超声波传感器范文

时间:2023-03-12 04:25:10

超声波传感器

超声波传感器范文第1篇

[关键词]超声波 传感器 疾病诊断 测距系统 液位测量

一、超声波传感器概述

1.超声波

声波是物体机械振动状态的传播形式。超声波是指振动频率大于20000Hz以上的声波,其每秒的振动次数很高,超出了人耳听觉的上限,人们将这种听不见的声波叫做超声波。超声波是一种在弹性介质中的机械振荡,有两种形式:横向振荡(横波)及纵向振荡(纵波)。在工业中应用主要采用纵向振荡。超声波可以在气体、液体及固体中传播,其传播速度不同。另外,它也有折射和反射现象,并且在传播过程中有衰减。超声波在媒质中的反射、折射、衍射、散射等传播规律,与可听声波的规律并没有本质上的区别。与可听声波比较,超声波具有许多奇异特性:传播特性──超声波的衍射本领很差,它在均匀介质中能够定向直线传播,超声波的波长越短,这一特性就越显著。功率特性──当声音在空气中传播时,推动空气中的微粒往复振动而对微粒做功。在相同强度下,声波的频率越高,它所具有的功率就越大。由于超声波频率很高,所以超声波与一般声波相比,它的功率是非常大的。空化作用──当超声波在液体中传播时,由于液体微粒的剧烈振动,会在液体内部产生小空洞。这些小空洞迅速胀大和闭合,会使液体微粒之间发生猛烈的撞击作用,从而产生几千到上万个大气压的压强。微粒间这种剧烈的相互作用,会使液体的温度骤然升高,从而使两种不相溶的液体(如水和油)发生乳化,并且加速溶质的溶解,加速化学反应。这种由超声波作用在液体中所引起的各种效应称为超声波的空化作用。

超声波的特点:(1)超声波在传播时,方向性强,能量易于集中;(2)超声波能在各种不同媒质中传播,且可传播足够远的距离;(3)超声波与传声媒质的相互作用适中,易于携带有关传声媒质状态的信息(诊断或对传声媒质产生效应)。

2.超声波传感器

超声波传感器是利用超声波的特性研制而成的传感器。以超声波作为检测手段,必须产生超声波和接收超声波。完成这种功能的装置就是超声波传感器,习惯上称为超声换能器,或者超声探头。

超声波探头主要由压电晶片组成,既可以发射超声波,也可以接收超声波。超声探头的核心是其塑料外套或者金属外套中的一块压电晶片。构成晶片的材料可以有许多种。超声波传感器主要材料有压电晶体(电致伸缩)及镍铁铝合金(磁致伸缩)两类。电致伸缩的材料有锆钛酸铅(PZT)等。压电晶体组成的超声波传感器是一种可逆传感器,它可以将电能转变成机械振荡而产生超声波,同时它接收到超声波时,也能转变成电能,所以它可以分成发送器或接收器。有的超声波传感器既作发送,也能作接收。 超声波传感器由发送传感器(或称波发送器)、接收传感器(或称波接收器)、控制部分与电源部分组成。发送器传感器由发送器与使用直径为15mm左右的陶瓷振子换能器组成,换能器作用是将陶瓷振子的电振动能量转换成超能量并向空中幅射;而接收传感器由陶瓷振子换能器与放大电路组成,换能器接收波产生机械振动,将其变换成电能量,作为传感器接收器的输出,从而对发送的超进行检测。控制部分主要对发送器发出的脉冲链频率、占空比及稀疏调制和计数及探测距离等进行控制。

二、超声波传感器的应用

1.超声波距离传感器技术的应用

超声波传感器包括三个部分:超声换能器、处理单元和输出级。首先处理单元对超声换能器加以电压激励,其受激后以脉冲形式发出超声波,接着超声换能器转入接受状态,处理单元对接收到的超声波脉冲进行分析,判断收到的信号是不是所发出的超声波的回声。如果是,就测量超声波的行程时间,根据测量的时间换算为行程,除以2,即为反射超声波的物体距离。把超声波传感器安装在合适的位置,对准被测物变化方向发射超声波,就可测量物体表面与传感器的距离。超声波传感器有发送器和接收器,但一个超声波传感器也可具有发送和接收声波的双重作用。超声波传感器是利用压电效应的原理将电能和超声波相互转化,即在发射超声波的时候,将电能转换,发射超声波;而在收到回波的时候,则将超声振动转换成电信号。

2.超声波传感器在医学上的应用

超声波在医学上的应用主要是诊断疾病,它已经成为了临床医学中不可缺少的诊断方法。超声波诊断的优点是:对受检者无痛苦、无损害、方法简便、显像清晰、诊断的准确率高等。

3.超声波传感器在测量液位的应用

超声波测量液位的基本原理是:由超声探头发出的超声脉冲信号,在气体中传播,遇到空气与液体的界面后被反射,接收到回波信号后计算其超声波往返的传播时间,即可换算出距离或液位高度。超声波测量方法有很多其它方法不可比拟的优点:(1)无任何机械传动部件,也不接触被测液体,属于非接触式测量,不怕电磁干扰,不怕酸碱等强腐蚀性液体等,因此性能稳定、可靠性高、寿命长;(2)其响应时间短可以方便的实现无滞后的实时测量。

4.超声波传感器在测距系统中的应用

超声测距大致有以下方法:①取输出脉冲的平均值电压,该电压 (其幅值基本固定)与距离成正比,测量电压即可测得距离;②测量输出脉冲的宽度,即发射超声波与接收超声波的时间间隔 t,故被测距离为 S=1/2vt。如果测距精度要求很高,则应通过温度补偿的方法加以校正。超声波测距适用于高精度的中长距离测量。

三、小结

文章主要从超声波与可听声波相比所具有的特性出发,讨论了超声波传感器的原理与特点,并由此总结了超声波传感器在生产生活各个方面的广泛应用。但是,超声波传感器也存在自身的不足,比如反射问题,噪声问题的等等。因此对超声波传感器的更深一步的研究与学习,仍具有很大的价值。

参考文献:

[1]单片机原理及其接口技术.清华大学出版社.

[2]栗桂凤,周东辉,王光昕.基于超声波传感器的机器人环境探测系统.2005,(04).

[3]童敏明,唐守锋.检测与转换技术.中国矿业大学出版社.

[4]王松,郑正奇,邹晨.超声定位车辆路径监测系统的设计.2006,(10).

超声波传感器范文第2篇

【关键词】 超声波 传感器 应用

超声波是一种弹性波,它具有X射线以及光波和磁波等诸多波线所不具有的功能特点,正是基于超声波的应用灵活性与技术要求性高等特点,人们将其制成超声波传感器进行工业实践与应用。

一、超声波传感器概况

1.1超声波及其原理

物体机械振动状态的传播形式就是声波,而超声波主要是指声波频率在20000Hz以上的声波形式。由于这种声波每秒钟的振动频率较高,因此大大超出了人耳所能承受的听觉范围。超声波按照其在机械振荡过程中的不同表现形式,可将其分为纵向与横向两种振荡波[1]。而在我国现阶段的工业实践中,主要应用的是纵向振荡波,与可听声波相比,超声波具有独特的传播特征,其衍射能力较强,而且在均匀的传播介质中可以进行直线传播。一般情况下,在同等强度条件下,声波的频率与功率具有正相关性,声波频率越大,其传波的功率就越大。因为超声波要比一般声波频率更大,所以其在运行传播时的功率也较大。由于超声波具有诸多优点,因此在不同环境下得到了广泛应用与实践。

1.2超声波传感器的特点

超声波传感器是利用超声波的上述优点研制而成的一种数字传感器,以超声技术为核心、超声传感装置为载体,进行超声波传输与接收。通常情况下,超声波传感器又称为超声换能器及超声探头。超声波探头主要由压电晶片构成,其不但可以接收超声波,而且可以发射超声波。因此在超声探头中,核心运作组件就是其塑料外套或者金属外套中的一块压电晶片。这种压电晶片通过具有磁致伸缩作用的镍铁铝合金材料与具有电致伸缩作用的压电晶片材料制成。采用压电晶体材料构成的超声波传感器是具有可逆功能的一种数字化传感器,在其运行过程中可将机械设备的电能转化为机械能,从而在不同能量转化过程中产生超声波。与此同时,超声波传感器可接收超声波,从而将机械能转化为电能[2]。因此,按照超声波传感器的实际工作运行原理,可将其分为超声波接收器与超声波传输器。

二、超声波传感器的具体应用分析

首先,超声波传感器可在远距离传输过程中得到运用。通过上述分析可知,超声波传感器主要由处理单元模块及超声换能单元模块、输出单元模块所组成。在具体应用过程中,处理单元模块可对超声换能器进行电压激励,从而使经过激励后的电压以脉冲形式发出电磁波。随之,超声换能器转入接收状态,处理单元模块对接收到的超声波脉冲进行科学分析,以此判断其接收到的信号是否是超声波的回声[3]。如果经过核实,其所接收到的信号是超声波回声,则对超声波的声波传输时间进行测量分析,按照行程测算结果,对反超声波的行程时间进行测算分析。在具体应用过程中,可将超声波传感装置安装于适当位置,并对被测物体变化方向发射的超声波进行分析,就可测量物体表面与超声波传感器之间的实际距离。

其次,超声波传感器可在医学领域进行广泛应用。目前,超声波在医学领域中的实践应用,主要体现在患者临床疾病诊断方面。随着这项技术不断成熟,超声波传感器诊断已成为我国现阶段医学领域中的一种重要诊断方式。在实际运用过程中,利用超声波进行疾病诊断的主要优点是受检者无明显的疾病痛苦,而且实践操作过程非常简单、无损害、无创伤,诊断过程中有较为清晰的显像,尤其是诊断精确率较高。

另外,超声传感器在测量液位中具有重要作用。在液位测量过程中,超声波的使用原理是,通过超声波探头发出超声脉冲信号,其在空气中进行广泛传播。当传播过程中遇到空气与液面之后,就会被被测液体的液面反射回来,此时技术测量人员可根据反射回的信号测算时间与距离,从而得到液面实际高度。在液面测量中,超声波传感器测量技术属于非接触式测量,因此测量过程中电磁干扰小、不易受到刺激性液体腐蚀,且测量结果稳定,设备使用寿命较长。

除此之外,超声波传感器可在测距系统中得到应用实践。采用超声波传感器进行距离测算,不但可以科学测量设备输出脉冲的宽度,而且可以测量脉冲波的具体运行时间。因此,测量精度较高,并可对测量结果与测量过程进行修正。

结束语:综上所述,超声波传播方向性较好,因此能够集中进行传播;同时,超声波的传播适应能力较强,其能够在不同传播媒介中进行科学传播,而且能够实现远距离传播;再者,超声波与传声媒介的相互作用适中,而且在传波过程中容易携带有关传声媒介状态的信息。因此,基于上述应用优点,其在我国诸多技术领域已得到广泛应用与实践。

参 考 文 献

[1]李戈,孟祥杰,王晓华,王重秋.国内超声波测距研究应用现状[J].测绘科学,2011,36(04):60-62.

[2]陈武.超声波传感器在智能汽车系统中的应用[J].硅谷,2011,11(14):127.

超声波传感器范文第3篇

关键词: 超声波传感器 原理 应用

1.引言

随着自动化等新技术的发展,传感器的使用数量越来越大,一切现代化仪器、设备都离不开传感器。在工业生产中,尤其是自动化生产过程中,用各种传感器来监测和控制生产过程中的各个参数,如温度、压力、流量,等等,以便使设备工作在最佳状态,产品达到最好的质量。

20世纪中叶,人们发现某些介质的晶体(如石英晶体、酒石酸钾钠晶体、PZT晶体等)在高电压窄脉冲作用下,能产生较大功率的超声波。它与可闻声波不同,可以被聚焦,能用于集成电路的焊接、显像管内部的清洗;在检测方面,利用超声波有类似于光波的折射、反射的特性,制作超声波纳探测器,可以用于探测海底沉船、敌方潜艇,等等。

现在超声波已经渗透到我们生活中的许多领域,例如B超、遥控、防盗、无损探伤,等等。

2.超声波的概念

人们能听到声音是由于物体振动产生的,它的频率在20Hz―20kHz范围内,称为可闻声波。低于20Hz的机械振动人耳不可闻,称为次声波;高于20kHz的机械振动称为超声波,常用的超声波频率为几十kHz至几十MHz。

超声波是一种在弹性介质中的机械振荡,有两种形式:横向振荡(横波)和纵向振荡(纵波)。工业中的应用常采用纵向振荡。超声波可以在气体、液体及固体中传播,但传播速度不同。另外,它也有折射和反射现象,且在传播过程中有衰减。在空气中传播超声波频率较低,一般为几十kHz,但衰减较快;在固体、液体中传播频率较高,但衰减较小,传播较远。

3.超声波的特点

超声波的指向性好,不易发散,能量集中,因此穿透本领大,在穿透几米厚的钢板后,能量损失不大。超声波在遇到两种介质的分界面时,能产生明显的反射和折射现象,这一现象类似于光波。超声波的频率越高,其声场指向性就越好,与光波的反射、折射特性就越接近。利用超声波的特性,可做成各种超声波传感器,配上不同的电路,制成各种超声波测量仪器及装置,并在通信、医疗、家电等各方面得到广泛应用。

4.超声波传感器的原理

超声波传感器是利用超声波的特性研制而成的传感器,由发送传感器、接收传感器、控制部分与电源部分组成。发送器传感器由发送器与使用直径为15mm左右的陶瓷振子换能器组成,换能器的作用是将陶瓷振子的电振动能量转换成超能量并向空中辐射;接收传感器由陶瓷振子换能器与放大电路组成,换能器接收波产生机械振动,将其变换成电能量,作为传感器接收器的输出,从而对发送的超声波进行检测。实际使用中,用作发送传感器的陶瓷振子也可用作接收器传感器上的陶瓷振子。控制部分主要对发送器发出的脉冲链频率、占空比、稀疏调制和计数及探测距离等进行控制。超声波传感器电源可用DC12V±10%或24V±10%。

5.超声波探头

超声波换能器又称超声波探头。超声波换能器有压电式、磁致伸缩式、电磁式等数种,在检测技术中主要采用压电式。由于其结构不同,换能器又分为直探头、斜探头、双探头、表面波探头、聚焦探头、冲水探头,等等。本文以固体传导介质为例,简要介绍以下三种探头。

(1)单晶直探头。俗称直探头,其压电晶片采用PZT压电陶瓷制作。发射超声波时,将500V以上的高压电脉冲加到压电晶片上,利用逆压电效应,使晶片发射出一束频率落在超声波范围内、持续时间很短的超声振动波,垂直投射到试件内。假设该试件为钢板,而其底面与空气交界,到达钢板底部的超声波绝大部分能量被底部界面所反射。反射波经过一短暂的传播时间回到压电晶片。再利用压电效应,晶片将机械振动波转换成同频率的交变电荷和电压。

(2)双晶直探头。由两个单晶探头组合而成,装配在同一个壳体内,其中一片晶片发射超声波,另一片晶片接收超声波。双晶探头的结构虽然复杂一些,但检测精度比单晶直探头高,且超声信号的反射和接收的控制电路较单晶直探头简单。

(3)斜探头。有时为使超声波能倾斜入射到被测介质中,可选用斜探头。压电晶片粘贴在与底面成一定角度的有机玻璃斜楔块上。当斜楔块与不同材料被测介质接触时,超声波产生一定角度的折射,倾斜入射到试件中去,折射角可通过计算求得。

6.超声波传感器的应用

超声波传感器应用在生产实践的不同方面,而医学应用是其最主要的应用之一。超声波在医学上的应用主要是诊断疾病,它已经成为临床医学中不可缺少的诊断方法。超声波诊断的优点是:对受检者无痛苦、无损害,方法简便,显像清晰,诊断的准确率高,等等,因而受到医务工作者和患者的欢迎。超声波诊断是利用超声波的反射原理,当超声波在人体组织中传播遇到两层声阻抗不同的介质界面时,在该界面就产生反射回声。每遇到一个反射面时,回声在示波器的屏幕上显示出来,而两个界面的阻抗差值也决定了回声振幅的高低。

在工业方面,超声波的典型应用是对金属的无损探伤、超声波测厚和测量液位等。过去,许多技术因为无法探测到物体组织内部而受到阻碍,超声波传感器的出现改变了这种状况。超声波探测既可检测材料表面的缺陷,又可检测材料内部几米深的缺陷。当然更多的超声波传感器是固定地安装在不同的装置上,“悄无声息”地探测人们所需要的信号。

超声波测量液位的基本原理是:由超声探头发出的超声脉冲信号在气体中传播,遇到空气与液体的界面后被反射,接收到回波信号后计算其超声波往返的传播时间即可换算出距离或液位高度。超声波测量方法有许多其他方法不可比拟的优点:(1)无任何机械传动部件,也不接触被测液体,属于非接触式测量,不怕电磁干扰、酸碱等强腐蚀性液体等,因此性能稳定、可靠性高、寿命长;(2)响应时间短,可以方便地实现无滞后的实时测量。

7.结语

超声波传感器应用起来原理简单,也很方便,成本也很低。但是目前的超声波传感器都有一些缺点,比如反射问题、噪音问题、交叉问题,等等。本文简要介绍了超声波的概念、特点,分析了超声波传感器的原理,并给出了超声波传感器的几种典型应用,对今后对超声波传感器的进一步学习和研究有一定的参考价值和实用价值。

参考文献:

[1]梁森,黄杭美.自动检测与转换技术.机械工业出版社,2007.

[2]吴旗.传感器及应用.高等教育出版社,2002,(3).

[3]俞志根,李天真,童炳金.自动检测技术实训教程.清华大学出版社.

[4]童敏明,唐守锋.检测与转换技术.中国矿业大学出版社.

超声波传感器范文第4篇

【关键词】 超声波传感器 摊铺机 自动调平控制系统 应用

前言:要想通过移动来找到平基准点,需要充分发挥超声波的非接触式平衡梁作用,有效的克服了传统接触式调平基准中存在的不足现象。通过对数字式控制器的使用,为超声波传感器和控制器之间提供了数字传送信号,确保了信号传输具有较强的抗干扰能力,信号传输更具迅速性、方便性和可靠性,提升了系统的整体性能,被广泛应用于平地机和沥青摊铺机中。

一、相关原理概述

1、调平控制系统原理。调平控制系统由超声波传感器、数字式控制器、控制电路和电磁换向阀组成。每台摊铺机都配备两套控制系统,控制系统分别安装在摊铺机的两侧位置。主要是利用单片机来控制数字控制器,需要将每一侧的超声波传感器固定在平衡梁所制成的直梁上,平衡梁主要是由铝合金制成,主要是将支架安装在摊铺机的一侧位置,来达到调平大臂的目的。熨平板通常会直接放在路面上,并且还会随着路面的变化而移动,通常将该种连接形式成为浮动式熨平板。同时,摊铺机在行走时,在调平油缸的带动下,会随着熨平板一起发生移动。

2、超声波传感器测距原理。非接触式调平系统被广泛的应用雨后超声波测距传感器中,在实际的使用过程中,加大了对脉冲回波方式的合理利用,还可以通过发送探头的形式运营传播介质对发出的超声脉冲波进行传输,声波在发射后,会通过传播介质返回到接收探头上,超声脉冲的时间测试,主要是计算发射到接收所要经历的时间,探头到目标之间的距离计算公式为:L=0.5ct。其中L表示探头到目标的距离,c表示超声波在介质中的传播速度[1]。

二、测距系统软硬件设计

1、测距系统的硬件设计。首先,合理选择单片机。在进行电路单片机测距控制时,需要选择AT89S52型号的单片机,该单片机自身具有高性能和低功耗特点,内部含有8kFlash只读程序存储器,随机存取数据存储器、可编程定时计数器等。其次,做好超声波发射与接收电路设计。需要充分利用单片机的P1.0来控制超声波,并运用三极管来实现驱动,通过输出高电平,能够激发超声波传感器,达到发射超声波的目的。超声波传感器在平时主要是输出低电平,需要确保输出的脉冲电压信号保持在10V,由于此信号与单片机TTL电平出现严重的不相容现象,脉冲信号需要经过电平来转换成脉冲信号。最后,需要做好看门狗接口电路设计。需要充分利用看门狗电路来提升工作的可靠性,防止单片机程序进入到死循环,确保系统能够自动复位,程序重新开始启动和执行。

2、测距系统的软件设计。在对控制系统软件进行设计时,需要加大对单片C软件系统的运用,选用C语言进行编写,测距功能单片机主要是采用模块化设计方法,软件系统由超声波接收子系统、循环发射子系统、数字滤波子程序等模块共同构成。主程序在使用前,需要做好串行通信初始化和定时计数器初始化工作,确保中断功能的合理设计。超声波的循环发射子程序在实际的应用过程中,时间间隔维持在25ms,要求做好超声波发送及万字滤波和数据存储工作,超声波在循环发生时,每次都会产生8个超声波脉冲。在对超声波接收子程序模块中的数值进行计算时,需要运用T2中断来读取计数器中的技术支持,计算出探头距路面之间的距离[2]。

结论:本文主要是对超声波传感器在摊铺机自动调平控制系统中的应用情况进行分析,对调平控制系统原理和超声波传感器测距原理进行简要概述,提出了测距系统软硬件设计方法。通过研究表明,路面高程偏差的非接触式测量符合摊铺机自动调平控制系统的发展趋势,在实际的使用过程中克服了传统接触式调平基存在的不足点,对提升摊铺机的调平系统性能具有重要作用。通过对测距仪系统软硬件的合理设计,提升了测距系统的测量精度,满足了系统设计要求。

参 考 文 献

[1]王翥,崔晓志,侯春雷. 超声波传感器接收信号强度非对称性分析及对策[J]. 传感技术学报,2015,01:81-85.

超声波传感器范文第5篇

【关键词】超声波传感器;探测;烟草;包装机;应用

【中图分类号】 TP732【文献标识码】 A【文章编号】1672-5158(2013)07-0016-01

相较于可闻声波,超声波具有传播方向性强、能量易于集中,能在不同媒质中做远距离传播,易于携带有关传声媒质状态的信息等特点,利用其特点制成的超声波传感器广泛应用于透明液体、固体、表明光滑/粗糙的密致材料和不规则物体的检测中,在烟草加工厂用于实现包装检测的闭环控制系统,因此本文笔者将深入探讨超声波传感器在烟草包装机上的应用。

1. 超声波传感器的概述

1.1 超声波传感器的构成

在二十世纪中期,人们发现在高电压窄脉冲作用下,某些介质的晶体(如石英晶体、酒石酸钾钠晶体)会产生较大功率的超声波,其振动频率在20kHz以上,超出了人耳的听觉范围,具有波长短、频率高、绕射现象小和方向性好等特点。

超声波传感器就是利用超声波的特性而研制成的传感器,其由电源部分、控制部分、发送传感器和接收传感器等部分构成,其中发送传感器由发送器和直径约为15mm的陶瓷振子换能器构成,陶瓷振子换能器能够将陶瓷振子的电振动能量转化为超能量,然后辐射到空气中;接收传感器由放大电路和陶瓷振子换能器组成,陶瓷振子换能器接受波将产生机械振动,然后转化为电能量后进行输出,从而对发送的波进行检测;电源部分可以采用DC12V±10%或者是24V±10%;控制部分主要是控制发送传感器发出的脉冲链频率、占空比及稀疏调制和计数、探测距离等。

1.2 超声波传感器的性能指标和应用

超声波传感器的性能指标主要包括灵敏度、工作频率和工作温度,其中灵敏度主要取决于制造晶片的性质,制造晶片的机电耦合系数越大,那么超声波传感器的灵敏度越高;工作频率就是压电晶片的共振频率,当加在其两端的交流电压频率和压电晶片共振频率一致时,超声波传感器输出的能量为最大;超声波传感器的工作温度较低,可以确保其长时间正常工作。

目前超声波传感器广泛应用于医学、金属的无损探伤、测厚和测量液位等,具体说来:(1)在医学上的应用。将超声波传感器应用于疾病的诊断时,当超声波在人体组织内传播遇到两层声阻抗不同的介质界面时,在该界面就会产生反射回声。每遇见一个反射面,所产生的反射回声就会显示在示波器的显示屏上,而两个界面的阻抗差值就决定了回声振幅的高低。在疾病诊断中使用超声波传感器,能够极大地简化操作程序,提高诊断准确性,并且不会对患者造成损害和痛苦,因此深受广大医患人员的欢迎。(2)工业上的应用。在工业上,超声波传感器的典型应用是对金属的无损探伤和厚度的测量。利用超声波传感器,既可以对材料表面的缺陷进行检测,又可以对材料内部的缺陷进行检测。(3)液位的测量。超声探头发出的超声脉冲信号在气体中传播,遇到空气和液体的界面后被反射,接收到的回波信号后计算出超声波往返的传播时间就可以换算出液位的高度。(4)距离的测量。超声波测距大致有两种方法,一种是取输出脉冲的平均值电压,该电压与距离成正比,测量电压即可测得距离;另一种是测量输出脉冲的宽度,即发射超声波与接收超声波的时间间隔t,被测距离为1/ 2vt。

2. 超声波传感器在烟草包装机上的应用

以前烟草包装机大多采用电容式传感器来对胶位进行检测,但此种方式的缺点是胶缸内搅拌辊作用容易让很多胶液粘到电容式传感器上,从而引发较大的质量事故而影响检测准确性。近年来,随着超声波传感技术的快速发展,烟草包装机上已经开始广泛采用超声波传感器,并且应用效果非常良好。本文将以广泛应用于烟草包装机上的瑞士B aum er公司生产的UNDK 30U6113/S14为例,来对其在胶位检测中的应用进行探讨,图1为该超声波传感器的外形图。

(1)UNDK 30U6113/S14超声波传感器的模拟量如下:

①基本参数:感应范围为30~250mm,声波频率为300kHz,重

复性

②电气参数:工作电压为15~30VDC,电流消耗(最大)为35mA,

输出电路为电压输出,输出电流

采用短路保护和反向极性保护;③机械参数:外壳材料采用多元

酯/压铸锌,直径为30mm,长度为65mm,深度为31mm,

连接器采用连接头M12。

(2)工作原理:通过压频转换器,UNDK 30U6113/S14超声波传感器将检测到的输出值传输给CPU,然后CPU会将超声波传感器检测到的值与软件内部设定值进行逻辑运算,根据计算结果来确定胶泵是否像烟草包装机的小盒胶缸内注胶,以及注入胶量的多少。当胶位超出规定的限制时,会出发报警信号并停止包装机的运作,同时CPU会持续地比较超声波传感器检测到的输出值是否在胶泵注胶的上限限值间,如果输出值超过限值,那么就会提示“胶位读取不协调”,并且发出警报。

(3)UNDK 30U6113/S14超声波传感器的设定。对于UNDK 30U6113/S14超声波传感器而言,其输出信号有两种方式,即0~10V/ 10~0V,这里将以0~10V为例来说明怎么对其进行设定。首先为了恢复出厂设置,需要拔下UNDK 30U6113/S14超声波传感器的电源插头后再插上,接着一直按着Teach-in按钮约两秒,待双色的LED灯显示为红色或黄色,再松开Teach-in按钮;然后开始0V的设定,此时压住弹簧,让一张背面向上的盒皮尽可能接近传感器,然后按下Teach-in按钮;最后开始10V的设定,将盒皮背面放置在胶体导轨上,然后按下Teach-in按钮。当两个双色LED亮的时间超过2s时,说明按下Teach-in按钮过程完成。

(4)UNDK 30U6113/S14超声波传感器的参数调整。在具体操作中,粘胶的水平理想值一般控制在5000mA左右,粘胶的水平最高临界值一般控制在4500mA左右,粘胶的水平最低临界值一般控制在5500mA左右;胶位偏差-涂胶器接近值一般控制在500~1000mV的范围内;最佳位的变化一般控制在在50~100mV的范围内。在调整胶位偏差-涂胶器接近值参数时,要尤其注意其应该大于胶缸处于最低位时胶位的实际值与粘胶水平理想值的差值,否则机器会显示“胶位读取错误”,并发出报警信号且不能复位。

3. 小结

从前文的分析可知,超声波传感器具有操作简单、使用方便且成本较低的优点,目前已经广泛应用于自动化生产过程中。将Baumer公司生产的UNDK 30U6113/S14超声波传感器应用于烟草包装机上,能够很好地进行胶位的检测,便于设备处于最佳工作状态,产品处于最好的质量。当然,超声波传感器在烟草包装机上的应用还存在一定的缺陷(如噪声问题),这需要日后的进一步研究和完善。

参考文献

[1] 曹瑞,包空军.基于超声波传感器新技术的应用[J].科技信息,2009(3)

[2] 李雪峰.浅谈超声波传感器的工作原理及技术创新[J].华章,2012(22)

超声波传感器范文第6篇

关键词:地质录井设备;超声波传感器;技术改进

一、靶式流量传感器在钻井液出口流量检测中的弊端

现场流量传感器均采用靶式流量传感器,该传感器测量原理是依据出口钻井液流量大小的变化使得出口流量管内钻井液液面的高低起伏变化,从而带动靶式流量传感器的摆动把一起摆动,摆把带动紧固在其根部的圆形滑动变阻丝不断滑动,使滑动变阻器的输出电阻发生瞬时变化,传感器将可变电阻的输出电阻的变化转化成输出电流的变化,在仪器上通过标定反映出所要测量出口流量的大小变化,从而实现定量检测出口流量大小的目的。由于出口流量的变化加之架空槽坡度较大,使得出口流量液面起伏较大,所以靶式流量传感器不停摆动,这样传感器电阻滑动圈由于频繁不断的来回滑动很容易损坏, 再者就是由于把手不断摆动使得机械转动部分容易磨损损坏,以及容易产生把手与滑动轴承之间松动而出现变阻丝不滑动等情况,加之传感器安装在高空流量管线上,这会给现场维护、维修和更换流量传感器带来很大的麻烦。

二、超声波体积传感器在钻井液出口流量检测中的实践分析

超声波体积传感器是利用传感器发射和接受超声波的时间差来计算钻井液池液面高度的原理来设计的,使用超声波体积传感器来测量出口架空槽内钻井液液面的高度变化,能反应出口流量的大小变化。超声波传感器测量反应灵敏,精度高,不易损坏,加之安装位置灵活,可以选择在方便维护的位置安装,极大地降低流量传感器的维修次数和频率,减小操作人员工作量,降低流量传感器成本,提高录井资料的质量。

靶式流量传感器测量原理就是依据出口流量的变化导致出口管内钻井液液面高低发生变化,从而带动流量传感器靶手上下摆动,形成传感器输出电阻变化,进而转化成传感器的输出电路的变化,所以反映出了流量大小。通过分析不难看出,钻井液流量大小变化实质上是管内液面高度的变化,而靶式流量传感器问题之多、寿命之短能不能找个替代传感器来取代现用的传感器,通过上面分析,出口流量的变化其实质是出口流量管内液面高度的变化,超声波体积传感器就是通过传感器检测池内液面高度的变化来实现测量池体积的变化。因此,可以使用超声波体积传感器来替代靶式流量传感器来测量出口流量的变化。

超声波体积传感器其测量池体积原理是利用传感器发射和接受超声波的时间差来计算钻井液池液面距离传感器探头之间的高度的原理来设计的,进而根据液面高度与池体积的关系来反映出钻井液池体积的变化来。依据这个原理,使用超声波体积传感器来测量出口架空槽内钻井液液面的高度变化,也就是反应出口流量的大小变化。而且,超声波传感器反应灵敏,测量精度高,不易损坏,加之安装位置灵活,可以选择在方便维护的位置安装,这样极大地降低流量传感器的维修次数和频率,大大减轻现场设备操作人员的传感器维护保养强度,降低流量传感器成本,提高录井资料的质量。

三、超声波体积传感器安装与应用

超声波体积传感器主要是改造安装传感器的固定支架是能否用超声波体积传感器替代传统靶式流量传感器的关键所在。首先要做好安装前的超声波支架改造工作。支架焊接需要注意四面的加高铁板一定要焊垂直,否则会影响使用后的测量效果,一旦焊接不正,很有可能造成传感器信号不是和液面垂直,而是有一定的角度,这就会造成测量数据波动,甚至跳动,从而出现假的“流量波动信号”,给正确判断出口流量变化造成不必要的麻烦。所以这一点一定要把握好,确保超声波流量传感器信号的质量。再就是开口不能太小,至少20cm*20cm,否则超声波流量传感器容易受到四壁的铁板干扰而造成测量值跳动,给超声波流量传感器正常使用带来很大的麻烦。另外超声波流量传感器安装要求垂直于液面,并与四壁平行,确保超声波流量传感器使用不受干扰,其信号只反映液面高度的变化。

为确保超声波流量传感器固定支架改造、安装的标准规范,要求录井技术人员首先要准备好图纸,在图上标注好相关材料的大小尺寸和技术要求,最好采用标准的三维可视图,把空间尺寸和关系交代清楚,并标上尺寸大小,和技术要求。图纸要求规范准确,三视图必须准确。做好图纸后,要求反复审核,确保无误后交付井队施工焊接技术人员准备开始施工。在整个施工过程中,要求录井技术人员全程协助并监督井队焊接技术人员,从取材、四块加高开口的铁板割取、焊接、以及加高后焊接传感器固定支架的平面方板,均要为工程提供准确的尺寸和技术标准。并协助钻井焊接技术人员完成相关工作。确保超声波流量传感器安装支架焊割质量、焊接质量,通过控制安装质量来控制超声波流量传感器工作质量,从而尽量避免超声波流量传感器信号干扰,提高超声波流量传感器的测量准度。

在超声波流量传感器支架改造完成后,首先录井技术人员进行检查审核支架焊接的技术标准是否达到了录井技术要求,如果发现焊接技术标准达不到录井技术标准,立即请钻井焊接技术人员重新整改,确保超声波流量传感器能够正常的工作。安装后,仔细观察该传感器工作是否正常,是否有干扰,以及可能存在的需要下次进一步完善的缺陷,并做好相关记录,详细记录各方面的实际检测数据,为分析改进超声波传感器在出口流量参数检测中作用提供数据方面的详实改进依据。

实现使用超声波传感器来测量出口流量对现场来说是比较容易的事情,首先传感器来源是现成的超声波体积传感器,主要是改造焊接安装超声波传感器的固定支架相对麻烦,要总结分析使用超声波流量传感器之后给录井带来的好处和不足的地方,以利于改进和推广。

超声波传感器范文第7篇

移动机器人是能够在一定工作环境中完成预定任务并自主移动的一种智能系统。近年来,随着计算机、微电子、人工智能、网络通信、传感器等技术的发展,对移动机器人的研究逐渐成为了一门多学科交叉研究课题,在民用、军事、工业以及农业等多领域中具有广泛的应用前景。在移动机器人的研究和应用中,避障是最基本也是最重要的问题,机器人必须在其作业过程中具备灵敏可靠的自主避障能力,因此对移动机器人避障系统的研究具有重大的意义。

一、课题背景和研究意义

近年来,科学技术发展日新月异,人们的生活水平也不断提高,新科技产品走近人们身边,机器人的功能和应用领域也在不断扩大。机器人的功能由只能从事简单的、固定的操作,向可以从事多种任务扩展;机器人的工作环境从工厂或者车间现场,走向海、陆、空,走入医院、办公室、家庭以及各种娱乐场所;机器人的应用行业已经不局限于制造业,向医疗、服务、农业、林业、搜救、建筑、海洋等非制造业领域进军,这就要求机器人具有自主移动的功能。目前,移动机器人是机器人科学的研究热点之一,它可以移动到固定机器人无法到达的位置,从而完成特殊的操作任务。轮式移动机器人具有控制简单、运动稳定、滑动摩擦阻力小、能源利用率高、不必要考虑行走的平衡性等优点,正在向实用化迅速发展。本课题研究的目的意在设计出基于传感器的可以实现行走、避障、转向等功能的移动机器人。

目前,移动机器人控制技术的研究关键技术和发展趋势包括以下几点:

1.路径规划控制技术。传感器将实时探测到得工作环境信息反馈给移动机器人,从而获得障碍的形状、尺寸及位置信息,并作出局部路径规划。

2.传感技术。机器人对自身及外部障碍物位姿信息的检测以及处理,获取有效的环境信息,为决策系统提供保障。

3.多传感器信息融合技术。将不同传感器反馈的局部信息整合,消除多传感器间的冗余信息,排除矛盾,提高检测环境的准确性,从而提高系统的决策及规划的准确性。

4.开发技术。研究开放式控制系统和模块化控制系统作为开发的重点技术。

5.智能化技术。知识理解、反应、归纳、推断和问题求解等内容是智能控制系统智能化的主要研究内容[3]。

从以上的分析可以看出,移动机器人要走向实用,必须拥有稳定的运动系统、可靠的导航系统、精确的感知能力和具有既安全又友好地与人一起工作的能力。

二、多超声波传感器及信息融合

超声波频率为20kHz以上,波长较短,绕射小,能够按照指定方向传播。超声波的频率越高与光波的相似性越大,其指向性强,速度快,能耗消失缓慢,可在较远距离中传播,距离分辨率又高,同时还具有小体积,轻质量,易于安装,并且不易受到外界环境的干扰等突出优点。因此,超声波传感器在移动机器人的测距方面也得到了广泛的应用。

多超声波传感器的信息融合的目标就是满足系统的实际要求,将环境信息从多超声波传感器中提取并合成,以全面准确的描述环境信息。它一方面要求多超声波传感器系统和其信息系统的相互协调,有机融合以充分体现信息资源的价值;另一方面要求抽象合成,以减少超声波系统的信息通讯与信息处理压力策略。经优化处理后的多传感器信息具有信息冗余性、信息互补性、信息低成本性和信息实时性,因而可以比较完整地、更精确地反馈环境特征。

目前,使用的多传感器数据融合方面具体的方法包括加权平均法、贝叶斯估计法、卡尔曼滤波法、模糊积分法、确定性理论法、人工神经网络法以及D-S推理法等。

在D-S推理中,基本概率赋值函数的数据计算、合成都可以通过D-S合成公式进行处理,但是当决策框架复杂时,基本概率合成公式处理的数据量将大大增加。D-S理论法的优点在于不需要先验概率的信息,因此广泛应用于故障诊断、目标识别、综合规划等领域。

本文采用D-S论证法将多传感器信息融合。其基本概率分配函数满足:

三、机器人避障系统分析

本文设计的移动机器人为三轮机构,其中包括:前轮一个,为驱动轮和操舵轮;后轮两个,主要起支撑作用,为随动轮。前轮的驱动与转向分别由直流电机和步进电机进行控制。

直流电动机的突出优点为:启动性能、制动性能良好,可以在大范围内实现平滑的调速,因此广泛应用于需要快速正反转的电力系统中。

步进电机是无刷电机,因为它的磁体转子在转轴上,绕组装在机壳上,没有电刷。转子自由的旋转,与任何构件没有电器上的接触。它能够将电脉冲信号转变成角位移,因此步进电机非常适合于单片机控制。

本系统以SPCE061A为核心,采用六个超声波传感器,分为两组,每组由三个超声波传感器模组完成测距任务,每组超声波测距模组分别在小车的正前方排布和正后方成线阵列传感器分布。超声波传感器通过转接板模拟数字开关CD4052与SPCE061A板进行独立通讯,将测量距离反馈给单片机,使其对控制步进电机进行控制,实现对小车车身的姿态调整纠正及障碍进行自主避障。

路径规划是机器人在未知的、有障碍物的环境中,安全地避开障碍物,找到一条合适路径顺利地从起点移动到终点。根据对不同工作环境的认知程度,可以将移动机器人的路径规划划分为两大类:一类是基于完整环境信息的全局路径规划,即静态或离线路径规划;另一类是基于环境信息部分已知或者完全未知的情况下依靠传感器感知环境信息和作出规划的局部路径规划,即动态或在线路径规划。

本文的轮式机器人采用超声波传感器来探测障碍物以获得环境信息,具有近似、不完善性并且混杂着一定的噪声,而模糊逻辑算法的一个突出优点是能处理这种不确定输入信息,并且能产生较为光滑的输出量。其次,轮式移动机器人动学模型比较复杂,因此难以确定,而模糊逻辑算法是不需要精确的数学模型。此外,轮式移动机器人为一个典型时延、非线性的不稳定系统,而模糊逻辑算法可以实现输入空间与输出空间之间非线性映射。因此,我们选择模糊逻辑算法进行本文的轮式移动机器人的路径规划方法。

结论

移动机器人的研究是当前人工智能科学研究领域里主要研究方向,伴随着移动机器人走进人类世界的各个方面,国内外对该领域的研究工作逐渐深入。本文所研究的多超声波传感器轮式机器人是集机械工程学、自动化、工程控制论、自动检测等技术于一身的机器人,但仍有一些工作值得进一步深入的研究和开发。

1.采用仅由超声波传感器作为感知系统,虽然已经可以实现感测范围大、控制电路简单、方便灵活等优点,但由于超声波测距具有盲区,因此对其工作效率还有一定的限制。在以后研究工作中,我们计划将超声波传感器与红外传感器相结合测距,以提高探测范围,尤其是在机器人完成近距离探测的情况。

超声波传感器范文第8篇

关键词:超声波 测距 单片机 倒车

中图分类号:TN959 文献标识码:A 文章编号:1007-9416(2013)08-0157-01

1 系统工作原理

超声波倒车系统由超声波传感器、单片机控制器和显示器等部分组成。超声波传感器将电能和超声波相互转化,实现测距,车尾的超声波传感器发送超声波遇到障碍物后,发射回来经超声波传感器接收后传给单片机控制器进行处理,得到障碍物距离交通工具的距离,将数据由送入显示器显示,能够探测0.25~2.5m范围内的障碍物,以及利用声音报警和LED发光二极管实现声光提示报警,用于提醒驾驶人员,实现轻松倒车。

1.1 超声波传感器

超声波具有的优点使得超声波在距离的测量中的应用广泛。超声波传感器将电能和超声波相互转化,采用压电材料的压电传感器是超声检测中最常用的一种传感器,当发射超声波时,将压电材料置于电场之中,它产生一定的应变,对压电材料加以交变电场,会产生交变的应变,从而产生超声振动;当接收超声波时,由于超声波的声波效果,压电材料在声波的压力作用下引起振动变形,形变可等效转换为电信号。压电晶体的谐振产生超声波,共振时,其频率为压电晶片的固有振荡频率(即中心频率)。

超声波传感器的频率特性,SZW-S40-12M发射型超声波发射传感器的升压能级中,超声波发射的中心频率为40KHz,超声声压能级最高,超声波传感器产生共振,可将超声波波长λ设为0.85cm,超声波接收传感器的频率特性类似。

1.2 超声波测量距离的原理

超声波发射后遇到障碍物反射回来送入超声波传感器,而何时反射回来无法确定,需要超声传感器一直查询检测发射回来的信号,从而计算出时间差t,代入公式S=Ct/2,求出距离S,S为超声波发射点与被测障碍物之间的距离,其中,C为声波在介质中的传输速率,t为超声波发射到超声波返回的时间间隔,超声波声速C与温度有关,温度变化不大时可认为声速是基本不变,确定声速,并测得超声波从发射到接收的时间,可求得距离。

2 系统主要构成

该系统核心采用AT89C51单片机,还包括超声波发射和接收单元、数码显示单元和声光报警单元、键盘控制单元等组成(如图1)。

2.1 超声波产生和发射单元

超声波发射单元包括超声波产生并发射,超声波传感器选用压电式,可通过软件产生超声波也可以通过硬件产生超声波。软件产生超声波充分利用软件,灵活性好,但需设计一个驱动电流为100mA以上的驱动电路;硬件产生超声波是利用超声波发生电路产生超声波信号,单灵活性差。软件编写脉冲发射40kHz的方波信号的程序,放大后输入给超声波传感器,通过LC振荡电路产生40KHz的超声波。

2.2 超声波接收单元

超声波接收单元中的超声波传感器与超声波发射单元中的传感器频率要相同,因而采用与发射端同型号的压电式超声波传感器。超声波传感器接收到信号后采用前置放大器对接收到的信号进行放大以及采用反馈减少失真等处理后送入单片机处理单元。

2.3 单片机处理单元

超声波发射后遇到障碍物反射回来送入超声波传感器,而何时反射回来无法确定,需要超声传感器一直查询检测发射回来的信号,从而计算出时间差t,代入公式S=Ct/2,求出距离S。在倒车的过程中,由于距离障碍物越来越近,需要将蜂鸣器的频率越来越大,蜂鸣器响的节奏越来愈快,可以在距离小于一定距离时加大蜂鸣器的声音以提醒驾驶员,同时将发光二极管的闪烁设置闪烁越来越频繁来实现光报警,单片机AT89C51需要将距离的数据及时的反馈给蜂鸣器,并通过软件实现相应功能。单片机AT89C51晶振频率为12MHz,通过端口P1.0输出40KHz方波,并将其送入超声波发射器,用于产生超声波,通过外中断检测超声波接收电路接收的超声波信号,在倒车前多次测得时间,求平均值,提高测量精度,在倒车时能够及时的显示障碍物距离,如果小于1m时报警。

2.4 数码显示电路和声光报警单元

数码显示电路采用简单实用的4位共阳LED数码管,用于显示车尾障碍物的距离,由单片机P0.0—P0.6接LED的a~g七个笔段,P2.4~P2.7接四位8550的公共端,通过软件以动态扫描方式显示。段码用74LS244驱动,位码用PNP三极管驱动,显示精度厘米。声光报警电路,当所测距离小于一定值时,通过声光报警,计算出的距离在发光二级管上显示的同时,将其与设定值(比如1m)进行比较,如小于1m,接蜂鸣器报警,否则不报警;在距离小于一定距离时,通过将发光二极管的闪烁设置闪烁越来越频繁来实现光报警。

2.5 按键控制单元

按键控制电路,通过按键控制倒车雷达的工作状态,根据是否倒车启动和停止该系统,以及通过按键实现安全距离的选择,以满足不同的需要。

2.6 程序编写

程序包括主程序、超声波发射子程序、超声波接收子程序、显示子程序。主程序调用各个子程序和中断程序实现整个系统的控制,主程序中初始化后,调用发射子程序多次,启动定时器,不停的扫描引脚INT0,如果有接收信号则进入中断子程序关闭定时器,得到时间,求得距离以及进行声光报警提示。

2.7 系统结果分析

该系统能够实现在2.5m范围内的障碍物的测距和报警,实际测试证明该系统工作稳定,系统实验结果误差分析,发射接收时间对测量精度的影响,超声波在空气介质的传播过程中会有很大的衰减,必须确定接收波形的时间,对接收到的信号进行处理,如放大,这是影响测量精度的其中一个因素。本系统对发射信号和加收信号通过校正的方式来实现准确计时,AT89C51单片机的12MHz时钟基准的精度为1μs,因此误差精度为1mm,声速受温度的影响,提高超声波测量精度重中之重就是获得准确的声速。

3 结语

本文给出了超声波雷达倒车系统的整个设计方案,利用AT89C51单片机、超声波传感器实现障碍物报警提示。该系统成本低、精度高,具有一定的实用价值,在日常驾驶过程中起到了良好的辅助作用。

参考文献

[1]张谦琳.超声波检测原理和方法[M].北京:中国科技大学出版社,1993.10.

超声波传感器范文第9篇

[关键词]波动 液面 干扰 测量

中图分类号:TM125 文献标识码:A 文章编号:1009-914X(2017)01-0258-01

在正常的录井过程中,经常会碰到体积波动范围有点大的情况,反映在录井曲线上就是一些毛刺,这种情况对于准确判断井涌和井漏造成很大的干_,譬如图中VOLpit2曲线反应体积2时不时的发生波动,且波动范围比较大,在录井作业过程中必须消除这种现象,提供一个准确的录井参数。

1 体积传感器的测量原理

超声波体积传感器从换能器发射出一系列超声波脉冲,每一个脉冲由液面发射产生一个回波并被换能器接收,并采用滤波技术区分来自液面的真实回波,及由声电噪声和运动的搅拌器液面产生的虚假回波,脉冲传播到被测物并返回的时间经温度补偿后转换成距离[1]。

西门子probe体积传感器接法:红色接电源正极,黑色或者蓝色线接电源负极,是信号的输出,还有一根是屏蔽线,性能指标 测量范围0.25―5m,精度0.25%,输出信号4-20mA,工作电压0-24V,工作温度40C--+60C,防护等级IP65。

2 毛刺这种现象原因分析及解决措施

对于毛刺这种现象,经过仔细分析,有以下几种原因:

(1)探头被脏物覆盖

传感器探头表面较脏,录井作业人员未进行有效的清洁保养,造成声波测量返回来的高度有较大的波动,此时应该擦洗探头,保证探头面的整洁.

(2)传感器安装不合适

循环罐上提供给提供给体积传感器的孔太小,或者孔和探头对偏,造成超声波传感器探头一部分照射在液面上,一部分照射在罐面上 ,测得的液面高度有波动。

传感器下方有金属遮挡物.譬如,在入口的地方同时安装体积传感器,温度传感器,电导传感器,密度传感器,他们的距离比较近时, 电导传感器下面的金属圈挡住探头,此时应该拉开他们之间的距离,体积传感器也不能安装在靠近罐壁死角的地方,容易造成对反射波的干扰。

(3)超声波传感器参数设置不合理

正式录井前,应该测量好满灌和空罐的高度和对应的体积,设置好传感器的最低高度,最高高度,盲区等。

传感器的所有型号在出厂时都被调试过,测量最大距离时(容器空时)是4mA,最小测量距离时(容器满罐时)是20mA,同时按下传感器上的4mA, 20mA两个键,会出现测量最大距离,然后再按传感器界面上的4mA, 20mA两个按键设定最远距离, 同时按下传感器上的4mA, 20mA两个键两下, 会出现测量最小距离, 再按传感器界面上的4mA, 20mA两个按键调节距离设定最近距离, 同时按下传感器上的4mA, 20mA两个键三下,可以设置传感器的测量盲区, 再按再按传感器界面上的4mA, 20mA两个按键调节距离设定盲区[2]。

(4)超声波传感器信号扰

超声波传感器如果安装在离心机旁边,离心机不停的搅动,就会对超声波体积传感器造成干扰,此时应该远离搅拌机,重新选择位置超声波传感器的安装位置超声波传感器。

通道有信号干扰,应该接好屏蔽线正确接地,消除电场干扰减小分布电容亦即增加线间距离是消除干扰非常有效的方法。因此,在现场设备安装时采用了合理布线,使传感器信号线远离了动力电缆, 将强、弱信号线电缆分开铺设,以便尽量减小线间的分布电容,从而消除电场对信号的干扰。[3]。

(5)钻井液气泡对超声波传感器测量的影响

在某些区块的钻井过程中,如果钻井液中有较多的气泡,这样容易造成超声波测量的不准确,这时候只有建议井队调整钻井液性能。

稳定的气泡产生必需以下条件:分散介质,与分散介质不相溶的气体,表面活性剂,适当的搅拌条件。对钻井液而言,这些条件均是具备的,因此,钻井液起泡现象是常见的,只是起泡程度有大有小而已, 当遇到地层的时候,地层中的各种气体易扩散侵入钻井液中。之后就会产生气泡,处理剂分解产生气泡。处理剂分解的时候会产生气体,进而产生气泡,搅拌时会使空气进入也会产生气泡,可以根据情况,加入消泡剂等材料。

(6) 超声波传感器性能的下降

任何一个传感器都有一个使用期限, 使用较长的时间,探头的灵敏度逐渐会老化,当性能不佳造成测量钻井液液位波动较大时,应该立即更换新的超声波传感器。

3 总结

造成体积波动的原因很多,具体来说也就文中列举的6条因素,在实际工作过程中可依照上述原因,有效的解决曲线毛刺现象,为钻井工程提供一个准确的异常预报。

参考文献

[1]李军 智能型超声波液位传感器及其应用 《中国高薪技术产业》 2009,12,P32

[2]钻井液液位传感器说明书 SIMENS PROBE

[3]罗小燕 超声波测距系统中抗干扰措施的研究 江西理工大学学报 2006,27,P68

超声波传感器范文第10篇

关键词:变压器;放电;定位方法

1 电气定位法

局部放电最明显的特征就是产生电脉冲,电脉冲中包含很多可以研究分析的信息,如信号能量幅值的衰减,波形的畸变和延时等。电气定位法的原理是根据放电脉冲在绝缘介质中传播时的参数特性,建立相关的传递函数来确定放电源的空间位置。

(1)行波法。

行波法的主要原理是利用波的时延特性来计算放点源与被测点的距离。局部放电在放电时会产生波形,波形传播开始的瞬间会出现容性分量,需要经过一段时间的时延后,行波分量才到达测量端。根据行波传播的速度,通过测量行波延迟的时间,就可以计算出所求距离,估计出放电源所在位置。

(2)极性法。

极性法的原理是通过比较变压器绕组的不同端子上局部放电信号的极性,如对单相变压器,理论上希望在高、低压绕组的四个端子测到不同极性的局部放电信号,根据不同的极性信号来确定放电位置。但是极性法仅能识别到局部放电源可能存在于变压器绝缘的某个区域。要精确地测出放电的位置,必须利用其他方法。

(3)起始电压法。

假设变压器绕组上的电压分布均匀,令绕组长度为L,绕组两端电位各为UH,UL。

若放电点N离高压端H的距离为x,放电点电压为UN,则有:

(UH-UN)/(UN-UL)=x/(1-x)(1.1)

当UN达到起始放电电压UI时,则有:

(UH-UI)/(UI-UL)=x/(1-x)(1.2)

若已知L,则只要改变绕组两端的电压,测出UH1,UH2,UN1,UN2,并将其代入式1.1和1.2即可求出放电位置x。

2 电气定位法存在的问题

(1)由于变压器有很复杂的内部结构,因此对于不同的放电点,在局部放电时产生的波在运行过程中可能会发生振荡,但是测量放电信号不能反映变压器内部真实状况,只能在变压器的测量端点进行,所以误差相对较大。

(2)部分电气定位法强烈地依赖于变压器内电气结构。

(3)只能对单局部放电源定位,对于多局部放电源定位还有待研究。

3 超声波定位法

超声波定位基本方法是当变压器内绝缘发生局部放电时,较大的能量释放将激发产生超声波,并以球面声波的形式经固、液绝缘和金属介质向四周传播。当放电能量较大或放电点距箱壁较近时,安装在箱壁上的超声波传感器可接收到超声波信号,通常需在箱壁上布置多个超声波传感器(4个或4个以上),定位时选择某传感器为基准传感器,以此为基准触发其余传感器接收局部放电产生的超声波信号。两个传感器接收声波的时间差,可用离放电点最近的传感器的声信号作为基准信号来触发其余传感器的接收测量,并获取同一局部放电超声信号传播到其它传感器时对应的相对时间τ。声波传播时间T乘以声波速度即为声波的传播距离。然后利用简单的几何关系,便可得到由若干方程组成的非线性方程组:

-=V0τn,n=1,2,…N

上式中(x,y,z)局部放电源坐标,(xn,yn,zn)是第n个超声波传感器坐标,(x0,y0,z0)是基准超声波传感器坐标,τn是第n个超声波传感器相对基准传感器的延时,V0是超声波在变压器油中的等值波速,N为超声波传感器个数。

4 超高频-超声波定位法

超高频-超声波联合定位法是澳大利亚的西门子研究机构使用局部放电产生的超声波和电磁波联合检测技术监测变压器中的局部放电活动。该系统运行的关键依据是超声波和电磁波在变压器介质中的传播速度是不一致的,因而可以测量两种波到达传感器的时间差,进而确定局部放电的位置。定位系统依赖一个可同时检测射频和超声波的复合传感器探头。复合探头包括超声波传感器和射频传感器两部分,其中射频传感器由包围超声波传感器的环形铜环组成,铜环与地间形成一个电容,这种容性天线及与其连接的引线电感形成一个谐振电路,感应局部放电引起的电场扰动;超声波传感器结果较复杂,传感器周围填满环氧树脂,后面充满比例为1:3的环氧树脂和钨粉的混合物,具有很低的横向耦合系数,可有效抵制接收变压器箱壁变向传播产生的横波。

5 阵列传感器定位法

阵列传感器定位法是超声波定位的改进方法,依据超声波到达超声传感器的波程差和相位差来确定放点信号的方位,是一种基于传感器阵列采集超声信号的局部放电定位方法。该方法用多个超声波传感器构成阵列代替传统的多个超声波探头,通过传感器阵列对局部放电信号进行多点并行采样,以检测传感器接收到的信号为时间基准,依次计算出平面相控阵传感器接收到的超声波信号的传输时延以及相差,再根据相控测向的方位角得出放电点的空间几何位置,实现变压器内多放电源的定位。

与传统的超声定位法相比,阵列定位的信噪比高,而且可以解决多径传输问题,传统的超声定位将传感器安装在变压器内部不同位置,导致放电信号通过多个不同路径到达探头,探头接收信号同一性差,导致定位误差大。除此之外,阵元的数量优势可以转化为性能优势,当个别阵元失效使接收信号存在误差时,并不影响整体定位结果,因此,阵列定位法检测可靠性更高。

综上所述,表1总结了目前变压器局部放电源定位的方法及特点。

参考文献

[1]R.C.库钦斯基.高压电气设备局部放电[M].北京:水利电力出版社,1984:153-178.

上一篇:超声波流量计范文 下一篇:超声内镜范文