一种两级式LED恒流驱动电源设计

时间:2022-10-28 12:38:25

一种两级式LED恒流驱动电源设计

摘 要:根据LED驱动电源设计要求,对设计方案进行合理论证,前级功率因素校正采用升压型斩波电路,控制芯片采用仙童公司的FAN7527,后级采用隔离式单端反激电路实现降压型DC/DC变换,控制芯片为TI公司的UC3843;此外为满足LED驱动电源恒流输出特性,设计中采用AP4310设计一个恒流限压控制器。基于以上结构,完成一款实验样机,通过测试和分析,实验波形与理论波形基本一致,完成本次设计要求的性能指标。

关键词:LED DC/DC变换;功率因素;UC3843;恒流

中图分类号:TM46 文献标识码:A

Abstract:According to the design requirements of LED Current drirer, this design plan for a reasonable argument. The first stage power of factor correction adopted boost chopper circuit and its control chip is Fairchild's FAN7527. Isolated singleended flyback circuit buck type DC/DC converter was used as the second stage and its controller chips is TI's UC3843. In addition, to meet the output characteristics of constant current ,AP4310 was designed as constant current controller. Based on the above structure, experimental prototype of LED driver was realized. Through testing and analysis, experimental waveforms were consistent with the theoretical waveform and the proposed LED driver meets the design requirements.

Key words:LED DC / DC conversion;power factor correction;UC3843;constant current

1 引 言

近年来,能源危机使世界各国开始关注绿色节能照明问题,新型光源也应运而生。发光二极管(Lighting Emitting Diode,LED)具有高效、节能、无污染、模拟自然光等优点,在最近几年得到快速发展,逐渐成为照明市场的主流,世界各国政府和公司已投入大量资金用于白光LED的开发和推广。LED主要可应用于信号指示、装饰照明、景观照明,家具照明、路灯等,不同应用场合的照明必须设计对应的驱动电源才能满足需求[1-3]。

由于LED自身的伏安特性及温度特性,对驱动电源的要求非常高,必须研发可靠、稳定的驱动器与之匹配[4-5]。通常,对于LED驱动器的基本要求有:高功率因素(Power Factor Corrector,PFC),高效率,恒流控制等,本文选用最新应用控制芯片,通过合理的电路设计,完成了一款LED驱动电源。

2 方案论证

LED驱动电源设计中,通常采用桥式整流和电解电容滤波电路来实现AC/DC变换,为下级变换器提供直流电。由于整流二极管具有单向导电性,只有在正向偏置时才会导通,也就是交流输入电压的半个周期中,只有交流电压峰值高于电解电容电压整流二极管才会导通。因此,在交流电压的半个周期内,每对二极管的导通角往往只有60o-70o。虽然交流输入电压仍然能保持正弦,但输入电流却出现严重畸变,呈幅度很高的尖峰状脉冲,从而导致系统功率因素很低,一般仅有0.5-0.6,影响电源的利用率,对电能造成巨大浪费。此外,输入端产生的谐波电流也会对电网造成污染,影响电能质量和供电品质,同时也会对系统中其它电子设备产生干扰[6]。

美国能源部于2008年10月的固态照明光源“能源之星”规范要求:任何功率等驱动电源都需要强制进行功率因数校正;住宅应用LED灯具的功率因素>0.7,商业用LED灯具的功率因素>0.9。因此在本设计中首先应考虑功率因素校正环节。典型功率因素校正方式有无源PFC和有源PFC两种类型。无源PFC电路只使用二极管、电阻、电容和电感等无源元件,拓扑简单、成本低,但功率因素校正效果较差。实际LED驱动电源中较多采用有源PFC,有源功率因素校正技术是利用集成电路使电流波形主动跟随电压波形从而达到功率因素校正的目的,按电路拓扑结构可以分成降压式、升/降压式、反激式、升压式四种,本文选用比较成熟的是Boost升压式电路结构。

在直流供电方面,LED驱动电源按照驱动方式主要可以分为四类:电阻限流控制、线性控制、电荷泵变换器以及开关变换器等。开关变换器效率高、控制精准,可以实现宽范围的电压/电流控制,非常适合大功率多串式LED 的控制。其中典型降压型DC/DC变换有:非隔离降压型(Buck)、反激式拓扑、半桥拓扑。非隔离降压型一般应用在1-10W场合;反激式一般用在25W-100W左右场合;100W以上一般选用半桥拓扑,本文根据功率等级选择反激式隔离降压变换器[6]。

此外,为了保证LED光源稳定性及可调性,需要了解其基本电气特性,如图1所示为LED光通量与其正向电流、正向电压的关系曲线[7]。从图中可看到,LED的光通量仅取决于驱动电流的大小,LED 两端的电压近似为恒值。由此可知,LED 需要采用恒流控制,通过调节电流大小来调节 LED 的输出光通量。

3.1 PFC电路设计

PFC电路设计采用了升压型斩波电路,控制环节主要由仙童公司功率因素校正控制芯片FAN7527完成,电路设计如图3所示。输出电压经R4、R5电阻分压进入1号脚,芯片内部调节器输出与3脚输入的半波电压瞬时值相乘,乘法器输出作为电感参考电流指令,与4脚输入电流瞬时值比较,当输入电流值大于乘法器输出时,输出电平翻转,RS触发器置“0”,该电平由7脚输出,关断开关管。因此,乘法器输出电流即为通过开关管的电流的门限值,该门限值随输入电压的变化而近似呈正弦规律变化。当开光管关断后,变压器L2电流慢慢减小,当电流接近零时,又导致引脚5过零比较器的输出翻转,将RS触发器置“1”,开关管导通,电感电流增大。重复上面的过程,电流波形接近正弦波,从而达到功率因素校正的目的。

3.2 DC/DC直流变换电路设计

本级设计选用UC3843作为控制芯片,UC3843是高性能固定频率电流模式控制器,具有可微调的振荡器、精确的占空比控制、高增益误差放大器、大电流图腾式输出等优点,专为反激式DC/DC变换器应用而设置,只需很少外部元件就能获得成本效益高的解决方案,其电路设计如图4所示。变换器开关频率由R9、C12决定。反馈信号通过电阻R10、R11进入2脚,通过芯片内容高增益误差放大器构成控制环节,调节6脚输出占空比大小。开关管电流通过R13进行采样进入引脚3,当流过开关管电流超过给定值时,关断开关管。

3.3 恒流限压控制电路设计

如前所述,LED驱动电源必须采用恒流方式。恒流控制的方式很多,此处主要利用AP4310作为主控芯片,来实现恒流限压输出,AP4310内部结构主要是由2个运放组成,如图5所示。AP4310的3号引脚自带一个2.5V的基准电压(第一个运放的正向输入端),通过R20、R21输出电压采样反向输入端(2号引脚),该运放构成电压控制环,当方向输入电压过2.5V,输出端为低,这样反馈信号从光耦通过二极管D8到运放1的输出端,从而实现限压功能。同理,运放2用于调节电流,其同相端的参考电压值由R22、R23决定,反向输入端为从R16采样电流反馈的电压值,当过流时,其反相端电压超过同相,运放输出低电位,从而使光耦通过二极管D9导通,反馈到开关模块进行调节电流。

4 实验测试

根据以上设计电路,在实验室制作了一款LED驱动电源,实物图片如图6所示。

功率因素校正部分实验结果如图7和图8所示。图7为PFC电路电感电流和PWM驱动波形,图8 PFC电路电感电流和输出交流电压波形,通过图中可看出输入电流呈正弦,与输入电压相位接近,系统功率因素较整流电路有较大提高。

后级反激式DC/DC电路波形如图9和图10所示。图9中频率为71KHZ,占空比为36.49%。图8为样机输出电压和电流波形。

从以上波形可看出,设计的LED 驱动电源能较好的完成功率因素校正和恒流输出驱动LED发光的功能。

5 总 结

本次设计根据LED的驱动电源设计要求和,对从功率因素和电路能量变换角度确定了电路拓扑结构;在此基础上,设计了一款高功率因素的LED恒流驱动电源,通过实验验证了LED驱动电路的有效性。

参考文献

[1] 杨清德,康娅. LED及其工程应用[M].北京:人民邮电出版社,2010.

[2] 毛兴武,毛涵月,王佳宁. LED照明驱动电源与灯具设计[M].北京:人民邮电出版社,2011.

[3] 沈霞、王洪诚、蒋林.基于反激变化器的高功率因素LED驱动电源的设计[J].电力自动化设备,2011,3(1):40-46.

[4] 房滕.90WLED驱动器的设计[D].杭州:杭州电子科技大学,2010.

[5] Beibei Wang, Xinbo Ruan, Kai Yao, and Ming Xu, A Method of Reducing the PeaktoAverage Ratio of LED Current for Electrolytic CapacitorLess ACDC Drivers[J].VOL. 25, NO. 3, MARCH 2010.

[6] 裴云庆,王兆安.开关稳压电源的设计和应用[M].北京:机械工业出版社,2010.

[7] 王舒.无频闪无电解电容 LED驱动电源研究[D].南京:南京航空航天大学硕士学位论文,2011.3.

上一篇:一种多目标混合进化算法的研究 下一篇:飞机颤振模态参数辨识试验的快速滤波算法