试析复合材料在微波工程中的运用

时间:2022-10-13 02:43:27

试析复合材料在微波工程中的运用

【摘要】随着科学技术的迅速发展,人类对于世界的认识达到了一个崭新的层面,一系列新事物、新材料不断涌现。微波,这种自然界中一种常见的波段,被运用到人类生活的各个方面。但由于微波的特殊特性,使得人类在利用这种波段时难免遇到各式各样的问题,在这种情形下,新型的复合材料应运而生。新型复合材料的运用极大的提升了微波的使用效率,在微波工程中发挥了巨大的作用。在本文中,笔者将针对微波和复合材料的的特性,结合案例,系统地分析复合材料在微波工程中所起到的作用,对复合材料在微波工程未来的发展前景做出展望。

【关键词】复合材料微波工程金红石陶瓷一玻璃

伴随着科学技术的蓬勃发展,地球上原有的材料已经不能满足人类的需求,正是在这种情况下,复合材料应运而生。复合材料通过将两种以及两种以上的物质进行融合而产生出一种新型的可以被人类运用的材料。伴随着复合材料性能的不断改善以及功能的不断变化,一部分复合材料已经可以被运用到微波工程领域之中,并对微波工程起到巨大的作用。

一、微波及微波的特性

微波是电磁波的一种。微波的波长在1毫米到1米之间,微波的频率为300MHz―300GHz。微波的基本性质通常呈现为穿透、反射、吸收三个特性。相较于其它波段的电磁波,微波具有以下几个显著的特征:(一)微波的穿透性。区别于其它辐射加热的电磁波,如红外线、远红外线等,微波的波长更长,具有更强的穿透性。微波透入物体时,能与物体分子相互作用使分子产生震动,当微波频率为2450兆赫兹时,可使物体的分子每秒产生24亿次以上的震动。动能转化为热能,从而使物体的温度达到整体上的同时升温,避免了物体在进行热传导时的热量损耗。同时,由于物体在加热过程中不会出现热传导现象,从而大大缩短了物体的加热时间。(二)微波对不同的物体体现出不同的加热效果。由于微波穿越不同物质时,微波对于不同物质的震动会产生不同的影响,这就使得了微波在加热过程中具备了加热选择性的特征。当微波穿越玻璃、塑料和瓷器等物体时,微波几乎是穿越而不被吸收;当微波穿越水和食物等物体时,这些物体会受到微波的影响而自身产生热量;当微波穿越金属类物体时,微波则会被完整的反射回来。家中常用的微波炉加热物体正是利用了这种原理。微波炉的外壳采用金属类物体,避免了微波炉加热时,微波穿透微波炉外壁对周围的物体产生影响;加热的物体大多含有丰富的水分子,保证了物体整体的热量;盛放物体的容器大都为塑料和瓷器类物体,当微波穿越这些物体是,几乎不会被吸收。可见,微波对不同的物体体现出不同的加热效果。(三)微波的信息性。相比较于低频无线电波,由于微波具有非常高的频率,这就使得在狭小的相对带宽下,微波可用的频带非常广,可以达到数百甚至上千兆赫兹。这就意味着在同样的条件下,微波可以携带的信息容量要远远大于低频无线电波。因此,目前国际上所使用的现代多路通信系统,包括卫星通信系统,几乎无例外都是工作在微波波段。同时,微波信号还可以提供相位信息、极化信息以及多普勒频率信息,这些信息可以帮助人类更好的对目标进行检测和对遥感目标的特征进行分析。

二、复合材料的定义

复合材料(Composite materials),是指由两种或两种以上不同性质的材料,通过物理或化学的方法,在宏观上组成具有新性能的材料。各种材料在性能上互相取长补短,产生协同效应,使复合材料的综合性能优于原组成材料而满足各种不同的要求。

三、复合材料在微波工程中的应用

(一)金红石陶瓷一玻璃复合介质

金红石陶瓷结构作为应用的最广泛的微波介质正被广泛的应用于各种微波工程之中。金红石陶瓷结构本身所具有的相对介电常数大、微波插人损耗小以及温度稳定性好等特性也是微波工程选用此类结构的主要因素。但是单组分金红石陶瓷结构本身较为疏松,其机械强度较差,基本上不能对其进行机械加工,因此以前该结构的运用受到了很大的限制。

随着复合材料技术的不断进步,一种新型的可以提高金红石陶瓷结构致密度,同时可以改善其机械强度,使其能进行机械加工的复合材料被研发出来。其基本指导思想如下:由于微波具有穿透性的特点,当微波遇到玻璃、塑料和瓷器的物体时,微波几乎是穿越而不被吸收,如果能将金红石陶瓷与玻璃进行复合,则可以在不降低金红石陶瓷结构本身正常工作的情况下,提高金红石陶瓷结构致密度并改善其机械强度,其达到能进行机械加工的目的。

首先,将CaO, B2O3和SiO2按一定比例进行配料、球磨后,在1320℃的高温下烧结后制成玻璃粉;然后把制成的玻璃粉与由ZnO和SiO2在1320℃的高温下生成的硅酸锌粉按一定比例混合并进行球磨、过筛,生成玻璃相;最后将玻璃相与TiO2、ZnO、CaF2、BaCO3以及ZrO2等按配方配制,经过严格的工艺流程、球磨、成型以及在940℃的温度下烧结,生成金红石陶瓷一玻璃复合介质。这种复合介质既保留了金红石陶瓷的特征,又有好的机械强度和硬度。这种材料的相对介电常数约为100,当部分填充工作在米波波段的高功率微波终端时,能使高功率微波终端沿传输方向300mm的几何长度就能获得约2.5m的电长度,有效地缩小了体积,满足了微波工程的实际应用需要。

(二)铁氧体-陶瓷复合材料。雷达作为现代最重要的通信工具诞生于20世纪40年代。其工作原理是:雷达发射机通过天线把电磁波能量射向空间某一方向,处在此方向上的物体反射碰到的电磁波;雷达天线接收此反射波,送至接收设备进行处理,提取有关该物体的信息。

为确保雷达在某一时点向某一方向发射电磁波时,不会同时向其它方向发射电磁波,这就需要在发射电磁波方向的反方向具有很强的吸收微波作用的物质。在雷达运用的早期,通常选用锰锌软磁铁氧体和镍锌软磁铁氧体作为吸波材料。两种材料在雷达工作时具有高磁导率、高电阻率、低损耗等特点,且成本低廉。

然而,由于锰锌和镍锌都属于金属类产品,对微波具有反射作用,而影响到微波吸收率,从而干扰到雷达电波的准确程度。

随着复合材料的发展,人们逐渐意识到:如果能够使用几乎对微波不会产生任何影响的陶瓷取代传统的铁氧体材料,这种局面也许能打破,一种新型的铁氧体-陶瓷复合材料应运而生。这种复合材料的微波阻抗在很宽的频带范围内几乎不发生变化,使用这种新型材料设计制造的天线和微波类传输线等器材在实际应用中都产生了非常好的使用效果。

(三)选择性透波复合材料

随着我国经济的发展,我国的综合国力得到了显著的增强。我国的航空航天事业及军工事业也得到了非常快速的发展。在此基础上,我国对于透波材料的需求,尤其是选择性透波复合材料的需求也不断上升。透波材料在航空航天领域中具有重要的地位,是航空航天器材所不可缺少的重要外部材料。当航空飞行器在遇到恶劣飞行气候或是在通信环境非常恶劣的条件时,透波材料可以保证航空飞行器的通讯、遥测等系统的正常运转。同时在运载火箭、宇宙飞船等领域也有重要的作用。伴随着技术的进步,新型的选择性透波复合材料正成为业界所关注的重点。选择性透波复合材料是对频率选择表面技术同复合材料相结合,从而产生的一种新型的材料工艺。选择性透波复合材料对行器的隐形技术有着重大的贡献,它可以在保证飞行器自身通讯正常工作的情况下,屏蔽其他外来电磁波对飞行器的侦查和干扰等。结论:随着复合材料技术的不断进步,各种穿透性好、透波性能好的复合材料相继问世。由于纳米材料的研制成功及其应用技术的发展,新型功能剂不断出现,,透波、吸波性能越来越高。这些都极大地提高了复合材料在微波工程中的使用范围,增强了微波工程的使用效果。相信在不就的将来,复合材料在微波工程中的应用将越来越广泛,复合材料所起到的效果也将越来越重要。

参考文献

[1]张昌天,李晶晶,江大志,肖加余.二维点阵复合材料圆筒结构软模辅助缠绕成型及轴向压缩性能研究.复合材料:创新与可持续发展(下册). 2010

[2]刘时风,王勇,陶雪荣,陈显锋. AU2000声-超声复合材料检测系统研制.复合材料的现状与发展―――第十一届全国复合材料学术会议论文集. 2000

[3]孟凡颢,陈绍杰,童小燕.缝合/RTM复合材料及其计算分析的工程方法.复合材料的现状与发展―――第十一届全国复合材料学术会议论文集. 2000

[4]郜永娟,刘正英,杨鸣波.注塑成型CB/iPP/HDPE复合材料电性能的研究. 2011年全国高分子学术论文报告会论文摘要集. 2011

[5]佟景伟,沈珉,王世斌,李鸿琦,穆祥新.复合材料变形与损伤的光力学细观实验系统.复合材料:生命、环境与高技术―――第十二届全国复合材料学术会议论文集.,2002

上一篇:电动汽车充电对电网影响 下一篇:无线通信系统平台在500kV变电站的应用