机舱布局无线网络论文

时间:2022-10-25 03:16:34

机舱布局无线网络论文

1引言

信息通信技术的发展和移动互联网的快速普及,使得包括笔记本电脑、智能手机和平板电脑等终端使用呈现爆炸式的增长。根据工信部电信研究院的《移动终端白皮书2012》,2011年全国移动智能终端出货量超过1.1亿部,超过了2011年之前中国移动智能终端出货量的总和。而目前包括智能手机和平板电脑等在内的移动互联网终端的全球年出货量已经远超过传统的PC出货量[1]。根据全球权威的技术研究和咨询公司Gartner最新预测,2014年全球IT终端设备(个人电脑、平板电脑和智能手机)出货量预计将超过25亿台,与2013年相比,增长7.6%[2]。移动互联网的应用已经渗透到社会生活的各个领域,人们无时不刻地需要保持网络连接,这与乘坐飞机旅行中不能使用各种移动终端之间产生了极大的矛盾,对此国内外学术界和工业界都给予了高度的关注,文献[3]提出了一种面向卫星网络的主动重传扩频时隙ALOHA多址接入控制方法。目前已有多家航空公司尝试在飞机上安装机载卫星宽带通信系统,并开始试点基于机载卫星通信系统向乘客提供无线接入的测试和试运营的工作,国内民航公司也已经开始计划利用卫星通信技术,为客舱提供宽带通信服务,解决飞行中的信息孤岛问题[4]。传统上而言,在飞机飞行的全程中都不允许使用各类电子设备、特别是包括带有无线和射频等功能模块的手机、平板电脑和笔记本电脑等。飞机起降期间是飞行中事故最易发的时间段,此时如果手机或电脑尝试登录或连接地面无线网络,会发射较强的无线信号,可能超出了航空环境的辐射信号安全允许范围,继而对飞机上的通信、导航和飞行控制等电子设备造成影响和干扰。即使在机舱内建立一个小型无线网络,降低地面无线网络的影响,但现行的法律法规仍然严格限定在飞机起飞和降落时不允许使用各类电子设备,只有在平飞阶段旅客才可使用机载无线网络,尽可能地减小对飞行安全的影响。另一方面,已经提出的机载无线网络解决方案仅支持笔记本电脑和平板电脑等配置了无线局域网(WLAN)的终端设备,依然不能使用手机等传统的移动通信终端。对于经常搭乘飞机出行的商务乘客而言,他们对于机票价格的敏感性比较低,但是对于航班途中能够提供的服务敏感性比较高。特别对于搭载国际和长途航班的商务乘客而言,在数小时乃至十几个小时航程的航班上无法与外界沟通,可能造成非常大的直接和间接经济损失。如果能够在飞行中提供通信和网络服务,即使增加一定的成本,但与长时间失去外界联系造成的损失相比仍是可以接受的。显然,对于商务乘客而言会倾向于优先选择可以提供地空互联的航班。而对于航空公司而言,提供额外的通信和网络服务也会给其带来附加的收入或通过降低航班票价的折扣比例获得收入增加,而飞机制造商和维护厂商也能从设备采购、安装和维护等环节中获得收益。不难看出,提供机载通信和网络服务对于整个产业链都具有显著的正面影响,在飞机上安装地空互联和机载无线接入系统将是未来航空产业发展的一个主要趋势,结合拓扑控制技术和功率控制技术,采用定向天线代替全向天线的通讯机制有效地缓解了无线骨干网络的信号干扰问题。[5]目前已经提出的机载无线网络的主要实现方式是首先由飞机通过卫星转接后与地面主站实现通信,飞机机舱内建立无线局域网(WLAN),并使机上乘客通过WLAN接入机舱局域网。这种方案的主要缺点是WLAN使用的多为2.4GHz~5GHz的电磁波段,频谱资源非常有限,对于乘客密集的飞机机舱应用场景而言,较多用户同时使用网络的带宽很难保证;同时该频段还有包括蓝牙等其他短距无线网络的干扰。考虑到飞机上空间非常有限,大量各类通信、控制和传感等电子装置及其线缆密集地集中在较小的布线空间内,而增加WLAN接入点及网络布线无疑会遇到许多困难,更重要的是WLAN的无线信号也可能对一些电磁干扰敏感的电子设备造成影响,机舱的电子环境发生变化使得飞机制造商和航空公司不得不投入巨资重新考虑机上的电磁兼容问题。可见光通信(VLC)技术是利用发光二极管(LED)等发出的肉眼觉察不到的高速明暗闪烁信号来传输信息的,即将需要传输的数据调制在LED发出的光并进行传输,利用光电转换器件接收光载波信号并解调以获取信息。可见光通信系统的网络覆盖范围就是灯光所能达到的范围,不需要电线或其他的连接。与WLAN技术相比,可见光通信系统利用照明设备代替WLAN中的基站或热点,采用MIMO-OFDM技术其传输容量可达数Gbit/s。[6]可见光通信同时实现了照明和通信,将其引入机载无线通信网络时可以直接利用原有的机舱中的阅读灯,无需增加复杂的网络布线和热点等设施,从而实现低成本的机舱内无线网络,不仅对飞行安全而且实现了绿色环保。本文针对基于VLC的机舱无线网络的信道和布局进行了研究,论文第二节给出了VLC系统原理及关键技术,第三节是机舱内VLC系统的布局模型研究和性能分析。

2VLC系统原理和关键技术

人们使用的照明光源已经历经了白炽灯、节能灯和LED三代,其中白光LED因其能耗低、寿命长、尺寸小、亮度高等特点迅速占领了市场,得到人们的广泛认可,成为理想的照明光源。正是因为LED照明灯将在未来普及,人们想到在LED灯泡照明的同时,将信息加载到灯光上,而通信所使用的较高调制频率人眼无法察觉,从而在照明的同时实现网络通信。可见光作为信息传输介质与传统的射频及无线通信方式相比,有着诸多优势,其中最主要的就是可见光通信不需要复杂的电磁波频谱分配,可以作为现有射频无线通信的补充,极大地扩展通信所使用的电磁波频谱范围。传统的射频和无线通信技术最大的一个缺点是需要对所使用的电磁波频谱进行仔细划分和规划,特别是使用较多的射频和微波频段,可以使用频谱资源非常有限。同时,射频和无线通信的空中接口是开放的,存在难以完全解决的安全问题。而可见光通信使用的频率约在400~800THz(波长约为375~780nm),其信道的使用是完全免费的,不需要购买或授权使用许可。在信息安全方面,可见光通信也有其独特的优势,可见光传输是视距(LOS)模式,只要信道被遮挡信号就会中断,减小了信息被窃取的机会。同时,可见光通信还具有高度的安全性,不会涉及如射频和无线信号可能存在的对人体健康产生的影响或伤害。基于LED的可见光通信最早由日本的中川研究室于20世纪初提出,国内在2006前后开始跟踪相关的研究进展,并对可见光通信的系统结构和关键技术进行了初步研究[7]-[9];文献[10]提出了一种基于光码分多址(OCDMA)的可见光通信的无线局域网系统设计方案;文献[11]和[12]提出了一种基于USB接口的室内可见光无线接入电路;文献[13]和[14]分别就如何削弱VLC系统中多径串扰和背景光噪声的影响,以及室内光照度的分布等进行了研究。可见光通信作为一种新型的无线通信方式,在一些特殊情形下有着突出的优势,例如一些对于电磁干涉敏感的环境如医院和航空器等,一个典型的可见光通信系统的组成框图如图1所示。如图可知,一个典型的VLC系统主要包括光源与驱动、光检测与放大、调制与解调、信号处理等部分组成。可见光通信系统利用LED光源发出的光信号传递信息,现阶段的白光LED相比于白炽灯具有极好的响应性能(白炽灯响应时间为毫秒级,LED响应时间为纳秒级),且LED电光转化效率高(接近100%),非常适合高频电信号的调制。使用RGB-LED可以满足比传统白光LED更加多元的需求,当需要用到某一波段的灯光时,RGB的混色可以随心所欲[15]。可见光通信系统中最基本的调制方式是幅移键控(ASK),随着对系统容量需求的不断提升,也开始逐步引入包括正交频分复用(OFDM)等先进的调制方案。调制后的光载波信号直接在大气中传输,因此需要考虑信道中可能的外部影响。对于室外和室内使用的VLC系统而言,干扰源及其影响不尽相同。例如对于室外VLC应用场景,主要的干扰源是太阳光等自然光的强背景辐射噪声,而在室内环境中,则是各种照明光源带来的干扰。对于特定的应用场景而言,两种干扰可能会同时存在。例如对于基于VLC技术的机舱通信系统而言,机舱照明灯和窗户照进来的阳光会对VLC信号同时产生影响。另一方面,对于无线信道的传输通常需要考到多径效应等影响,但是对于机舱阅读灯等特定应用场景而言,由于其照射范围比较集中,受邻座阅读灯干扰很小,可以只考虑直射光信号。经过信道传输后,VLC系统接收端通过光检测器(如光电二极管PD)来检测光信号,把光信号转换成电信号后经过解调还原处原始信息。对于VLC系统而言,一般需要在为了保证接收到足够的光信号,VLC系统一般在PD前配置了透镜用以对接收到的光功率进行聚焦。特别是对于室内VLC应用环境,由于PD有效检测面积很小,接收到的光信号较弱,考虑到相邻光源可能的干扰,用透镜,把光信号会聚到PD上,可以有效增加PD接收到的光信号强度,并且减小相邻信号的干扰。PD将光信号转成电信号后,需要经过信号放大、滤波整形、定时再生后、解调后可恢复出原始信号。

3基于VLC的机载无线通信系统

3.1系统模型和基本参数由于基于VLC的机载通信系统应用的基本前提是不对已有的飞机机舱格局进行改变,因此我们通过对典型民用客机的机舱环境进行调研和资料查阅,初步构建了基于乘客独立阅读灯的通信+照明合一的VLC系统模型。以民用航空中使用最普及的波音系列客机座椅作为参照进行系统建模,一般情况下认为前排座椅背面放下的小桌板为乘客理想的工作平面,而小桌板的尺寸为400×2402mm。因此,只要满足在这个平面区域内照明和通信即可。图2和表1分别给出了机舱座椅模型和主要参数。如果不考虑外部遮挡,当光源位于工作平面的正上方时,该模型为最佳模型,此时光源到小桌板的垂直距离为850mm。但是基于VLC的机载通信系统中一个重要的问题是必须考虑到遮挡效应,即当前排乘客放倒座椅时,此时座椅角度会增大至倾斜约38°(初始倾斜角度为15°)。此时若VLC光源仍位于工作平面正上方,则将会有一部分区域为照明通信阴影。因此需要将光源位置水平后移一定距离,保证工作区域始终处于照明条件下。通过计算得到完全无遮挡的并且光源距离工作平面中心最近的水平距离为544mm,光源的发射角约为11.5°,如图3所示。

3.2性能分析

基于VLC的机载无线通信系统的基本要求,是所使用的LED光源的光照强度满足相关的机舱照明标准,针对我们设计构建的机舱VLC通信系统模型,根据HB6491-91《飞机内部照明设备通用要求》,并参考《飞机设计手册》的相关章节,其有效照度的指标要求光照度应达到300~500lx之间[17]。由此可见,点光源在面元ds上所产生的光照度与光源的发光强度I成正比,与距离的平方成反比,并且与面元相对于光束的倾角θ有关,这个即为点光源光照度的距离平方反比定律。由于白光LED是一种非相干光源,不会形成光的干涉现象,因此多个LED构成阵列时遵循叠加原理,即总的光照度1NiiEE???,其中iE为每个LED的光照度,N代表总LED灯的个数。结合现有机载照明灯的尺寸和文献中一般采用的LED阵列,本文使用的模型中为光功率1W,中心发光强度为55cd的LED芯片。当光源距离工作平面中心554mm时,采取3?3的阵列模式,等效发光面积大小为60×602mm。当光源位于工作平面中心正上方时,采取3?2的阵列模式,等效发光面积大小为60×362mm。根据以上建立的模型,可以计算得出机载VLC系统中接收平面(小桌板)处的光照度分布以及最值。当光源距离工作平面中心554mm(如图5a所示)时,与光源位于工作平面中心正上方(如图5b所示)相比,工作平面靠近乘客的一端有更大光照度。另一方面,由机阅读灯照明范围一般只覆盖到每位乘客小桌板范围,不会影响到其他乘客,所以这里我们只考虑光线直射情况。从图中我们可以看出,该光源模式下,靠近光源的小桌板一侧会出现光照度最大值,小桌板的两侧会出现光照度最小值,这符合飞机阅读灯只给单个乘客提供照明而又不影响其他乘客的要求,也保证了来自相邻座位的通信干扰相对较低。图6给出了中心光源对相邻座位的影响,只有中心光源照明时,相邻座位接收到的光照度不足300lx,并且可以通过调整接收机的接收角,以达到完全屏蔽来自相邻座位光源的信号。同时小桌板中心区域照明度满足国际标准(ISO)提出的工作照明300-500lx的要求。图7给出了本文提出模型的工作平面处接收光功率计算结果,可以看出在工作平面内,光线入射角处于光探测器接收范围内。与图5给出的光照度分布图对比可以发现,光电探测器的接收功率分布大致类似于光照度分布,但相对于光照度分布值相对陡峭,这是由于接收角的存在,LED阵列正下方的光线很容易进入探测器的接受范围之内,而边缘的光线因为接收角的原因较难进入探测器接收范围之内。

4结束语

在不影响飞行安全的前提下,向机舱内的乘客提供飞行全程中的无线接入服务,是当前学术界和工业界高度关注的热点技术,已经提出的基于WLAN的接入方案存在着频谱资源有限和安全性等诸多限制因素,可见光通信因其低成本和高带宽等显著优点,成为机载无线通信的最佳解决方案,本文针对基于可见光通信的机舱无线通信系统布局进行了研究。论文以不改动机舱原有的格局为基本出发点,提出以阅读灯作为可见光通信的光源,并针对典型的机舱布局进行了系统模型搭建。以小桌板作为受光平面,并考虑到了不同的阅读灯布局以及前排座椅的遮挡效应,采用理论分析和数值计算等方法进行了研究;论文全面考察了LED不同布局及相邻光源的影响,结果表明:采用本文提出的阅读灯布局,考虑到遮挡效应的情况下,小桌面平面可以获得足够的光照强度,同时其接收光功率也满足通信的基本需求。

作者:隋明铮 夏子贤 朱文龙 沈建华 单位:南京邮电大学

上一篇:县级市区域投资环境论文 下一篇:网格化无线网络论文