率也在不断增加。固态电容的引入从很大程度上来说改善了电源产品所面临的尴尬,固态电容环保、低阻抗、高低温稳定、耐高涟波电流、高频特性好以及寿命长等优点代表着未来的一种发展趋势。

不过就目前的情况来看,率先使用固态电容的开关电源产品普遍都是中高端产品,这是因为电容虽小,但是成本上的差异还是非常明显的;而且刚才我们的测试也选取3个非常特殊的环境,事实上普通用户很少能够碰到超低温或者超高温的情况,在常温下“物美价廉”的液态电解电容也可以达到设计时的要求。所以只有在要求非常苛刻的场合,如大功率服务器电源、满足85Plus(85Plus的要求比80Plus更加苛刻)要求的电源等等,才是展现固态电容实力的地方。

写在最后

电解电容范文第7篇

关键词:铝电容;高比容;技术

随着消费电子行业的兴起,铝电解电容器同样得到了长足的发展,并逐渐呈现出节能、变频、新能源等特点,这种迅猛的发展,对新材料的需求也愈加迫切。

现阶段,电子产品呈现出轻薄化、小型化、组装高密度化等特点,为适应这种趋势,铝电解电容器必须尽量缩小体积、延长寿命、增加容积。为适应电子整机不断向小型化、高密度组装化方向迅速发展,铝电容必须进一步缩小体积、提高比容、延长寿命、高频低阻抗。本文将从铝电容的阳极箔和工作电解液方面探讨铝电容的大电容实现方法。

一、阳极箔技术的研究

铝电解电容器分为阴阳极铝箔、浸以饱和电解质糊体的纸张、铝壳及胶盖,若铝电容的总容量为 C,阳极的容量为 CA,负极的容量为Cc,则 1/C = 1/CA+ 1 / Cc。因为阳极铝箔表面氧化膜的厚度大于阴极,所以阳极箔和电解质糊体组成的电容CA远小于阴极箔和电解质糊体构成的电容Cc,所以,要想提高铝电解电容器的电容量首先应当增大阳极箔的比表面积。

铝电解电容器的容量:C = ε0εrS/d,由公式得知,要增大阳极箔的比表面积的方法有:(1)提高电介质的相对介电常数;(2)扩大阳极箔表面积;(3)将电介质层的厚度d减小,而 d =KVf,K是单位阳极氧化电压的氧化膜厚度,是材料自身的性质,为常数。增大表面积主要靠电化学腐蚀扩面,但因为这个过程存在诸多因素,受到物理极限的限制,所以倍率的增长速度缓慢。和常规铝阳极氧化膜比较,阳极氧化膜中,用阀金属氧化物形成的高阶电相掺杂阀金属的氧化膜,有可能会使铝电容得到大幅度提升。目前多是采用 sol-gel 法对铁电材料复合铝电极箔进行制备,用水解沉积法和电化学沉积法对阀金属氧化物复合铝电极箔进行制备。

1、sol-gel法

Sol-gel法拥有以下优势:即可实现低温处理、可以高效的为衬底材料提供薄膜特性、能够对具有较大面积和复杂表面形貌的衬底材料进行涂覆。

Wannabee 、西安交通大学徐友龙、杜显锋等、上海交通大学王银华等都利用sol-gel法对复合材料的电容性进行了实验,这一系列的研究都实现了复合材料的高电容。

但是利用sol-gel法处理的铝电极箔需要经过长时间的干燥以除去表面的溶剂,并反复浸渍、干燥数周才能取得较好的效果,且由于部分有机体系与铝基体表面存在浸润性问题,故而无法对成膜的均匀性有保证。

2、水解沉积法

水解沉积法是利用焊有阀金属的盐溶液,高温处理和水解沉积,将Al2O3和阀金属氧化物进行复合,阳极氧化后,在铝电极箔表面生成高介电常数的复合氧化膜的技术。

由于水解沉积法的工艺实现方案与工业生产线兼容,所以极力推广。

3、电化学沉积法

电沉积技术是在外加电压下,利用电解质中的阴离子在阴极可以还原为电子的原理,将原有电解质中的离子还原为原子使之形成沉积层。这种工艺因为简单、适合大规模生产、成本低、易于控制薄膜的厚度和结构,所以与其他方法相比在薄膜制备领域有广阔的发展前途。

二、工作电解液的研究

工作电解液是电容的实际阴极,能够对铝阳极氧化膜进行修补,并提供氧离子,直接关系到产品质量。要研究大容量超高压铝电容,电溶液的配置是最关键的技术,工作电解液的化学性质应当稳定,并且拥有较高的闪火电压、较高的氧化效率,比较小的电阻率等性能。为防止对铝箔和密封材料的腐蚀,应当保证pH 值接近中性。

铝电容工作中的电解液,主要由溶剂、溶质、添加剂共同组成,溶质的主要功能是为电解液导电并在氧化过程中提供离子。溶剂在离子溶剂化的过程中起到重要作用,同时决定了电容器工作温度的范围及碘溶液的电导率,直接影响到闪火电压。添加剂的作用是改善电解液的某些性能,虽然用量极少, 但对增强电容器电性能的影响却极大。

在铝电容中常用的电解液成分主要有以下几种:

(1)溶剂:含氧弱酸、硼酸、五硼酸铵等无机盐和有机酸。有机酸氧化能力比较强,但离解度较低,不容易和有机胺中和,电解液的含水量比较高,闪火电压低。有机酸不含硼、介电性好,用量比较少,电离度高,其酸性较无机酸低,不容易氧化铝氧化膜,但闪火电压较低。

(2)溶质:将硼酸改成五硼酸铵后,电解液中的含水量减少,闪火电压得到提高。有机酸有很多,关于溶质要根据具体的电压来选择。

(3)溶剂:碱,包括无机碱(氨水)和有机胺。和氨水比较,有机胺的含水量非常少,碱性明显增强。

(4)溶质:在实践中,溶质常常为有机胺,低压电容器中用的胺分子较小,中高压电容器中用的胺分子较大。

(5)普通铝电容使用液体电解质, 存在着液体电解质的等效串联电阻(ESR)大、难以适应信息技术向高频化发展趋势、高频下阻抗值大、性能受温度的影响大、在高叵滦阅芗不稳定、电阻率随温度的下降急剧上升,限制了电容器在极端温度下的使用等缺点。以上缺点导致其性能与应用范围受到了限制。

利用导电聚合物作为实际阴极的固体铝电容不仅克服了上述缺点,还效延长了电容的寿命提高了其性能。首先因为导电聚合物为固体,不必担心会出现工作电解液泄露或干涸,提高了铝电容的工作寿命;其次因为导电聚合物为电子型导体,其电导率远大于离子型导体工作电解液的电导率,因此可极大改善电容的阻抗频率特性,使之具有高频低阻抗的特点。

目前主要有聚吡咯型(PPY)、7,7,8,8--四氰基对苯二醌二甲烷(TCNQ) 复盐型、导电聚苯胺型和聚(3,,4--次乙二氧基噻吩)型(PEDOT)这四类固体铝电解电容器。前两种已经实现商品化,,后两种还处于开发研究阶段,而其中PEDOT最具发展潜力。

结束语:实践中,铝电解电容器技术得到了长足发展,尤其是片式化技术、高比熔电极箔及电解质固体化技术,明显推动了铝电解电容器技术的发展。本文从电极箔和电解液方面分析了实现铝电容大电容的相关技术上的可能,寻找大电容铝电容的实现方法,期待与专业人士的共探讨。

参考文献:

[1]任志东. 15年成就光荣与梦想――记“高可靠、超小型化钽电解电容器用关键材料生产技术及应用”项目[J]. 中国科技奖励,2013,01:78.

[2]吴玉程,郑红梅,刘家琴,崔接武,王岩,秦永强,洪雨,刘勉诚. 提高铝电解电容器用阳极箔比表面积的研究进展[J]. 功能材料与器件学报,2013,02:79-87.

电解电容范文第8篇

【关键词】通信设备 电容器

电容器,顾名思义,是“装电的容器”,是一种容纳电荷的器件。电容器是电子设备中大量使用的电子元件之一,其在电路中所起的作用主要包括:隔直通交、旁路、去耦、滤波、储能等。电容器由很多种分类方法,根据制造材料的不同可以分为:瓷介电容、涤纶电容、电解电容、钽电容,还有先进的聚丙烯电容等;按用途分有:高频旁路、低频旁路、滤波、调谐、高频耦合、低频耦合、小型电容器,其中滤波电容又分为铝电解电容器、纸介电容器、复合纸介电容器、液体钽电容器等。

军事通信设备中使用的电容器主要为瓷介电容、钽电容、铝电容和云母电容。根据电容器在电路中所起的具体作用来选择不同材料的电容才能保证通信设备使用的可靠性。

所有的电容都有各自的技术指标,但根据电容器所使用材料的差异,不同的电容器指标会有所差异,一般的电容都有以下指标:耐压值、纹波电流、等效串联电阻、漏电流、损耗角正切、电容量、温度范围、下面针对电容的作用及选用进行详述。

1 隔直通交

电容器是由两端的极板和中间的绝缘电介质构成的,通电后,极板带电,形成电压,但由于中间的绝缘物质,所以整个电容式不导电的,所以直流电路通路中如有电容,相当于电路时断开的。在交流电路中,因为电流的方向是随时间变化的,而电容器充放电的过程是有时间的,故在极板见形成变化的电场,该电场也是随时间变化的,实际上,电流是通过电场的形式在电容器间通过的。

所有的电容都有隔直通交的作用,但选用时需考虑电容所能承受的极限电压,任何物质都是相对绝缘的,当所加电容器两端电压超过其击穿电压后,电容器会被击穿,此时电容器相当于直通,不在起隔直通交的作用。此外,在选用电容式还应考虑电容器的漏电流指标,所谓漏电流是指在电容器两端施加电压后流经电容器的直流电流,漏电流指标要根据实际使用电路来决定。

2 旁路

旁路电容是为本地器件提供能力的储能器件,它能使稳压器的输出均匀化,减低负载需求。旁路电容一般紧靠负载器件,如此可以很好的防止输入值过大而导致的地电位抬高和噪声。旁路电容一般选择钽电容、瓷介电容,但选用具体器件时需考虑电容器的耐压值、等效串联电阻、工作环境。如工作环境温度比较宽,最好选用钽电容。

3 去耦

去耦和旁路比较类似,旁路电容式防止电源对负载产生影响,而去耦电容是防止负载对电源产生影响。当负载电容比较大,去掉电路要对电容进行充电、放电,才能完成信号的跳变,在充电时,电流比较大,而由于电路中电感、电阻等会产生反弹,这种电流相对于正常情况来说实际上就是一种噪声,会影响前端电路的工作,去耦电容可以满足去掉电路电流的变化,避免相互间的耦合干扰。

4 滤波

电容器的阻抗为Z=1/(ΩC)=1/(2πfC),其中f为频率、C为电容器容量。故电容越大,阻抗越小,通过的频率越高。但当电容量超过1μF的电容多为电解电容,电解电容有很大的电感成分,频率高后反而阻抗会增大。所以滤波电路中一般采用大电容并联小电容。

5 储能

储能型电容器通过整流器收集电荷,并将存储的能量通过变换器引线传送至电源的输出端。储能型电容器容值均较大,多选用铝电解电容,主要是因为铝电解电容容量大、体积小、价格便宜,性价比比较高。

6 其他功能

电容器的种类很多,所起的作用及应用各不相同,以上只是列举了通信设备中常见的电容功能,此外,不同的电容器还具有调谐、耦合(高频耦合、低频耦合)等功能。

7 工程实例

在实际的电路中,电容器的作用一般不会是单一的,可能既有滤波功能,又有储能功能,比如在交流转直流时,交流电源经过整流后都会采用大容量的电容器进行滤波,改电容器同时还有储能作用。

在笔者设计一款AC-DC电源时,要求工作环境温度为-55℃到70℃,在设计初期,为了考虑成本和产品体积等因素,电源的滤波、储能电容采用高压铝电解电容,该电源设计完后再常温下各项指标均满足使用要求,但在进行高低温试验时,带载能力较差。经试验、原理分析,在高低温下,铝电解电容的等效串联电阻变化很大,变化倍数达到30倍,其滤波、储能性能受到很大影响。

在高低温下,铝电解电容等效于常温状态串接一几百欧姆到几千欧姆的电阻,其充电时间加长,滤波效果变差;同时,由于等效串联电阻变大,其所储存的电能对负载放电时相当于内阻变大,自身功耗加大,带载能力变弱。如将铝电解电容换为钽电解电容,由于钽电容等效串联电阻较小,且高低温下变化也小,变化倍数约为10倍,对性能影响不大。编者经过反复验证,将铝电解电容改为钽电解电容后,AC-DC电源的性能指标和常温状态没有差异,可以达到设计、试验要求。

8 结束语

电容器的种类众多,不同的电容运用电路不同,主要作用也不同。在电容器的选用过程中,应根据电容器所起的作用、应用环境、具体的电路参数(工作电压、工作频率)等因素选择合适的电容,同时还应考虑电容器自身的参数,确保选择的电容器可满足使用要求。

作者简介

邓发旺(1979-),男,湖北省襄阳市人。现为陕西烽火电子股份有限公司工程师。研究方向为通信技术应用与开发。

作者单位

电解电容范文第9篇

电容器检测方法主要分为三个大类:可变电容器的检测、电解电容器的检测、固定电容器的检测。

1、可变电容器的检测

A用手轻轻旋动转轴,应感觉十分平滑,不应感觉有时松时紧甚至有卡滞现象。将载轴向前、后、上、下、左、右等各个方向推动时,转轴不应有松动的现象。

B用一只手旋动转轴,另一只手轻摸动片组的外缘,不应感觉有任何松脱现象。转轴与动片之间接触不良的可变电容器,是不能再继续使用的。

C将万用表置于R×10k挡,一只手将两个表笔分别接可变电容器的动片和定片的引出端,另一只手将转轴缓缓旋动几个来回,万用表指针都应在无穷大位置不动。在旋动转轴的过程中,如果指针有时指向零,说明动片和定片之间存在短路点;如果碰到某一角度,万用表读数不为无穷大而是出现一定阻值,说明可变电容器动片与定片之间存在漏电现象。

2、固定电容器的检测

A检测10pF以下的小电容因10pF以下的固定电容器容量太小,用万用表进行测量,只能定性的检查其是否有漏电,内部短路或击穿现象。测量时,可选用万用表R×10k挡,用两表笔分别任意接电容的两个引脚,阻值应为无穷大。若测出阻值(指针向右摆动)为零,则说明电容漏电损坏或内部击穿。

B检测10PF~0.01μF固定电容器是否有充电现象,进而判断其好坏。万用表选用R×1k挡。两只三极管的β值均为100以上,且穿透电流可选用3DG6等型号硅三极管组成复合管。万用表的红和黑表笔分别与复合管的发射极e和集电极c相接。由于复合三极管的放大作用,把被测电容的充放电过程予以放大,使万用表指针摆幅度加大,从而便于观察。应注意的是:在测试操作时,特别是在测较小容量的电容时,要反复调换被测电容引脚接触A、B两点,才能明显地看到万用表指针的摆动。

C对于0.01μF以上的固定电容,可用万用表的R×10k挡直接测试电容器有无充电过程以及有无内部短路或漏电,并可根据指针向右摆动的幅度大小估计出电容器的容量。

3、电解电容器的检测

A因为电解电容的容量较一般固定电容大得多,所以,测量时,应针对不同容量选用合适的量程。根据经验,一般情况下,1~47μF间的电容,可用R×1k挡测量,大于47μF的电容可用R×100挡测量。

B将万用表红表笔接负极,黑表笔接正极,在刚接触的瞬间,万用表指针即向右偏转较大偏度(对于同一电阻挡,容量越大,摆幅越大),接着逐渐向左回转,直到停在某一位置。此时的阻值便是电解电容的正向漏电阻,此值略大于反向漏电阻。实际使用经验表明,电解电容的漏电阻一般应在几百kΩ以上,否则,将不能正常工作。在测试中,若正向、反向均无充电的现象,即表针不动,则说明容量消失或内部断路;如果所测阻值很小或为零,说明电容漏电大或已击穿损坏,不能再使用。

C对于正、负极标志不明的电解电容器,可利用上述测量漏电阻的方法加以判别。即先任意测一下漏电阻,记住其大小,然后交换表笔再测出一个阻值。两次测量中阻值大的那一次便是正向接法,即黑表笔接的是正极,红表笔接的是负极。

电解电容范文第10篇

关键词:电子技术;腐蚀工艺;电解电容器;铝箔

电子工业的繁荣,带动了电子信息产业的发展,人们对中高档的电解电容器腐蚀化成箔的需求量越来越大,这也导致电解电容器腐蚀化成箔市场的供不应求,为了满足电子信息产业的发展,商家迫切的要求电解电容器的比容不断提高,本文将立足于铝电解电容器的结构以及特点,深入研究点解电容器用铝箔扩面腐蚀工艺。

一、铝电解电容器的结构及其特点

(一)铝电解电容器的优点

铝电解电容器与其他类型的电容器相比,拥有单位体积容量大、额定容量大、工作电厂强度高、具有自愈作用、介质层厚度可控制的优点,因此被广泛的应用于电子产业基础元件的制造当中,并获得了业内的认可。首先,铝电解电容器的单位体积电容量大,与其他类型的电容器相比,单位体积容量可能是其十几倍到几十倍,并且铝电解电容器的电解质厚度也是其他电容器的几十到几百倍。其次,铝电解电容器的额定容量大,由于铝电解电容器氧化膜厚度较大,因此很容易扩大面积,可以按照产品制造的要求,增加电解电容器的额定电容量。[1]最后,电解电容器还具有自愈作用,电容器电解质如果发生破坏,电解液中的酸根离子能够在短时间内将破坏位置堵住,从而使电解电容器恢复正常的状态,这在一定程度上增加了电解电容器的应用范围。也正是这些优点,使电解电容器在与其他电容器竞争之中脱颖而出,在汽车电子、变频技术领域得到广泛的应用,市场占有份额也在逐年上升。

(二)电解电容器的结构

现代电子设备的更新换代速度非常快,每一次的变革,都对电解电容器的性能提出了更高的要求,为了满足电子产业发展的需要,电解电容器必须在保证腐蚀滤波弯折强度的前提下,使电解电容器的比容不断提高,这要求电解电容器必须朝着高比容量、小体积的方向改进。首先,研究人员应该对铝电解电容器的结构有一个明确的了解,电解电容器的结构由两个部分组成,第一部分是铝壳和密封胶盖,这是电解电容器的外部构件,通常是由阳极铝箔与阴极铝箔缠绕而成,阳极铝箔的表面有一层氧化铝薄膜,起到了耐电压的作用,因此可以f,电解电容器的外部结构决定了电解电容器的寿命与电容量。[2]

(三)铝电解电容器铝箔腐蚀扩面

电解电容器的铝箔主要通过腐蚀过程来扩大有效表面积的,从而增加电解电容器的电容体积。电解电容器的比容受到铝基材料成分、铝基材料状态以及腐蚀工艺的影响,因此为了增加电解电容器的有效表面积,相关工作人员需要深入研究电解电容器铝箔扩面与腐蚀工艺的关系,明确腐蚀工艺的对电解电容器铝箔扩面的影响。

二、电解电容器用铝箔腐蚀工艺研究

相关工作人员主要采用了正交实验,研究腐蚀介质的比例、腐蚀电压大小、腐蚀温度对腐蚀箔性能的影响。

(一)腐蚀介质的比例对腐蚀箔性能的影响

研究表明,腐蚀介质中ClC浓度越高,腐蚀箔的比容越高,但到达一个临界值后,腐蚀箔的比容不仅不会增加,还会造成弯折强度的降低。在铝电解电容器遭到小孔腐蚀时,介质中的硫酸组分比例会增加,同时孔蚀电位下降,该实验,主要利用了钝化吸附的原理,因此ClC浓度的增加,能够提高增加小孔腐蚀的成核率,并继续向纵深发展。[3]在该实验中,氧化性酸起到了关键性的作用,因为氧化性酸可以有效的增加钝化膜的吸附力,因此在实验当中,要适当的增加硫酸组的比例,从而计算出腐蚀箔的最大比容。而腐蚀箔的弯折度度,则由腐蚀箔夹心层的厚度,厚度越大,腐蚀箔的腐蚀孔越均匀度越高,腐蚀箔的弯折度越高。反之亦然,腐蚀箔的弯折度与腐蚀箔的比容呈反比的关系,因此腐蚀孔均匀度越低,腐蚀箔的比容越高,但同时,这样的腐蚀箔易于这段,同样也不适用于电子元件的制造,因此相关研究人员需要平衡好腐蚀箔比容与腐蚀箔弯折度之间的关系。

(二)腐蚀电压大小对电极箔性能的影响

阳极氧化电压对腐蚀箔比容与弯折性能都会产生不同程度的影响,因此相关研究人员需要,根据电化学腐蚀原理,通过实验,找出电极箔的最佳值。实验表明,随着小孔腐蚀敏感性加剧,电极电位也会相应升高,因此可以说,电机点位的升高与小孔成核有着密切的关系,相关工作人员需要通过实验,找出局部电极电位的临界值,从而提高小孔成核的速度。[4]但需要注意,腐蚀箔的弯折度与腐蚀电压的大小并非线性关系,并非腐蚀电压越大,电极箔的弯折度越低,而是需要将孔壁腐蚀坍塌的变量加入其中在进行观察。可以在这个实验中观察到,腐蚀电压的大小对腐蚀箔的电容产生了一定的影响,腐蚀电压越大,腐蚀箔的电容越大,到达一个临界值之后,腐蚀电压继续增大,腐蚀箔的电容的增大速度逐渐降低。

(三)腐蚀温度和腐蚀时间对腐蚀箔性能的影响

研究人员通过提高腐蚀温度,延长腐蚀时间的方法,观察腐蚀箔性能的变化,研究表明,不管温度的提高,还是时间的延长,都会对腐蚀箔的性能产生一定的影响,腐蚀温度升高,会加速腐蚀孔内阳离子的溶解,从而使外阴离子向孔内迁移,一定程度上降低了溶液的活性。同时,腐蚀孔的继续加深,是孔内金属氯化物更加浓缩,因此腐蚀温度能够增加电解电容器内水解质酸度。而随着腐蚀时间的延长,腐蚀箔的折弯强度会直线下降,直到腐蚀孔堵塞,这个反应才会中止,因此相关工作人员需要根据腐蚀箔性能的要求,合理的选择腐蚀温度和腐蚀时间,从而提高腐蚀孔的均匀度。[5]

结语:

综上所述,腐蚀温度、腐蚀时间、腐蚀介质的比例以及腐蚀电压的大小都会对腐蚀箔的性能产生不同程度的影响,因此相关工作人员需要按照要求,选择科学的腐蚀工艺参数。

参考文献:

[1]郑红梅,吴玉程,黄新民,胡学飞,刘勉诚,杨蓓蓓.铝电解电容器用电子铝箔的性能分析与比较[J].功能材料与器件学报,2012,01:10-16.

[2]陈永真.用薄膜电容器替代铝电解电容器的分析与实践[A].浙江省电源学会.浙江省电源学会第十一届学术年会暨省科协重点科技活动“高效节能电力电子新技术”研讨会论文集[C].浙江省电源学会:,2013:4.

[3]于欣伟,赵国鹏,李魁,高泉涌,冯耀邦,陈姚,郑文芝.电解电容器使用支链多元羧酸铵盐电解液的研究[J].广州大学学报(自然科学版),2013,02:6-9.

[4]吴玉程,郑红梅,刘家琴,崔接武,王岩,秦永强,洪雨,刘勉诚.提高铝电解电容器用阳极箔比表面积的研究进展[J].功能材料与器件学报,2013,02:79-87.

上一篇:超级电容范文 下一篇:钽电容范文