土工合成材料铺设损伤现场试验研究

时间:2022-10-20 12:20:35

土工合成材料铺设损伤现场试验研究

摘 要:土工合成材料的铺设损伤是工程中广泛关注的问题,文章总结了国内现状和国外研究成果,并结合工地现场试验得出了结论:铺设过程的机械损伤是导致土工合成材料强度降低的主要原因,针对铺设损伤所造成的强度降低指标的研究具有重要实用价值。

关键词:土工合成材料;铺设损伤;强度折减系数;现场试验

土工合成材料铺设损伤是加筋土工程中广为关注的问题,国外研究结果表明:在路堤加筋工程中,压实机械的碾压是导致土工合成材料强度降低的主要因素之一,相对于国外的深入研究,国内对该领域的研究工作较少,用于指导工程实践的研究成果更为缺乏,而随着国内高等级公路建设的不断深入,公路穿越的不良地基也越来越复杂,导致土工合成材料用量急剧增加。因此,对土工合成材料铺设损伤进行研究,已成为工程建设的一项迫切需求。本文依托某高速公路扩建工程,对土工合成材料铺设损伤进行了现场试验研究,从而为土工合成材料铺设损伤研究提供了现场试验依据,对于进一步深入研究以及工程实践,都具有重要的实际意义和参考价值。

1 工程概况及现场试验

在某高速公路施工现场选择一块15m×4.5m的平坦的场地,去除表层杂草及腐殖土,用施工机械整平并用重型压路机(本试验采用徐州工程机械厂生产的18t光轮压路机)碾压4~6遍,以前后两次的碾压不再出现明显轮迹为止。

根据现场路堤施工所确定的松铺系数,在压实好的场地上用路基填筑材料铺筑一定厚度的填料并压实至30cm厚的下卧层,然后用压路机进行碾压,在碾压初始不断用人工来找平,下卧层的施工完全按照现行《公路路基施工技术规范》(JTGF10-2006)进行。

将事先裁好的土工布和土工格栅按试验方案要求平铺在已碾压好的下卧层上,试样的裁剪严格按照现行《公路土工合成材料试验规程》(JTG E50-2006)进行。并用人工在上面铺筑一定厚度的同一种填料,不同厚度之间保留0.5m的过度段,试验段两侧填料各宽出土工合成材料1m,以保证合成材料上面填料的压实度。本试验采用压实后10cm、20cm和30cm的不同对比厚度。铺筑完毕后进行压实,然后用灌砂法测定碾压后的压实度,所有的碾压和试验方法皆按现行有关公路技术规范进行。除地基外,下卧层及上层填料的压实度皆保证93%且最低碾压次数不低于10次。

图1 现场铺设试验路段碾压前照片

本次试验共用两种填料,分别为砾类土(粗颗粒为花岗岩)和砂类土(粗颗粒为砂岩)。每种填料各做了压实后10cm、20cm、30cm三种不同铺设厚度的对比试验,共做了5个不同厂家的 12块试样。除土工织物的每块尺寸均为1.2m×1.2m外,其他几种土工格栅的铺设用试样尺寸分别为:A土工格栅0.8m×1.6m,B土工格栅的尺寸约为1m×1.8m,C土工格栅的尺寸为2.4m×3.6m。

图2 现场试验路段碾压后情况

2 试验结果分析

为了解碾压后土体颗粒粒径变化,用四分法取试验前后不同碾压厚度的砾类土各100kg左右进行筛分试验,表1给出了砂岩砂类土的物理指标,表2给出了花岗岩砾类土筛分后D50的变化值,图3则给出了花岗岩砾类土未碾压前及碾压后的筛分曲线。

图3 花岗岩砾类土筛分试验曲线

由表2可以看出花岗岩砾类土经碾压后D50迅速降低,铺设厚度越小,D50降低的也越小,30厚填料经碾压后,D50下降了近一半,由此可以看出,土工合成材料在碾压过程中所承受损伤也将相当严重,图4为试验后塑料土工格栅照片。

图4 30cm花岗岩砾类土下B土工格栅

压实后10cm厚砾类土下的塑料土工格栅,掘出后共有7根断肋,占整个肋数的21.8%,并有超过一半的粘结点出现滑动脱落;压实后20cm厚花岗岩砾类土下的塑料土工格栅,亦有近一半的接点遭到破坏,但未发现断肋,这说明20cm以上砾类土的填筑厚度对土工格栅有较好的保护作用,但由此造成的损伤仍很明显;压实后30cm厚砾类土填料下的塑料土工格栅,亦未发现因碾压而造成的断肋现象,但遭到破坏的接点数亦近1/3,在此种填料和厚度下铺设的两块土工织物,上层表面明显的搓松起毛,特别是规格为250g/m2的土工织物,上表面破坏更为明显,粗估其强度降低有一半左右,但与下卧层相接触的下表面却仍非常光滑,几乎未有什么改变,由此可见下卧层的光滑和平整对于土工合成材料的铺设损伤具有一定影响。同时,这两块土工织物经铺设碾压后各有多处孔洞,比较严重的一块有明显10多处较大的孔洞。在30cm厚砂岩砂类土下铺设的塑料土工格栅,外表无明显变化,既无断肋也无结点破坏。在该类填料下铺设的两块土工织物,其下表面变化不大,但上表面亦被搓动起毛,这显然会对土工织物的强度造成影响。由此可见,即便在土工合成材料上面铺筑30cm厚的砂类土,其损伤情况亦比较明显。在10cm和20cm厚砂岩砂类土下铺设的塑料土工格栅,亦未发现断肋或结点破坏,由此可见,填料的颗粒大小和硬度对土工合成材料铺设损伤具有一定影响。

将铺设前后的土工合成材料进行宽条样拉伸,其中塑料土工格栅亦应用20cm的夹具,所得拉伸试验结果见表3。

注:强度折减系数为原始试样最大拉伸强度与铺设损伤后试样的最大拉伸强度比值。

由表3可以看出,两种土工织物在砂岩砂类土下的强度折减系数都在1.5左右,而在花岗岩砾类土下的强度折减系数都大于2.0,亦即铺设后最大拉伸强度损失了50%以上,由此可见,铺设损伤对土工合成材料强度降低的影响非常显著。

针对单向粘结式C塑料土工格栅CATTDG40,现场还用花岗岩砾类土和砂岩砂类土做了压实后10cm、20cm和30cm三种不同厚度的对比试验,试验所得的强度折减系数见表4。

由上表可以看出,当填料压实后厚度为10cm时,试验用土工合成材料强度降低极为明显,这说明过薄的填料铺设厚度会对土工合成材料产生严重损伤,国外研究结果表明:土工合成材料上面覆盖15cm厚的填料松铺厚度是施工时的最低铺设厚度,虚铺厚度低于此值,土工合成材料铺设损伤后强度将急剧下降。本次现场铺设用18t重型振动压路机,对以上两种填料的有效压实厚度皆在30cm左右,故当填料的铺设厚度在20cm左右时,塑料土工格栅仍承受了较大的铺设损伤。由此可见:在路堤加筋工程中,当填料的铺设厚度在压实机械有效压实厚度附近时,不仅可有效利用压实机械,而且对降低土工合成材料的铺设损伤具有重要意义,过薄的碾压层厚不仅会导致施工机械的浪费,而且对土工合成材料的强度保持也不利。

3 结语

通过土工合成材料铺设损伤现场试验,验证了室内模拟试验结果的可靠性和可重复性,也证明本文所得出的土工合成材料铺设损伤折减系数建议值获得了工程实践验证,该系数具有可推广性和工程实用性。同时通过对不同铺设厚度的现场铺设损伤试验结果进行分析表明,过薄的填料铺设厚度会对土工合成材料造成过大铺设损伤,在加筋土工程施工中,根据填料和压实机具类型合理确定出填料的有效摊铺厚度,不仅可充分发挥压实机具的有效性能,而且对于避免土工合成材料遭受过大的铺设损伤具有重要意义。

在路堤加筋工程中,压实机械的碾压是导致土工合成材料强度降低的主要因素之一,欧美等发达国家通过研究发现,土工合成材料的最不利状态是在施工铺设阶段,如果土工合成材料经受得了施工铺设过程中引起的应力,那么也就能经受使用阶段的应力。由此可以看出铺设损伤对土工合成材料工程应用有着重要的影响。试验结果不仅证明了铺设损伤是导致土工合成材料强度降低的一个主要影响因素,同时也土工铺设损伤的研究提供了重要的现场试验依据。

参考文献

[1] 包承纲.土工合成材料应用原理与工程实践[M].北京:中国水利水电出版社,2008.

[2] 王正宏.ASTM有关土工合成材料的试验标准,兼述我国的相应标准[A].2009.

[3] 交通运输部.公路工程土工合成材料试验规程[S].北京:人民交通出版社,2006.

[4] 唐颂,邓卫东.土工合成材料蠕变老化及铺设损伤试验研究综述[J].公路交通技术,2004(1).

[5] 蒋文凯,阮志新,邓卫东,等.土工格栅强度损伤特性的试验研究[J].武汉理工大学学报(交通科学与工程版),2006,3(30).

上一篇:获CU TR认证,通关东欧和中亚5国 下一篇:磷石膏和黄磷炉渣的综合利用探讨