超声波焊接范文

时间:2023-03-15 14:02:56

超声波焊接

超声波焊接范文第1篇

关键词:超声波 焊接 研究现状

0 引言

1950年美国人发明了超声波焊接技术,该技术作为特种连接技术,在工业生产中得到广泛应用。另外,超声波焊接技术还广泛应用于电子工业、电器制造、新材料的装备、航空航天及核能工业、食品包装盒、高级零件的密封技术等方面。超声波焊接的优点主要表现为:节能、环保、操作方便,这种技术对我国建设资源节约型、环境友好型的社会起着很大的促进作用。

1 超声波焊接原理及特点[1]

超声波焊接作为一种特殊焊接方法,通常情况下是指利用超声波频率(大于16KHZ)的机械振动能量,将同种或异种金属、半导体、塑料及金属陶瓷等进行连接。通过超声波对金属进行焊接时,一方面不需要向工件输送电流,另一方面没有将高温热源引入工件,在焊接过程中,在静压力的作用下,将弹性震动能量转变为工件间的摩擦功、形变能,以及有限的温升等。在母材不发生熔化的情况下,实现接头间的冶金结合,因此,超声波焊接属于固态焊接。

工频电流在超声波发生器的作用下,进一步转变为超声波频率(15~16KHZ)d的振荡电流。通过磁致收缩效应,换能器将电磁能转换成弹性机械振动能。放大器的作用是对振幅进行放大,同时借助耦合杆和上声极与并工件进行耦合。如果换能器、放大器、耦合杆和上声极的自振频率相互一致,在这种情况下,系统将会产生谐振,从而将弹性振动能传递给静压力F的工件。两种薄材工件通过此种能量之间的转换被粘接在一起。

2 国内研究现状

2.1 超声波金属焊接的研究现状

崔岩[2]研究超声波焊在坦克铝件焊修中的应用,对铝及铝合金的焊接性进行了详尽的分析,认为保证焊点质量稳定的重要因素是谐振频率的精度。在超声波焊接过程中,由于机械负荷是多变的,失谐现象会随机出现,进而使得焊点质量不稳定。根据超声波焊的特点,制订相应的焊接规范。大量实验证明:通过超声波对铝及铝合金进行焊接,金属表面致密的氧化膜可以有效地去除,进而保证了焊接质量。

华南理工大学杨圣文等人[3]推导了铜片-铜管太阳能集热板超声波焊接接头区域理论区域温度公式,并利用人工热电偶法测得焊接区域温度,分析了实测温度偏差产生的原因,结合焊接接头的扫描电镜(SEW)图片进行对比分析,研究了铜片-铜管超声波焊接接头的形成机理。结果表明:超声波焊接是基于接头区域微齿顶端处高温、纯净金属发生塑性变形后表面充分贴合两个因素基础上的金属键合和机械嵌合而形成接头的物理冶金过程。

南京航空航天大学机电学院的张秋峰[4]研究了1Cr18Ni9Ti与TC4异种金属的固态扩散焊接工艺,在现有的基础上采用超声波加载固态扩散焊的工艺。金相试验分析结果表明:采用超声波加载扩散焊接工艺,使不锈钢和钛形成了良好的连接。

哈尔滨工业大学的闫久春、孙小磊[5]等,在敞开环境下研究了一种适合复杂结构,并且能够进行可靠连接的“超声波振动辅助钎焊技术”原理,同时对铝基复合材料、铝合金、陶瓷/铝、玻璃/铝焊接的初步试验结果进行了描述。焊接结果表明:在钎焊过程中,通过施加适当的超声波振动,母材表面氧化膜可以有效地去除,进一步促进了母材与钎料的润湿。在低温、大气环境下,获得了具备微观组织结构和力学性能良好的连接接头。

南昌大学的朱政强等人[6]用电子背散射衍射(EBSD)方法来研究超声波焊接下铝合金AA6061的微观组织变化,从微观角度里加深对超声波金属焊接的理解。通过实验,得到原始铝箔和焊接后铝箔的品粒取向差分布图。通过分析品粒取向、晶粒结构和晶界特征了解超声波焊接对铝合金组织和结构的影响。

2.2 超声波非金属焊接的研究现状

郭毓峰[7]对12μm聚对笨二甲酸乙二醇酯(PET)/30μm聚乙烯(PE)薄膜超声波焊接工艺进行了研究,发现焊接振幅在2-10μm,对焊接接头热合强度的影响不大;在焊接振幅4-7μm出现了焊接接头的热合强度最大值。焊接接头的热合强度随着焊接时间的延长和焊接压力的增大表现出先增大后减小的变化规律。通过对不同工艺参数下焊接区域的结晶程度进行分析,其结果显示,接头的结晶程度影响着PET/PE薄膜焊接接头热合强度,焊接区域试样的结晶程度随着焊接时间、焊接振幅、焊接压力增加先减小后增大,焊接接头的热合强度先升高后降低。

赵钢[8]等人研究超声波焊接在汽车传感器封装中的应用。讲述了通过对材料、焊接方法的选择和焊口及工装设计与制造过程设计,来实现汽车传感器封装的方法。

赵仕彬[9]研究了超声波焊接在连接器中的应用。简明扼要地介绍了超声波焊接的原理,结合面的设计方法、设计要点,以及在连接器中的具体应用和使用范围。

西北工业大学的聂中明[10]研究了高电阻CdZnTe半导体(简称CZT)接触电极与引线的超声波焊接。认为:CZT晶片经机械抛光表面处理后,通过离子溅射法制备的金电极与外引线间具有较高的超声波焊合率,能获得最佳焊点质量的电极厚度为180nm。此外,确定CZT接触电极制备工艺后,楔入压力成为影响CZT接触电极与引线超声波焊接质量的主要因素,焊接功率则为次要因素。

3 总结

目前,对超声波金属的焊接机理认识不足,超声金属焊接作为一种固相焊接方法,或者说是金属间的“键合”过程,在焊接过程中,是否无金属熔化还有待进一步研究。还有在材料焊接中应用超声波,虽然焊接效果比较好,但是对于由超声波发生器、声学系统与机械系统相结合的整个系统来说,在稳定性、可操作性、可靠性等方面依然存在问题,所以声学系统的设计,以及声学系统与试件之间的连接方式等都非常重要。另外,从微观力学的角度研究超声波振动对晶粒和织构的影响也是未来研究的重要方向。

参考文献:

[1]李小明,李彦生,韩景芸.基于超声波焊接技术的快速成型方法研究[J].机床与液压,2007,35(3):4-6.

[2]崔岩.超声波焊在坦克铝件维修中的应用[J].工业技术经济,2000,19(3):114-116.

[3]杨圣文,吴泽群,陈平池.铜片-铜管太阳能集热板超声波焊接试验研究[J].焊接,2005(9):32-35.

[4]张秋峰.钛与不锈钢的超声波扩散焊接[J].机械工程与自动化,2008(1):125-127.

[5]闫久春,孙小磊.超声波振动辅助钎焊技术[J].焊接,2009(3):6-12.

[6]朱政强,马国红,E.Ghassemieh.铝合金AA6061超声波焊接下组织演变分析[A].第七届中国机器人焊接学术与技术交流会议文集[C],2008:107-110.

[7]郭毓峰.聚对苯二甲酸乙二醇酯/聚乙烯薄膜的超声波焊接[J].宇航材料工艺,2010(4):53-55.

[8]赵钢,曹智,董双辉.超声波焊接在汽车传感器封装中的应用[J].沈阳航空工业学院学报,2007(4):25-28.

[9]赵仕彬.超声波焊接在连接器中的应用[J].机电元件,2006(4):36-39.

超声波焊接范文第2篇

关键词:小径管对接焊;超声波;探伤;缺陷波;声能损失

中图分类号: P755.1 文献标识码: A 文章编号:

引言:超声波小径管探伤具有非常明显的优越性,首先,超专用波检验对裂纹,未熔合等面积性缺陷比射线检验灵敏高度; 其次,超声波检验对裂纹、未熔合等面积性缺陷比射线检验灵敏度高; 还有,超声波检验不需要进行环境及自身防护,检验时对环境要求不高;第三 , 超声波检验费用低,劳动生产率高。所以,在实际生产中,小径管超声波探伤技术得到了空前的应用,取得了很好的效果,为保证安装、检修质量及工期起到了不可估量的作用。由于小径管焊接接头具有管壁较薄、曲率半径大、规格多等特点 , 超声波检验时存在诸多困难及需要注意的问题。 实践证明 ,小径管焊接接头的超声波探伤检验是代替射线检验的最佳方法 , 它具有检验周期短、成本低、劳动生产率高等优点。只要在实际探伤工作中注意小径管焊接接头超声波探伤的特有问题 ,根据工件实际情况选好探头,正确调节整扫描速度,是完全能够准确快捷地检验小径管焊接接头的焊接质量,保证电力生产的安全。另外,从现检验仪器的发展来看,若有小径管探伤时使数字式超声波探伤仪器,由于数字式探伤仪具有定位准确等特点,能使检验结果更加准确可靠。

1. 小径管对接焊缝超声波探伤的特点

1.1小径管焊缝宽 ,当壁厚较薄时 ,焊缝宽度往往大于管壁厚度。用1、2次波探伤时要选择大的探头入射角 ,而用2、3次波探伤时要选择小的探头入射角,且扫描比例扩大,超声波形拉宽 ,这样易发生近场区干扰 ,给缺陷定性、定量带来了相当大的困难 。

1.2管壁曲率大,声能传输损失大,探头通过曲率大的圆弧面接触。由于曲率大接触不良对定量有影响 ,且声波入射到管壁外表面为凸面,使声束发散。在2、3次波探伤中,声束传输路径更复杂,经过多次发散、聚集,声压反射异于常规,声压计算也相当困难 ,降低了探伤灵敏度 。因此 ,小径管超声波探伤应提高探伤灵敏度进行,以补偿曲率大、声能发散及藕合不良的影响。

1.3焊缝焊波高度、焊瘤尺寸与管壁厚度为同一数量级 ,在较高灵敏度探伤时杂波多 ,这样给缺陷波的识别增加难度 ,需要操作人员熟练掌握焊缝 中各种缺陷反射波的静 、动态波形 ,准确测量焊缝处管壁厚度 ,以准确区分缺陷波与杂波的特点 ,以免发生误判 。

2. 缺陷的识别与判定

2.1一次波探伤缺陷波的识别

当采用一次波探伤时主要观察仪器荧屏上一次波标记点前面出现 的反射波 ,因为声波束扫过焊缝下半部 ,如果有反射则一般为缺陷反射,除盲区杂波外 。其次是位于一次波最大深度标记点上焊缝根部的反射波,当焊缝不存在错 口时,要确定反射波对应的反射点的位置,如果反射点 位于焊缝中心点或探头侧,则判为缺陷。小径管对接焊缝中大多数危害性缺陷如裂纹、未熔合和未焊透等都产生在焊缝根部,根部缺陷的判定与识别非常重要但根部缺陷的识别、判定比较困难,主要是小径管壁厚变化很大,有些管子壁厚与公称尺寸相差达0.5mm左右 ,使根部及靠近根部的缺陷反射波与错边 、焊瘤等产生的干扰波(杂波不易区分)。

当发现焊缝根部出现一定高度的反射波时 ,应对该处焊缝两侧的壁厚进行准确测定 ,仪器的扫描速度要准确调整 ,以准确定位 ,并根据探头所在位置对反射波形进行认真分析。缺陷波的位置出现在一次波最大深 度标记点处或以前,对应的反射于焊缝中心或探头侧,且波形后沿陡直 ,波形清晰明亮。

2.2二次波探伤缺陷波的识别

当采用二次波探伤时,在一次波标记点和二次波标记点之间出现的反射波 ,可能为缺陷波,也可能为杂波 ,在这个区域之前或之后出现的反射波则为非缺陷波 。缺陷波可用下述方法来判断。

如果二次波声束在内壁上的转折点位于焊缝区外,反射点位于焊缝中,则该反射波判为缺陷波;如果二次波声束在内壁上的转折点在焊缝区内,则该反射波不能作为判伤的依据 ,应结合位置,波形等其它情况综合判断。

3. 小径管对接焊缝超声波探伤应注意的问题

3. 1 探头的选用

小径管对接焊缝探伤时,应尽可能选择较大角度的探头,使声束能扫查到整个焊缝断面,但当探头角度较大时,声束易扩散,易产生变形波, 干扰对缺陷的正确判定。另外, 要求一次波的主声束至少应扫查到焊缝下部占壁厚1/ 4 的范围,因此要求探头有一定的移动区域。为满足这一要求,除增大声束入射角外, 还应 缩短探头声束入射点至探头前沿的距离。因此,选用大K值,短前沿的探头是进行准确探伤的前提条件。

3. 2 探伤灵敏度的调整

由于小径管对接焊缝是利用一次波和二次波进行探伤,因此一次波和二次波探伤灵敏度的调整很重要。根据DL/ T5048- 95 中的小径管焊接接头探伤距离-波幅曲线进行检测时,由于反射杂波较多, , 因此需对探伤灵敏度重新进行调整。

在超声波探伤中 , 探伤灵敏度调整的准确性 , 直接影响到对缺陷的定位准确以及对缺陷的判断。对于壁厚较大的焊缝 , 探伤灵敏度调整有少许误差可能影响还不是很明显,但对于小径管来说,由于其壁厚较薄 , 影响就相当对来说要大得多。一般来说 ,在小径管探伤时,我们调整仪器的探伤灵敏度是在小径管焊接接头超声波探伤专用试块上进行,使对比试块Ⅰ上深度5mm∮2横孔反射波达60%,然后在提高6dB作为探伤灵敏度。另一种是利用对比试块Ⅱ来调整,前后移动探头,利用一、二、三次波探测试块上竖孔∮2,找到三者最高回波,在连成一条∮2竖孔距离----波幅曲线。然后以∮2-ΔdB 作为探伤灵敏度。

3.3 声能损失问题

在超声波检验中 , 若不对声能损失进行补偿 ,那么缺陷的回波高度必然要小于实际的回波高度 ,容易在检验中引起漏检或误判。小径管焊接接头超声波探伤时,不仅要考虑声波的耦合损失,还要考虑到由于小径管的特点而引起界面扩散损失。由超声波的传播特点知道,当超声波入射到凸界面时,声束扩散;而在凹界面反射时,声束也是扩散的,扩散程度随界面的率半径增加而增加。在小径管焊接接头超声波探伤时 , 声波要经过入射到凸界面而进入工件,当使用一、二次反射波探伤时声波又要在凹界面进行反射,加上小径管的曲率半径都较大,所以声能的扩散损失较大,引起回波大幅降低。所以在实际工作中 , 应充分考虑到这一点,必要时应采用DL/T5048 - 95 附录H的方法进行小径管内、外壁声能损失测量,再在实际探伤时加以补偿。

另外,由于小径管曲率半径大,探伤面与探头的接触好坏也直接影响到声能传入工件。若探头接触面与管子外表面接触不好,缝隙较大,必然引起声能的重大损失。所以,DL/ T5048 - 95标准指出 ,若探头边缘与管子外表面间隙大于 0.11mm 时,可以通过在管子表面铺上细砂纸沿轴向轻轻研磨,使探头表面与管子的外表面紧密接触。

3. 4 焊缝根部的检测

小径管对接焊缝中,如裂纹、未熔合、未焊透等危害性缺陷大都容易产生在根部, 因此根部缺陷的检测很重要。检测过程中根部裂纹、未焊透缺陷形成端角反射,回波较强,从焊缝两侧探测,位于焊缝中心,沿焊缝方向有一定的游动范围;未熔合:一般出现在坡口面上,一般二次波探伤容易检出,位置位于探头一侧,另一侧难检出;气孔:气孔可出现在焊缝任何位置,气孔回波幅度较低。

据以上特征可做一定的判定,但是小径管由于壁厚变化较大, 管子实际壁厚与公称壁厚有一定差距,所以根部的缺陷及近根部的缺陷回波与错口、焊瘤等干扰波区分困难,因此对根部的反射波一定要认真分 析,准确判定,防止误判和漏判。

4. 结束语

实践证明 ,小径管焊接接头的超声波探伤检验是代替射线检验的最佳方法 , 它具有检验周期短、成本低、劳动生产率高等优点。只要在实际探伤工作中注意小径管焊接接头超声波探伤的特有问题 ,根据工件实际情况选好探头,正确调节整扫描速度,是完全能够准确快捷地检验小径管焊接接头的焊接质量,保证电力生产的安全。另外,从现检验仪器的发展来看,若有小径管探伤时使数字式超声波探伤仪器,由于数字式探伤仪具有定位准确等特点,能使检验结果更加准确可靠。

参考文献

[1]周林.电厂小径管焊口质量的现场射线检验经验[J].无损探伤,2004,28(6):43-44.

[2]白佑平.小径管超声波探伤时探头K值选择的探讨[J].河北电力技术,2001,4(20):39-40.

[3]张军.探讨超声波对小径管焊缝的检测[J].金属加工,2009,14:65-66.

[4]王志国.T91钢小径管对接焊口的超声波检测[J].无损检测,2007,29(10):611-612.

超声波焊接范文第3篇

目前利用超声设备焊接各种塑件已相当普及, 产品包装. 切割. 铆埋 .压花 .打孔.等行业是必不可缺的设备, 于是各式各样, 各种功能的超声焊接也应运而生, 应用领域不同, 使用方法和对设备要求大不相同. 现时使用中消费者存在很大的区. 真对这些误区加一说明!

1) 焊接原理上理解误区

有相当一部分从事多年超声焊接方面的人员. 对超声能量地传递有一种误解, 认为是音波在接触面进行焊接, 其实这是一种误解, 真正的焊接原理是: 换能器把电能转换为机械后, 通过工件物质分子进行传导, 声波在固体中地传导声阻远小于在空气中的声阻, 当声波通过工件接缝时, 缝隙中的声阻大, 产生的热能相当就大. 温度首先达到工件的容点, 再加上一定的压力, 使接缝熔接. 而工件的其它部分由于热阻小, 温度低不会熔接. 其原理同电工学中的欧姆定律类似.

2) 工件材料误区:

超声焊接机对要焊接的工件材质也是有要求的, 不是所有材料都能焊接, 有人理解为任何材料都可以焊接,这是一个很大的误解. 不同种材质之间有的能更好地焊接, 有的是基本能相熔, 有的是不相熔的. 同一材料之间熔点是相同的, 从原理讲是可以焊接的, 但是当要焊接的工件的熔点大于350℃时, 就不在适合用超声焊接了. 因为超声是瞬间使工件分子溶化, 判断依据是在3秒之内, 不能良好熔接, 就应该选择其它焊接工艺. 如热板焊接等. 一般来讲abs料是最容易焊接, 尼龙是最难熔接的. 具体焊接材料选择请参考附表:

焊接工件的工艺误区

3) 超声能量是瞬间爆发地, 熔接处应成点或线条, 以及传递的距离都要符合超声焊接方式. 有人认为只要是塑料材料, 无论怎样接合面都可以良好地焊接, 这也是一个错误认识. 当瞬间能量产生时, 接缝面积越大,能量分散越严重, 焊接效果越差, 甚至无法焊接. 另外超声波是纵向传波的, 能量损失同距离成正比, 远距离焊接应控制在6厘米以内. 焊接线应控制在30----80丝之间为宜, 工件的臂厚不能低于2毫米, 否则不能良好熔接, 特别是要求气密的产品.

各种焊接工艺见附表:

超声输出功率误区

4) 超声波输出功率的大小, 同压电陶瓷片的直径和厚度、材质 、设计工艺决定, 一但换能器定型,最大功率也就定型了, 衡量输出能量的大小是一个复杂的过成, 不是换能器越大,电路使用功率管越多, 输出能量就越大, 它须要相当复杂的振幅测量仪, 才能准确测量其振幅, 由于大多数使用者对超声知识太了解, 又加上某些销售人员的误导, 给消费者一个错误认识. 消耗电能多少并不能反应输出超生功率的大小, 如产生纵向能量低, 而消耗电流大, 只能说明设备的效率低下. 无功功率大而宜.

超声焊接机种选择误区

5) 使用多大输出功率, 振荡频率、振幅范围,要根据工件的材料、焊线面积、工件内是否有电子元器件、是否要气密等因素来考虑。误认为功率越大越好。这也是一个误解。如果对超声不是太了解。最好请教正规的超声波生产厂工程技术人员。有条件的话最好到厂家现场勾通,不要盲目听从一些非正规超声销售人员的误导。目前生产相关设备的公司特别混杂,其中大部为家庭式作坊,对电路进行生搬硬套仿制,对工作原理似懂非懂。仿制出的设备有以下致命缺陷。其一是外买元材料品质无法保证,其二生产工艺的核心技术没有掌握。设备在中功率和大功率工作时经常表现出不稳定,产品合格率低。有时会设备损坏。如驱动换能器的功率变压器,所使用的磁性材料参数无法测量,

磁饱和磁通密度(bs ) 磁感应强度(bm) 、有效磁导率(ue) 、剩余磁通密度(br)、矫顽力(a/m)、损耗因数(tan£)、温度系数(au/k—1),绕制工艺相当讲究,包扩抽真空浸环氧树质。这些测试设备和生产环境家庭式工厂是无法做到的。所以在勾买超声时,最好先了解一下公司情况,不要盲目听从销售员吹捧,也不要只看价格。只有这样才能日后减少不必要麻烦。

焊模结构的误区

6)超声模具(horn)型式多种多样,工件的型状决定着模具外型,但每部分的尺寸和弧度、材质都要严格计算的, 有人错误认为只不过是一个金属块而宜。 设计的是否合理直接影响着模具的效率、寿命、产品的合格率、严重时会直接烧坏发生器。模具的材料一般使用镁铝7075,而有些人为降低成本,使用劣质材料,或仿冒的7075。正规模具生产商进料都有一套严格地检验程序,加工尺寸都是经过计算机软件模拟和校验后加工出来的。品质才有保障。这些工序一般作坊是无法做到的,如不经过合理地设计,做出的模具,在焊接小工件时,反应问题还不明显,当大功率时就会出现各种弊端。严重时直接损坏功率元件。

超声波焊接范文第4篇

目前利用超声设备焊接各种塑件已相当普及,产品包装.切割.铆埋.压花.打孔.等行业是必不可缺的设备,于是各式各样,各种功能的超声焊接也应运而生,应用领域不同,使用方法和对设备要求大不相同.现时使用中消费者存在很大的区.真对这些误区加一说明!

1)焊接原理上理解误区

有相当一部分从事多年超声焊接方面的人员.对超声能量地传递有一种误解,认为是音波在接触面进行焊接,其实这是一种误解,真正的焊接原理是:换能器把电能转换为机械后,通过工件物质分子进行传导,声波在固体中地传导声阻远小于在空气中的声阻,当声波通过工件接缝时,缝隙中的声阻大,产生的热能相当就大.温度首先达到工件的容点,再加上一定的压力,使接缝熔接.而工件的其它部分由于热阻小,温度低不会熔接.其原理同电工学中的欧姆定律类似.

2)工件材料误区:

超声焊接机对要焊接的工件材质也是有要求的,不是所有材料都能焊接,有人理解为任何材料都可以焊接,这是一个很大的误解.不同种材质之间有的能更好地焊接,有的是基本能相熔,有的是不相熔的.同一材料之间熔点是相同的,从原理讲是可以焊接的,但是当要焊接的工件的熔点大于350℃时,就不在适合用超声焊接了.因为超声是瞬间使工件分子溶化,判断依据是在3秒之内,不能良好熔接,就应该选择其它焊接工艺.如热板焊接等.一般来讲ABS料是最容易焊接,尼龙是最难熔接的.具体焊接材料选择请参考附表:

焊接工件的工艺误区

3)超声能量是瞬间爆发地,熔接处应成点或线条,以及传递的距离都要符合超声焊接方式.有人认为只要是塑料材料,无论怎样接合面都可以良好地焊接,这也是一个错误认识.当瞬间能量产生时,接缝面积越大,能量分散越严重,焊接效果越差,甚至无法焊接.另外超声波是纵向传波的,能量损失同距离成正比,远距离焊接应控制在6厘米以内.焊接线应控制在30----80丝之间为宜,工件的臂厚不能低于2毫米,否则不能良好熔接,特别是要求气密的产品.

各种焊接工艺见附表:

超声输出功率误区

4)超声波输出功率的大小,同压电陶瓷片的直径和厚度、材质、设计工艺决定,一但换能器定型,最大功率也就定型了,衡量输出能量的大小是一个复杂的过成,不是换能器越大,电路使用功率管越多,输出能量就越大,它须要相当复杂的振幅测量仪,才能准确测量其振幅,由于大多数使用者对超声知识太了解,又加上某些销售人员的误导,给消费者一个错误认识.消耗电能多少并不能反应输出超生功率的大小,如产生纵向能量低,而消耗电流大,只能说明设备的效率低下.无功功率大而宜.

超声焊接机种选择误区

5)使用多大输出功率,振荡频率、振幅范围,要根据工件的材料、焊线面积、工件内是否有电子元器件、是否要气密等因素来考虑。误认为功率越大越好。这也是一个误解。如果对超声不是太了解。最好请教正规的超声波生产厂工程技术人员。有条件的话最好到厂家现场勾通,不要盲目听从一些非正规超声销售人员的误导。目前生产相关设备的公司特别混杂,其中大部为家庭式作坊,对电路进行生搬硬套仿制,对工作原理似懂非懂。仿制出的设备有以下致命缺陷。其一是外买元材料品质无法保证,其二生产工艺的核心技术没有掌握。设备在中功率和大功率工作时经常表现出不稳定,产品合格率低。有时会设备损坏。如驱动换能器的功率变压器,所使用的磁性材料参数无法测量,

磁饱和磁通密度(Bs)磁感应强度(Bm)、有效磁导率(Ue)、剩余磁通密度(Br)、矫顽力(A/M)、损耗因数(tan£)、温度系数(au/K—1),绕制工艺相当讲究,包扩抽真空浸环氧树质。这些测试设备和生产环境家庭式工厂是无法做到的。所以在勾买超声时,最好先了解一下公司情况,不要盲目听从销售员吹捧,也不要只看价格。只有这样才能日后减少不必要麻烦。

焊模结构的误区

超声波焊接范文第5篇

一、概述

管子和压力管道其主要作用是输送介质,除常见的石油、天燃气外,还有工业用气体,如氧气、二氧化碳等、乙烯、液氨、矿浆、煤浆等介质。与其他特种设备相比,主要由以下几方面的特点:

1.管道与输送介质相对流动,所以管道内要减小阻力,保证光洁;还要对介质有所考虑,腐蚀性强的在设计上要增加相应的裕量。

2.管道是相应固定的。一般埋于地下,不发生位移。

3.输送的连续性。一般情况下应连续运行。

4.在役运行的管道对地面建筑或区域构成威胁,尤其是易燃气体管道,威胁更大。

5.长输管道除特殊地形,一般铺设在地下,运行时不易发现潜在危险。

通过上述分析,说明管子和压力管道的质量对整个输送系统的安全运行和使用寿命是非常重要的。因此,管子和压力管道焊接质量是影响管道质量的极其重要的因素。

管子和压力管道在锅炉制造安装中应用也较广,经常承受较高的压力。过去主要采用X、γ射线检验,但由于管子透照厚度差大,安装过程中管子有时密集排列,X、γ射线检测缺陷检出率低。为此人们开始研究利用超声波来进行检测,目前已取得一定的成效,而且在一些大型锅炉厂及电建单位中已用于实际生产。

焊接接头种常见缺陷油气孔、夹渣、未焊透、未熔合和裂纹等。管子曲率半径小,管壁厚度薄,常规超声检测困难大。曲率半径小,普通探头的检测接触面就小,曲面耦合的损失就大。同时超声波在内表面反射发散严重,检测灵敏度低。壁薄、杂波多,从而判断缺陷难度大。大量实验表明,利用大K值小晶片短前沿横波斜探头在焊缝两侧进行检测,可以有效地检出焊接接头中的各种缺陷。

小径管外径d=32-159mm,壁厚t=3-13mm,曲率半径小,管壁厚度小。

焊缝中缺陷:气孔、夹渣、未焊透、未熔合、裂纹等。

探伤特点:大K值、短前沿,一次波探测根部。

二、探测条件

1、仪器

较窄始脉冲,始脉冲占宽≤2.5mm。

高分辨率,小径管对比试块上Φ6/Φ10孔横波分辨Z≥20dB。

2、探头

①楔块:探测面磨成与管外面曲率均合

②晶片:小晶片,常用6×6mm,8×8mm

③频率:常用5MHZ

④K值:常用K2.5、K3.0,或β=60°72°

⑤前沿长度≤10mm,常用4-6mm

⑥探头形式:平面单晶横波探头------灵敏度较低

单晶、双晶线聚焦探头------灵敏度高

3、试块

对比试块GS-1、GS-2、GS-3、GS-4用于测试仪器和探头的性能,调整扫描线比例和探伤灵敏度。(见图)

4、耦合剂:机油、甘油、浆糊等。

三、仪器调整

1、扫描线比例:水平1:1,可用φ2横孔调节。

2、灵敏度

壁厚 评定线 定量线 判废线

≤8mm / Φ2×20-16dB Φ2×20-10dB

>8-15mm Φ2×20-16dB Φ2×20-13dB Φ2×20-7dB

>15mm Φ2×20-16dB Φ2×20-10dB Φ2×20-4dB

3、探测面打磨范围:7-9倍壁厚,实际50-70mm。

四、扫查探测与缺陷判别

1、扫查探测

一侧波、三次波探焊缝下部和根部,二次波探焊缝上部。

2、缺陷判别与测定

缺陷判定:以缺陷水平距离位置判别缺陷。

①水平距离

②两侧探测均在焊缝中心线水平距离处。

③仅一侧探测在焊缝中心线处为错边。

缺陷指示长度Lδ测定:

当缺陷反射波高于II区或II区以上,反射波只有一个高点用6dB法测指示长度,有多个高点,用端点6dB法测指示长度。

当缺陷反射波高位于I区,如有必要测长,以评定线为基准的绝对灵敏度测长。

测长的指示长度为沿管子外径圆周长,其实际指示长度Lδ为Lδ=L×(R-H)/R,这里L-------探头沿管子外圆移动距离,R-------管子外半径,H-------缺陷离外表面深度。

缺陷性质判断:

①根部未焊透:有端角反射特征,回波较强。从焊缝两侧均可探到,位于焊缝中心线沿焊缝有一定长度。

②未熔合:均为V型坡口。出现在上部。常在二次波发现,回波较高焊缝一侧探到,另一侧探不到。

③气孔:出现在焊缝中任何位置,波幅小。

缺陷评定:

首先判定是否危险性缺陷,对判定为非危险性缺陷,如相邻两缺陷在一直线上,其间距小于其中较小的缺陷长度应作为一条缺陷处理,以两个缺陷长度之和作为单个缺陷指示长度,且不考虑间距,单个点状缺陷指示长度按5mm计。

五、质量评定

1.不允许存在缺陷:反射波幅位于III区的缺陷和判定为裂纹等危险性缺陷。

2.反射波幅位于II区的缺陷,指示长度≤1/3T(最小5mm)评为I级,指示长度≤2/3T(最小6mm)评为II级,超过上述据评为III级。

3.如判为根部未焊透,则单个根部未焊透焊缝长度为1/3T(5-20mm),l累计长度≤10%圆周长且

4.在100mm焊缝内,同时存在条状缺陷和未焊透时评为III级。

参考文献

[1]《超声检测》

[2]《压力容器定期检验规则》

超声波焊接范文第6篇

【关键词】超声波;焊接技术;工业产品

Ultra-sonic Welding Technology in the Application of Industrial Product Design’s Exploration

HE Jun-hua1 MA Wen-juan2 LV Shuang-shuang3 WENG Mao-hong1 GUAN Jun1 GONG Yun1

(1.School of Engineering, Zhejiang A&F University, Lin’an Zhejiang, 311300, China;

2.School of Agricultural and Food Science, Zhejiang A&F University, Lin’an Zhejiang, 311300, China;

3.School of Landscape Architecture and Architecture, Zhejiang A&F University, Lin’an Zhejiang, 311300, China)

【Abstract】The article through to the illustration of the principle of ultra-sonic welding and the affecting factors of ultra-sonic probe, analyseing the advantages and disadvantages of ultra-sonic welding technology, combined with the author’s design practice, explore the development of ultrasonic welding technology, topic and is based on the exploration on the application felid of ultra-sonic welding technology in the future.

【Key words】Ultra-sonic; Welding technology; Industrial product

在工业产品制作中,经常会用到一些工业材料,像塑料、金属、木材等一些其他工业材料。在日常生活中我们经常会看到某件产品不只用一种材料来制作;我们也经常看到一件产品由多个部分组成、并且各部分之间还会产生空隙,这不仅会影响产品的质量,还会影响产品的美观度。这就要求把它们彼此之间焊接起来。随着技术的发展,人们对焊接技术的要求越来越高,目前传统的焊接技术不但成本较高,而且焊接的质量不高,往往会产生细小的缝隙。因此人们希望运用新的焊接技术来提高产品的质量。

1943年,在总结前人理论和实践的基础上,美国的Behl发明了超声波焊,从此推动了超声波焊接技术的发展。由于超声波焊接技术具有节能、无须装配散烟散热装置、焊接时无须焊接附件、成本低、效率高、密封性好、易实现自动化生产等优点,超声波焊接技术发展的越来越快。

1 超声波焊接技术在工业产品中的应用现状

像在航空航天、核能工业、电子工业等这样一些精度要求很高的工业产品领域中,使用传统的焊接技术很难达到技术要求,而且成本高、效率低。目前,超声波焊接技术在各行各业都有广泛的应用,像医疗机械、包装、五金等行业;能焊接的产品也很多,像汽车零部件、光学镜头、U盘等。

2 超声波焊接技术的原理和特点

超声波是一种频率高于20000赫兹的声波,因此能量大。超声波焊接是利用超声波频率(超过20000赫兹)的机械振动能量,连接同种或异种金属、半导体、塑料及金属陶瓷等材料的特殊焊接方法[1]。超声波作用于热塑性的塑胶表面时,会产生每秒上万次的高频振动,这种达到一定振幅的高频振动,通过上焊件把超声波能量传到焊区,又由于焊区即两个焊接的交界面处声阻比较大,因此会产生局部高温。又由于塑料制品导热性差,一时还不能及时散发出聚集的能量,因此能量就会聚集在焊区,致使两个塑料的接触面迅速熔化,加上一定的压力后,就会使其融合成为一体。当超声波停止作用后,让压力再持续几秒钟,使其凝固成型,这样就形成一个坚固的分子链,从而达到焊接的目的。在对金属进行超声波焊接时,既不向工件输送电流也不向工件施以高温热源,只是在静压力作用之下,将弹性振动能量转变为工件界面间的摩擦功、形变能及有限的温升,使得焊接区域的金属原子被瞬间激活,两相界面处的分子相互渗透,最终实现金属焊件的固态连接。其焊接原理示意图如图1所示[2]。

2.1 超声波焊接技术的优点

与传统焊接技术相比较,超声波焊接技术有如下优点:(1)焊接速度快、焊接精度高、焊接焊点强度高;(2)焊接范围广、稳定性好、被焊接后的工件变形很小;(3)焊接物表面清洁美观、平整光滑;(4)焊接时,不需添加焊接剂,对被加工物不产生污染、不产生有害气体,因此是一种环保的焊接方法;(5)焊接时,只需提供较小的动力即可进行焊接,耗能低;(6)操作简单、成本低、效率高、密封性好。

图1 超声波金属焊接原理示意图

2.2 超声波焊接技术的缺点

尽管超声波焊接技术有很多的优点,但也存在不足之处,因此不得不加以重视。超声波焊接技术有如下缺点:(1)对超声波焊接机理的认识还不够全面;(2)对金属进行焊接时,焊件不能太厚;(3)对超声波焊接技术的影响因素比较多,不易进行把握分析和总结;(4)制造一些大功率的超声波焊接机成本高、而且比较困难;(5)对焊接好后的工件进行焊接处质量检测比较困难,因此给大批量生产带来阻碍。

3 影响超声波焊接质量的因素

虽然超声波焊接技术有众多优点,但其焊接质量与熔融量、材料的材质等因素有关,概括起来主要包括以下几方面的因素,如图2所示。

图2 影响超声波焊接质量的因素

(1)焊接材料的材质:一般来说焊接质量与材料的物性和材料的改性有关。材料的物性包括材料的弹性模量、摩擦系数、热导率、熔点等。物件的焊接质量与材料的弹性模量、摩擦系数、热导率成正比,与其密度、熔点成反比。材料的改性指的是在适宜的工艺条件下加入一些填料以改善材料的原有性能,使其满足客户的使用要求。在适宜的工艺条件下加入一些性能相近的材料,可以提高焊接接头强度。

(2)焊头与焊件的接触面:焊接面的清洁度、材料表面的粗糙度会影响焊件的焊接质量。增加材料的表面粗糙度可以提高焊接质量;焊接面的清洁度越高,焊接质量也越高。

(3)其他因素:焊接技术的工艺参数、焊接件的结构、连接形式、焊接时的熔融量、超声波的功率等。为达到最佳的焊接效果,在产品研发阶段,要对这些因素进行综合考虑。

4 超声波焊接技术在工业产品设计中的应用案例

正如以上所述,基于超声波焊接技术的产品研发,先要进行综合考虑影响焊接质量的因素,然后结合产品的市场前景,产品的成本,生产技术要求等条件,合理生产设计要素。

下面仅就一个设计案例――美国苹果公司发明的超声波塑料与金属焊接专利技术进行解读,从实践的角度来理解超声波焊接技术在实际中的应用。原有技术的不足:在还没有发明这项专利技术之前,所有的便携式设备(如手机)不能将金属与塑料进行融合,因此某些部件不能用塑料部件来代替,这样生产出来的手机不仅厚重、外形呆板而且缺少个性,设计上也不够自由、缺少灵活性。并且制作成本高、操作复杂、使用不方便,按键操作过多时,会接触不灵。解决案例:采用全新的超声波塑料与金属焊接技术,在手机内部某些部件使用塑料材质,减轻了手机的重量的同时也减少了金属的使用量。在壳体方面采用一次成型工艺,使外壳更加简约、流畅,操作简单,设计灵活,给人一种高端、大气的感觉。先进的超声波焊接技术一般还要使用多种材料融合的技术工艺,设计更加的自由和灵活,设计线条采用极简主义的风格,色彩上运用浅色,给人轻松、愉悦的感觉。在结构上更符合超声波焊接工作原理,使焊接质量更佳。

5 针对超声波焊接技术应用的案例得出的结论和展望

通过这次调研,作者通过对超声波焊接技术的了解,对超声波焊接技术应用进行研究,由于条件有限,在调查研究过程中还有不足之处,在此将在调研过程中涉及到的问题及解决办法总结一下,为后面进一步研究做铺垫。针对焊接质量的问题,我们得出在焊接时应保持接触面清洁和材料表面的粗糙度。要了解用户需求,针对特定的用户进行设计,设计出多种不同的外观形态,为不同的客户量身打造;在设计时还应该考虑情趣化的问题,设计出更加有情趣化的产品,营造轻松愉悦的环境。针对超声波焊接技术在产品设计中的展望,作者经过探索发现可以在工作时增加音乐播放功能,使焊接过程轻松、愉快。未来的超声波焊接技术也将更加的人性化。

【参考文献】

[1]关长石,费玉石.超声波焊接原理与实践[J].机械设计与制造,2004(6).

超声波焊接范文第7篇

关键词:震动摩擦;原理;方法;应用

超声波塑料焊接的原理,超声波作用于热塑性的塑料接触面时,会产生每秒几万次的高频振动,这种达到一定振幅的高频振动,通过上焊件把超声能量传送到焊区,由于焊区即两个焊接的交界面处声阻大,因此会产生局部高温。又由于塑料导热性差,一时间还不能及时散发,聚集在焊区,致使两个塑料的接触面迅速熔化,加上一定压力后,使其融合成一体。当超声波停止作用后,让压力持续几秒钟,使其凝固成型,这样就形成一个坚固的分子链,达到焊接的目的,焊接强度能接近于原材料强度。超声波塑料焊接的好坏取决于换能器焊头的振幅,所加压力及焊接时间等三个因素,焊接时间和焊头压力是可以调节的,振幅由换能器和变幅杆决定。这三个量相互作用有个适宜值,能量超过适宜值时,塑料的熔解量就大,焊接物易变形;若能量小,则不易焊牢,所加的压力也不能太大。这个最佳压力是焊接部分的边长与边缘每1mm的最佳压力之积。

超声波焊接热塑性制件的最普通的方法是超声波焊接。这种方法是采用低振幅,高频率(超声波)振动能量使表面和分子摩擦产生焊接相连热塑性制件所需的热量。(正弦超声波振动)超声波焊接在20-50kHz的频率范围内发生,其一般振幅范围为15-60um。在低达15kHz(较高振幅)的声频有时用于较大制件或较软材料。焊接过程通常在0.5-1.5s内发生。焊接工艺变量包括焊接时间,焊头位置和焊接压力。超声波焊接设备通常用来焊接中,小尺寸的热塑性塑料制件,而很大的制件可用多点焊接。超声波焊接方法可根据焊接时间或焊缝位置(塌陷距离)或焊接能量控制。也对焊接压力和冷却时间提供附加控制。超声波焊接设备一般不是在20kHz就是在40kHz频率下运行,20kHz装置更常用。热塑性塑料在超声波振动作用下,由于表面分子间摩擦生热而使两块塑料熔接在一起的焊接方法。热塑性塑料焊接时,舌榫的设计保证在焊接周期中对位方便。焊线设计纤细,但必须有足够的可熔化材料令焊接面熔合。具体设计方式要视乎应用在焊接何种工件设备中。焊接压力、震幅等参数可调,保证焊头能接触到焊接面并施压,下工件为接受压力部份,置于底模中不动。焊头因产生超声波高频,令上工件生热震动,因而能与下工件熔合,焊头停止震动后,压力保持,令熔解位置冷却成型。整个焊接时间大多为少于一秒。

超音波焊接在塑料制品中的熔焊应用方法:(1)熔接法:以超音波超高频率振动的焊头在适度压力下,使二块塑胶的接合面产生摩擦热而瞬间熔融接合,焊接强度可与本体媲美,采用合适的工件和合理的接口设计,可达到水密及气密,并免除采用辅助品所带来的不便,实现高效清洁的熔接。(2)铆焊法:将超音波超高频率振动的焊头,压着塑胶品突出的梢头,使其瞬间发热融成为铆钉形状,使不同材质的材料机械铆合在一起。(3)埋植:藉着焊头之传道及适当之压力,瞬间将金属零件(如螺母、螺杆等)挤入预留入塑胶孔内,固定在一定深度,完成后无论拉力、扭力均可媲美传统模具内成型之强度,可免除射出模受损及射出缓慢之缺点。(4)成型:本方法与铆焊法类似,将凹状的焊头压着于塑胶品外圈,焊头发出超音波超高频振动后将塑胶溶融成形而包覆于金属物件使其固定,且外观光滑美观、此方法多使用在电子类、喇叭之固定成形,及化妆品类之镜片固定等。(5)点焊:将二片塑胶分点熔接无需预先设计焊线,达到熔接目的。对比较大型工件,不易设计焊线的工件进行分点焊接,而达到熔接效果,可同时点焊多点。(6)切割封口:运用超音波瞬间发振工作原理,对化纤织物进行切割,其优点切口光洁不开裂、不拉丝。

超声波塑料焊接优点:焊接速度快,焊接强度高、密封性好;取代传统的焊接/粘接工艺,成本低廉,清洁无污染且不会损伤工件;焊接过程稳定,所有焊接参数均可通过软件系统进行跟踪监控。

超声波焊接范文第8篇

关键词:超声波焊接 焊接质量 影响因素分析

引言

1956年超声波焊接技术被首次提出,此后几十年超声波焊接作为一种新颖的塑料加工技术,凭借其焊接速度快、焊缝质量好、易于自动化、适合于大批生产的优势而在汽车、电子、化工、医药、机械等行业得到了极为广泛的应用[1,2,3]。随着塑料材料大量应用于工业生产和日常生活中, 对其焊接技术的要求也越来越高,这是因为实际加工中很多结构复杂的塑料产品由于其工艺限制等原因而不能一次加工成型,通常需要采用焊接的方法来将零部件无缝连接到一起,构成一个完整的塑料零件,其焊接质量的好坏直接影响到产品的质量。塑料材料焊接当前采用最多的焊接方法即是超声波焊接,如何进一步提升塑料超声波焊接的焊接质量即成为制约塑料材料应用的重要因素之一。基于此,本文详细介绍了塑料超声波焊接的原理及构成并对影响其焊接质量的因素做了详尽的分析。

1 超声波焊接原理

超声波通常是指频率在20KHz 以上的弹性机械振动,其最明显的特性是方向性好,能量高,可以定向传播。基于此特性,当超声波垂直加到待焊接的塑料表面上时, 焊接面上的质点就会因超声波激发而快速振动, 使其连续交替地受压和解压, 在界面上因强烈振动而产生摩擦, 释放出大量的热。超声波引起的摩擦分为两部分即分子间内摩擦和表面剪切摩擦,分子间内摩擦是由于塑料材料内部分子因声波激发振动而产生的,而表面剪切摩擦是由于接触面在振动过程中产生滑移引起周期性结合与分离产生的。分子间内摩擦和表面剪切摩擦的综合效应称为聚合物振动摩擦,振动摩擦使机械能转换为热能,加之塑料导热性差,热量不易散发,便在焊接处形成局部高温,使结合处的材料迅速融化,振动停止后, 熔融的塑料在一定的压力下定形并构成坚固的分子链,达到焊接的目的。[3,4]

2 超声波焊接加工质量的影响因素分析

影响塑料超声波焊接加工质量的因素大致可以分为三大类:超声波焊接机对加工质量的影响、工艺优化对加工质量的影响以及塑料材料对加工质量的影响,现分别从这3点进行说明。

2.1 超声波焊接机对焊接质量的影响

超声波焊接机主要由超声波发生器、换能器、变幅杆、焊头及配套的夹具组成,焊接机的好坏是决定能否成功焊接的前提。

超声波发生器作为超声波焊接机的核心组成部分,其性能的好坏对焊接质量有着决定性的影响。超声波发生器的作用主要是用于将工频电流转变为超声波频率的振荡电流,其核心要求之一即是要求能频率自动跟踪控制,即要求其能对在工作中变化的换能器谐振频率进行跟踪,以保证整机工作在谐振频率内,这是因为系统振动一旦失谐,直接将导致振幅降低,造成焊接质量不稳定甚至失败。其次超声波发生器还应具有功率自适应功能,能在工作中根据负载的变化来调节输出的功率,以实现焊接机的高效率与高稳定性[5]。

换能器是用来将发生器产生的高频电能转换为弹性机械能的装置,是超声波声学系统的关键部件之一,其原理是利用单晶体材料的逆压电效应将输入的电功率转换为机械功率。换能器与超声波发生器之间的匹配是保证焊接质量的要点,必须保证两者之间的谐振,否则易导致换能器发热、温度过高、易损坏,同时也可能导致发生器电源的损坏。

超声波的原始振幅一般很小,通常只有几微米,而实际加工应用中所需要的振幅在几十到几百微米左右,所以通常需要通过变幅杆将其振幅放大,并且变幅杆还可以起到机械阻抗的作用,在换能器与负载之间进行阻抗匹配,使超声波能量更有效地从换能器向待焊接面传递。对变幅杆的主要要求是在工作频率内材料损耗小,传递效率高,同时其疲劳强度要高而声阻要小,以获得较大的振动速度和振幅位移。

超声波焊头是超声波能量传递的最后一个环节,它将超声波产生的高频振动传递到待焊接的表面上,因其要传递超声波,所以焊头一定要工作在谐振状态下,即焊头的固有谐振频率要与换能器匹配,其次还要求其振幅均匀,焊头端面形状适应被焊接工件的形状。

超声波焊接夹具主要起定位和承载的作用,夹具的加工精度对焊接产品的形状和精度有直接的影响,夹具与焊接产品的角度和弧度不吻合时易造成产品焊接后尺寸偏差甚至发生变形。夹具按照焊接产品仿形加工完后还需要微调其固有频率,使其频率与超声波焊接机吻合,以达到最佳的焊接效果[6]。

2.2 工艺优化对焊接质量的影响

塑料超声波焊接的工艺优化主要包括加工参数优化与焊接工艺优化。

工艺参数优化,适宜的加工参数是保证超声波焊接质量的关键条件之一,超声波焊接主要的可调参数有频率、振幅、焊接压力、焊接时间及保压时间。

常用的超声波频率范围有15、20、30及40KHz,针对不同的焊接材料特性所需的频率也各不相同,例如对于薄壁件焊接则宜采用较大的振动频率,这是因为在功率一定的情况下,提高频率可以降低振幅,从而可以降低薄壁件因交变应力而产生的疲劳破坏;而对于较厚的焊件,则宜采用较低的振动频率,这是由于振动频率对焊点的剪切强度有影响,材料越厚、越硬,其影响越大,因而较高的振动频率反而不易焊接成形。对于同一种焊接材料,随着焊接频率的提高,其所需的振动速率与振幅均变小,焊接面温升变快,焊接强度变大,但其传递损耗也变大。

振幅的大小直接影响到塑料材料的熔化程度,对于需要焊接的材料来说是一个关键参数。振幅的选用与被焊接材料的性质和厚度有关,其范围一般在5~25μm,振幅选用太小易产生不均匀的初始熔化及过早的熔体凝固,而振幅太大时又易使焊接面加热速度过快,导致熔化材料流动速度较快而产生大量的飞边并降低焊接强度[1]。在适宜的振幅范围内,增加振幅有利于超声波能量的扩散,缩短焊接时间,提高焊接效率,同时也能提高焊接接头的强度。

焊接压力有两个作用,一是提供焊头与零件间耦合所需的静压力,以便超声波传能量传递到焊接面,二则是在振动结束后提供必要的保持压力以确保接头处材料凝固,使零件连成一体。焊接压力过低时,超声波几乎不能被传递到焊接面上,大多数能量都损耗在焊头与零件之间,造成塑料材料熔融不充分,从而导致需要更多的焊接时间;而如果焊接压力过大,则会增加所需要的功率,造成熔体过流,导致熔融层材料严重挤出,减少熔融层厚度,降低焊缝强度,同时也会产生零件压痕,极端情况下还可能造成过载使焊头停止工作。在其他焊接条件不变的情况下,适当提高焊接压力可以在保证焊接强度的前提下缩短焊接时间,这是因为较高的焊接压力更易在较低温度下产生塑性变形,同时也能在较短的时间内达到最高温度。

焊接时间对接头质量影响很大,焊接时间过短会导致焊不上或焊缝强度不够,而焊接时间过长则会导致塑料熔融过剩,焊线以外的材料熔化且易产生压痕降低焊接质量。对于不同的焊接压力,达到所需焊接强度的时间各不相同,增大焊接压力可以在一定条件下缩短焊接时间。

保压时间即是指振动停止后零件在一定压力下凝固和结合的时间,在大部分情况下,其并不是一个关键的参数,一般取0.3-0.5s即可[1]。

上述各参数是相互影响、相互关联的,通常需要综合调节各参数以达到最佳的焊接质量,例如针对焊接加工中焊缝挤出的问题,这通常是因为焊接振幅过大、焊接时间过长而使振动产生的热量超出熔融焊线所需的热量,导致焊线以外的材料熔化而从焊缝中挤出。当出现这种现象时,应适当降低焊接振幅与焊接时间,保证材料不被过多的熔化,其次也要降低焊接压力,避免材料挤出量过大。

焊接工艺优化主要是指焊接焊线的优化设计,焊接线的设计是影响产品焊接精度的一个重要因素,焊线设计不合理易使产品在焊接过程中因受力不均而发生滑移,造成焊接产品偏位或尺寸偏差。依据不同的焊接接口以及焊接材料特性,应选用不同的焊接线形式。超声波焊接中常使用的焊接线结构类型有三角形焊线、围边式焊线、峰谷式焊线和台阶式焊线,实际加工中可以根据需要进行优化选取[6]。

2.3 塑料材料对焊接质量的影响

塑料材料对焊接质量的影响主要分为塑料材料的可焊性与塑料材料表面状态对焊接质量的影响。

塑料材料的可焊性可以用公式G = K・E・λ・μ/ρ・C・t ( W/m2・K)来表征。

其中:

G――塑料材料的可焊性;K――焊件形状因子,取决于焊件的壁厚、尺寸大小及焊头的形状尺寸;E――塑料的弹性模量( GN/m2 );λ――导热系数( W/m・K);μ――塑料的摩擦系数;ρ――塑料的密度( kg / m3 );C――比热(J /kg・K);t - 熔点( K)。

从上式可以看出塑料材料的可焊性与其弹性模量、导热系数、摩擦系数成正比,而与其密度、比热容及熔点成反比。

正确选用塑料材料是保证焊接质量的首要条件,一些常见的各种同种塑料和异种塑料的可焊性分析表格在文献[1]中已有详细的介绍,这里就不再赘述。

塑料材料的表面状态则包括了材料的表面粗糙度,焊接搭接宽度及导能筋等对焊接质量的影响。塑料材料表面粗糙度越大越有利于降低声阻,提高表面能流密度,进而提高焊接质量。焊接搭接面越宽,其焊接接头强度越低,这是因为搭接宽度越大,焊接接头边缘应力集中越大,越易出现微裂纹,从而降低接头强度[6]。导能筋通常是一个铸在零件配合面的小三角形隆起,用于将焊接初始接触限制在一个非常小的区域内从而将超声波能量集中在三角形顶部,其次它还可以为熔融的塑料在温度和压力共同作用下铺展提供空间,避免应力集中,从而实现精密焊接,其三角形顶部角度是一个关键参数,常用的角度通常为90°或60°。

结语

塑料超声波焊接技术凭借其焊接速度快、焊缝强度高、焊缝质量好的优点而越来越受到广泛的应用,其应用前景也必将随着塑料材料的进一步推广使用而不断扩大,与此同时对其焊接质量的要求也必将越来越高。塑料超声波焊接焊接机理复杂,受到众多因素的影响,这包括焊接机设备、焊接工艺参数、焊接工艺及塑料材料特性等多个方面,理解并弄清上述各因素对焊接质量的影响是进行成功焊接的前提。

参考文献

1. 张胜玉. 塑料超声波焊接技术(上)[J]. 橡塑技术与装备, 2015(08):50-54.

2. 冉茂杰. 热塑性塑料的超声波焊接[J]. 工程塑料应用, 1986(04):36-36.

3. 陶永亮. 塑料焊接加工几种方法[J]. 塑料制造, 2011(12):75-79.

4. 陈振伟. 超声波发生器的研究[D]. 浙江大学电气工程学院 浙江大学, 2007.

5. 王叶, 陈斌. 超声波焊接原理及其工艺研究[J]. 科技创业家, 2013(07).

6. 陈源, 丁斌. 贯流风叶超声波焊接机的工艺优化[J]. 中国包装工业, 2015(Z1):101-102.

基金项目

家电送风系统设计及制造的数字化、智能化技术研究与应用项目(2013CXTD01);贯流风扇叶超声波焊接机器人研发及柔性生产线示范(2013AH100013)。

作者简介

黄禹(1972-),男,湖北武汉人,教授,博士生导师,主要研究方向:数字化制造装备。

超声波焊接范文第9篇

《关键词》:T型焊接接头;超声波探伤;缺陷

中图分类号:P755文献标识码: A

前言

按照相关的规定的T型焊接接头质量标准,根据根据GB50205一2001《钢结构工程施工验收规范》上的要求:设计要求全焊透的一级和二级焊缝之间应该采用超声波探伤的方法,进行内部缺陷的检验,超声波探伤不能对缺陷进行合理判断的时候,应该采用射线探伤的方法,其内部的缺陷分级和探伤方法应该符合现在的国家标准《钢焊缝手工超声波探伤方法和探伤结果分析》GB11345或者《钢熔化焊对接接头射线照相和质量分级》GB3323的规定。对于T型焊接接头,应该以超声波探伤的方法进行探伤。

在有关的超声波探伤标准中,只是提出了通用的检测方法,检测者根据现场的实际运用情况。由于检测人员的水平和综合的素质都存在着明显的差异,这对于探伤结果的影响很大。采用两种探头和不同波形对于T型焊接接头进行超声波探伤的并不多。

1.T型焊接接头超声波探伤的方法

上图为探头位置和探头类型的图示。对于探头位置的安装,可以安置在翼板上,也可以安置在腹板上。探头的安装形式,可以安装在双晶探头和直探头上,也可以安装在斜探头上。对于探伤波形的安装地点和形式,除了可以使用横波和纵波,也可以使用一次波和二次波进行超声波探伤。

从图中的不同位置和不同探头,可以组成不同的组合。可以使单种探伤或者多种探伤,经过组合在不同的位置上进行超声波探伤。这种组合的方式有很多,这就对检测人员的要求也很高。检测人员应该按照场地的实际情况、构件的表面位置和有可能出现的缺陷位置,及其仪器和附件的综合情况,根据这些情况进行判定,然后选择不同的探伤方法。

2.水晶探头和斜探头组合的探伤方法

在翼板上采用水晶探头和斜探头在组合的时候,对T型焊接接头进行超声波探伤。这种方法主要就是以双晶探头探伤为主,采用斜探头辅助的方式。一旦当双晶探头探伤发现缺陷波的存在,如果发现有问题的地方,可以再次使用斜探头采取第二次检查的方式。这样做的有点主要就在于:

(1)通过两种探头在综合使用的时候得到的不同的信息,综合分析,可以综合提高对缺陷判断的准确性,方便于缺陷的定位,避免出现错误和误差以及漏检的现象,并且还可以提高检测的速度,提高了在检测过程中对缺陷检测的能力。针对于探伤的仪器、探头和操作的方法并没有特定的要求,只有一个检测面,减少了工作表面打磨的量,节约了检测探伤的成本。

(2)水晶探头在进行检测的时候,其检测的灵敏度增加,可以减少杂波的盲目区,为探伤近表面的缺陷提供了有利的条件。双晶探头在使用的过程中使用的是延迟块,缩短了工件中的进厂区的长度。探伤时焦点深度和一般厚度一定,位于棱形去内缺陷回波的信号就会增高,有利于超声波的探伤。

一般在翼板钢板厚度为45毫米之内的时候,可以使用双晶探头。当翼板钢板厚度超过45毫米的时候,就可以使用直探头。在使用的时候,可以使用小直径、频率高的直探头。频率越高,其波长就越短,探测缺陷的尺寸就越小,探测缺陷最小尺寸与波长有关,但是频率高近场区长度大,探伤时应综合考虑。

(3)斜探头在T型焊接接头翼板两侧起到了辅助探伤的作用。主要就是在使用双晶探头探伤的时候,双晶探头探伤会对回波产生怀疑的时候,再次进行第二次检测。用一次波探测灵敏度高,避免一些非缺陷回波,判断缺陷方便。在进行探头探伤的时候,探头在焊缝两侧沿着垂直于角焊缝的位置进行扫查,角焊接反射波的回波较高,当角焊缝中存在缺陷的时候,缺陷波就会出现在角焊缝的反射波之前。如下图所示。从图中可以看出,在角焊缝反射波之前出现的回波就是缺陷回波。

图:角焊缝反射波和缺陷回波

(4)增高检测的灵敏度。双晶探头探伤是以翼板地步的反射波作为参考波来对缺陷进行判定的,而斜探头则是以角焊缝反射波来作为参考波进行判定的。在进行判定之前的回波为缺陷回波,不容易产生误差和误判的现象,此时的却行的定位较为准确。

(5)在使用双晶探头进行探伤的时候,扫查的方式主要是以直线运动为主的,检查的速度比斜探头锯齿形检测速度快。

3.探伤过程中的注意事项

(1)双晶探头探伤的时候,隔声层应该和探头的移动方向的位置保持垂直状态。双晶探头在翼板上主要在做直线运动,有时候也在做短距离的横向移动,确定其探头的位置是否在检测的位置之上。分析双晶探头在T型焊接接头翼板上的三个不同位置。如下图所示。

图为:探头的三个不同的位置

位置1:表示回波的距离等于翼板的厚度,这个时候不存在缺陷。

位置2:表示没有回波信号,或者回波信号大于翼板的厚度。如果,回波距离小于或等于翼板厚度可能就是缺陷,可以用斜探头进一步检测,进行综合分析判断。

位置3:表示出现回波的信号就可以确定存在着缺陷回波。在对这个把握不准的时候,可以再次使用斜探头进行第二次检查。一般情况下,并不需要在翼板上划线。上图位置中的1和2都可以进行判定,此外,在翼板上都会遗留下焊接的痕迹。

(2)合理选择探头的K值。一般情况下在选择K值斜探头的时候,前提必须是在腹板和一般的焊脚高度基本上保持相同。这个时候,入射波和角焊缝应该保持垂直的状态,反射回波的信号比较强,回波幅度也比较高。如果腹板和翼板焊脚的高度不相同,应该选择K值不同的斜探头,适合选择反射回波信号强的K值斜探头。

(3)斜探头在比较薄的翼板上进行探伤的时候,应该首先在钢中进场区长度进行检测。这主要是因为在进厂区内,当声束轴线上存在的声压等于零的时候,这个时候缺陷的大小和回波的高度就不是比例,近场区长度外探伤不存在类似情况。钢中近场区的长度和斜探头的K值、晶片的尺寸大小都有着关系。

《结束语》

本文首先通过提出了双晶探头和斜探头组合的方法,解决了在T型焊接接头超声波探伤的问题。可以首先使用于锅炉、压力容器等具有T型焊接接头构件的超生波探伤。其次,是在对于超声波探伤探头的选择的时候,一般的厚度在小于45毫米的时候选择双晶探头,大于的就选择直探头。在进行斜探头探伤的时候,焊脚高度的不同应该选择角焊缝反射波高的探头。最后,进行了综合的阐述了斜探头检测应该在近场区长度之外进行,计算在这个里面的相应数值,通过得出的K值不同,晶片的尺寸大小也可以检测出来最小的翼板厚度。通过这种方法,可以选择出另一种斜探头的方法。

参考文献

[1]于建华.钢结构T型焊接接头超声波探伤的方法及其案例分析[J].特种结构,2011,01:99-102+42.

[2]于建华.钢结构T型焊接接头超声波探伤方法的分析[J].无损探伤,2010,01:36-39.

[3]唐忠国.超声波无损探伤检测钢结构焊接质量分析[J].机械工程师,2013,07:234-235.

超声波焊接范文第10篇

Abstract: The tunnel flashing uses traditional hot melt welding, its construction efficiency is low and the welding quality and appearance are poor. Combined with the application of the welding technology of a new type of ultrasonic flashing in Banlun tunnel of the Napo Expressway from Guning, Yunnan to Napo, Guangxi, this paper analyzes the results from principle, process, organization, quality and other aspects. The indicators and performance advantages are obvious, which provides the reference for the application of ultrasonic flashing welding in the engineering.

关键词: 隧道;防水板;超声波;焊接

Key words: tunnel;flashing;ultrasonic;welding

中图分类号:U445.4 文献标识码:A 文章编号:1006-4311(2017)02-0131-02

1 项目概况

云南富宁至广西那坡高速公路主线全长22.233km,起点位于云南罗富高速公路,连接广西靖那高速公路,板仑隧道桩号为K3+885,位于广西与云南交界的富宁板仑乡境内,隧道左线里程为ZK2+886~ZK4+851,长度1965m,右线里程为YK2+885~YK4+885,长度2000m,左线进出口明洞长度分别为26m、22m,右线进出口明洞长度分别为4m、12m;隧道左线最大埋深358m,右线最大埋深355m。本隧道为全线最长隧道,为分离式隧道,是富宁至那坡高速公路控制性工程,隧道进口处间距20.7m,出口处间距19.5m,洞口段为小间距施工。本文结合板仑隧道采用新型超声波防水板焊接技术的实例应用,对焊接技术和质量控制要点进行分析探讨。

2 工艺概况及原理

以往多数隧道防水板铺设后一直采取手工方式固定到隧道内壁上,固定方式以射钉锚固垫片为主,垫片与防水板以热熔形式处理,往往容易烧焦、烧穿,与初支表面的密贴效果不稳定,质量控制难,整体平顺性不好。板仑隧道结构防水由喷射混凝土、柔性卷材防水层和二次衬砌结构自防水等组成,其中柔性防水卷材为土工布和1.5mm厚PVC防水板组成,施工过程中采用新型超声波对防水板焊接,超声波焊接机由发生器产生20kHz~35kHz的高压、高频信号,通过换能系统转换成高频机械振动,借助焊接枪头加于两个靠近的塑料工件上,通过工件表面及内在分子间的摩擦提高接触面局部温度,当温度升高至工件熔点时,工件接口迅速熔化将接口间的空隙填实,随接触时间延长,接触面熔化深度加大,当接触震动停止后,工件冷却定形,至此超声波焊接完美收官。

3 工艺特点

①超声波焊接开机即可焊接,正常情况下焊接枪头不会烫伤操作人员,安全性好。②超声波焊接不需加溶剂、粘接剂或其他辅助品,使用成本低。超声波焊接一次性投入较大,但设备使用寿命长,分摊成本仅为电热压力焊焊枪成本的7.5%,经济效益明显。③超声波焊接节约了电热压力焊的预热等待时间,一个接触点仅需3s,生产率高,也不会因出现焊点破洞修补而浪费时间。④焊点外观质量和熔接程度好,焊点不破损,防水板铺设质量好。

4 适用范围

本方法适用于隧道施工的防水板与垫片间的焊接施工。

5 主要引用标准

《公路工程质量检验评定标准》(JTG F80/1-2004);

《高速公路施工标准化技术指南》 第五册 隧道工程;

《公路隧道施工技术规范》(JTG F60-2009)。

6 施工方法

隧道内壁一定范围内铺设好土工布,土工布与隧道洞壁间的锚固点全部安放有热熔垫片;作业台架就位,在机械手卷筒支架上安装好防水板卷筒;调试好超声波焊接机;在隧道一侧的拱脚处开始释放防水板,使防水板纵向(新铺与已铺)搭接宽度和横向起点位置正确,人工将防水板按压至基层土工布垫片上并保持密贴,用超声波焊枪对正垫片,启动开关持续2~3s;每个垫片上点焊3-4个焊点;待水平方向热熔垫片全部点焊完成后,再次启动机械手向上移动,使防水板与下一排热熔垫片熔接固定。如此,即可完成整个拱圈防水板的铺设。

7 工艺流程及操作要点

7.1 施工工艺流程

施工准备基面检查土工布铺设防水板铺设及超声波焊接固定效果检查

7.2 操作要点

7.2.1 施工准备

工前调配好人员、机具等各方面资源,做好工前准备工作。首先材料要准备到位,其中,热熔垫片(图1)选择红色新型改进型垫片,确定固定点的位置再开始施焊。另外,在受力条件允许的情况下需要尽量缩小垫片面积,以节省EVA原材料,降低材料成本。

7.2.2 基面检查

铺设防水层前先扫描隧道断面,按质量要求处理好初期支护喷射混凝土表面,将锚杆头或钢筋露头切除后用细石混凝土抹平覆盖,凹坑深宽比不宜超出1/10,超出这一控制标准会影响混凝土喷射基面的平整度,所以检查时必须用细石混凝土将其填平,再用平整度尺和塞尺检验填坑后表面的平整度,确认符合喷射要求后再铺土工布,安装环向透水盲管,然后施作防水板。

7.2.3 土工布铺设

利用作业台架将土工布沿隧道内壁展开,用尾部套有热熔垫片(如图1)的射钉将土工布平顺地固定到隧道洞壁上,构成防水板铺设基层。铺设时,要保证土工布两幅搭接宽度至少为50mm,并且布面平顺,没有褶皱或隆起(如图2)。垫片作为防水板固定点,应按设计要求布置成梅花形,拱部垫片间距控制在0.5~0.8m之间,边墙的垫片间距为0.8~1.0m。尽量在平整的基面上设置防水板和热熔垫片的固定点,以方便焊接。

7.2.4 防水板铺设、超声波焊接

7.2.4.1 超声波焊接机调试

①接通电源:电源为220V、50Hz单项电源。通电后查看指示灯是否亮起,若不亮,需要对保险管进行检查。

②仪器调试:通电后点按面板上的红色“测试”按钮,查看表盘电流表,电流正常值应该在“0.5~1”安倍之间,若不在这一区间内,需要对频率螺杆进行进行左右微调,调试过程中点按红色“测试”按钮,直至电流恢复正常,如果依然无法恢复正常,就应该查看模具是否完好,因为模具存在裂缝或破损,也会对电流造成不良干扰。

7.2.4.2 防水板铺设及固定点焊接

①防水板对位。防水板铺设从一侧边墙下部向拱部、再从拱部向另一侧边墙铺设。打开防水板包装,将板材拉出一两米进行对位。要确保第二幅板材与上一幅防水板搭接处宽度至少为15cm,平顺,且松紧度留有一定余量(设计周长和铺设长度按4:5比例进行预留)。

②超声波焊接机压焊。墙部压焊:一手持超声波焊接机,一手顶压防水板,超声波焊接机与防水板面垂直压紧开始点焊。防水板被熔化后,在端头压入防水板大概0.5mm处停止点焊,单点焊接持续时间约为3s(如图3、图4)。施焊时应确保防水板和垫片紧压密贴,否则会影响点焊效果。

拱部压焊:对拱部施焊时,先用临时钢筋支撑将防水板撑至喷射混凝土面,再以压焊的方式进行焊接。

焊点数量:边墙部位每个垫片焊3个点;拱部每个垫片焊4个点,且宜均匀布置于垫片上,以确保焊接牢固。

焊接顺序控制:在确保和上一幅防水板搭接不小于15cm前提下,从一侧边墙向拱部、再从拱部向另一侧边墙铺设、逐排与固定点焊接。单幅超声波焊点完成后,采用爬焊机连接两幅防水板。

7.2.4.3 防水板搭接焊接

防水板铺设到位后及时进行搭接焊接。搭接焊接采用自动爬行热熔器具,要求焊缝均匀,无烧蚀、不破损。

8 劳动力组织和主要机械设备

劳动力组织和机械见表1,表2。

9 质量控制

9.1 易出现的质量问题

焊点不牢固、焊点焊接过量、焊点结合面不均匀。

9.2 控制措施

①焊接时,防水板与垫片之间必须密贴,增加焊接时间,增加焊接压力。

②减少焊接时间、减轻焊接压力。

③检查防水板与垫片之间是否密贴。焊接时,枪头模具应与防水板垫片面垂直。

10 工程效果评价

防水板超声波焊接技术的应用,使以往防水板焊焦、焊穿的质量通病得到了根本改善。现场土工布、防水板铺设美观、平顺,可操作性和观感质量及经济性都得到大幅度提高,防水板和土工布的连接质量达到质的飞跃,板仑隧道通过采用新型超声波防水板焊接技术,隧道防水板焊接效果显著,质量及外观控制得到较好效果。

参考文献:

[1]中国机械工程学会焊接分会.焊接手册[M].北京:机械工业出版社,1993:502-515.

[2]卢彤.塑料超声波焊接及质量影响因素研究[D].哈尔滨工业大学硕士学位论文,1999.

上一篇:超声内镜范文 下一篇:超声波清洗范文