关于功率因数教学问题的探究

时间:2022-10-11 11:41:10

关于功率因数教学问题的探究

【摘要】在《电路分析基础》课程中,功率因数的概念和提高功率因数的方法在正弦稳态电路功率的计算部分被引入,其内容与实际应用结合相当紧密,是教学中的一个重点内容,也是难点内容。本文根据课程中功率因数部分的相关基本理论来探讨并联电容器容值的两种算法、生产实际中功率因数的测量计算以及应用,以期取得更好的教学效果。

【关键词】功率因数;电路基础;工程应用

1.功率因数的基本理论

企业中的用电设备,大部分都是用电磁感应原理来进行工作:比如电力变压器、电焊机和感应电动机就是用电磁感应的原理而实现的。这样的用电设备必须从电网上吸收两种能量,一部分能量用于做功,转化为机械能、热能、化学能及光能等能量形式,这部分能量用于生产和生活所需,即有功功率;另一部分能量用来产生交变磁场,是依靠磁场来传送和转换能量,这种转换只在电源和用电设备之间进行,不对外输出能量,即无功功率。有功功率与无功功率都是电能的应用所必需的。若有功功率不足,则不能满足用电负荷的需要,且电网质量变坏,威胁发电厂的安全;若无功功率不足,电网质量同样变坏,电网电压降低,用电设备电流上升,电机过流、发热,导致用电设备的绝缘损坏,甚至烧毁。

平均功率P可反映电路网络实际吸收的有功功率,根据定义,平均功率为:。它不仅与电压、电流的有效值有关,而且还与电压、电流的相位差有关。称为电路的功率因数,又称为功率因数角。一方面电路的功率因数直接影响发电设备的利用率,另一方面当输送相同的功率时,功率因数低,则电流大,流过电路时造成的损耗就大。为提高发电设备的利用率和降低输电线上的损耗,需要提高功率因数[1]。

图1 并联电容进行功率因数补偿的

电路图及相量图

在交流电路中,纯电阻负载中电流IR与电压U同相位,纯电感负载中电流IL滞后电压90°,而纯电容负载中电流IC超前电压90°。电力系统中的负载多是感性负载(电感性和电阻性),因此总电流I滞后于电压U一个小于90°的功率因数角。为了提高功率因数,一般在感性负载上并联电容器,如图1所示,其目的是让电容的电流抵消部分电感电流,使电流I减小到I′,在提高功率因数、降低线路损耗的同时,又不会影响原感性负载的工作状态。

工业企业电力系统常用的电容器补偿方式有三种:集中补偿、分组补偿和个别补偿。企业电力系统的补偿方式的选择,要视企业的具体情况而确定。例如,从无功就地平衡来说,个别补偿效果最好(个别补偿应用于大容量、长期稳定运行、无功功率需要较大的用电设备,或者距电源较远,不便于实现分组补偿的场合,这种方式可以减少配线电流、导线截面及配电变压器的容量)。不论采用什么样的补偿方式,补偿电容的容量必须选择适当,而这一切都是为了提高交流电力系统的功率因数。功率因数是衡量企业供电系统电能利用程度及电气设备使用状况的一个具有代表性的重要指标。

2.提高功率因数电容值的两种算法

电路如图1所示,现假设负载的功率P、端电压U及功率因数均已知,此外电源的角频率也已知,现将电路的功率因数提高到,求需并联多大的电容C。

(1)利用相量图计算 [2]

以端电压为参考相量画出电路的相量图如图2所示。其中,为负载所在支路的电流,为电容所在支路的电流,为并联电容后电路的总电流。在相量图中,将负载所在支路的电流作水平和垂直的分解,得到两个分量和。其中,由于和电压同相位,两者的有效值相乘后得到电路的有功功率,因此,称为电流的有功分量。而由于和电压相位差为90°,两者有效值相乘后得到电路的无功功率,因此,称为电流的无功分量。然后再将并联电容后的总电流作同样的分解,得到两个分量和。从相量图中可以看到:并联电容前后电路的有功功率没有发生变化,但无功功率发生了变化。

图2 用相量图法求解并联电容容值

由此可得如下方程组:

解方程组即可求出补偿电容值:

(2)利用功率三角形计算

图3 功率三角形

电容为储能元件,本身不消耗能量,但是要与外界发生能量的交换。因此,并联电容后电路的有功功率不发生改变,而无功功率改变。由于电容和电感两个元件的性质相反,在感性负载两侧并联电容后电路的无功功率会减小。

由此可画出电路在并联电容前后的功率三角形,如图3所示。其中,P、Q、S为并联电容前后电路的有功、无功和视在功率,QC为电容的无功功率。从功率三角形可看出,并联电容前后电路的无功功率的变化量即为电容的无功功率。由此可列出如下方程组:

解方程组即可求出补偿电容值:

(3)结论

从以上两种计算方法可以看出:第一种方法根据相量图进行计算,思路清楚,无需知道电路的能量转换情况,但涉及数学知识多,求解过程麻烦。第二种方法根据电路的能量转换情况求解,涉及数学知识少,计算简单快捷,但需知道电路的能量转换情况。教学中可根据具体情况选择求解方案。

3.应用举例

一台132kW的电机,用150mm2的塑料铜芯电缆供电运行电缆温度正常,后来在这根电缆上再增加一台30kW的电机后,电缆的温度很高,不能持续运行,现试并接50kvar的电容器。问题是:并接电容器之前功率因数是多少?并接电容器之后的功率因数又是多少?现在的有功功率是多少?我们投、切电容器,测出电容器投入时电缆的负载电流为250A,电容器切出后为300A,实测电容器电流为76A。根据之前推导结果代入可得:P=135kW,,。可知:虽然投入使用的电机总容量为132kW+30kW=162kW,但实际有功功率为135kW;增投电容器进行无功补偿之后,功率因数由0.687提高到0.824,使电缆的负载电流由300A降低到250A,这根电缆虽然增加了30kW的负载,但电流并未增加仍可安全运行。

根据电力部门的要求,功率因数应该等于0.95时为最佳。按照135kW的有功功率,功率因数在提高到0.95计算,此时电缆电流降低到216A。即在功率因数由0.824提高至0.95后,在有功功率不变的情况下,电缆电流由原来的250A降低到216A。

4.结束语

功率因数是衡量企业供电系统电能利用程度及电气设备使用状况的一个具有代表性的重要指标。提高功率因数便提高了电源设备的供电能力,减小了供电线路的电能损耗,本文根据电路基础的基本理论,探讨了功率因数的测量和计算,提高功率因数的方法,并联电容器提高功率因数时电容值的两种算法以及在生产实际中的应用。

参考文献

[1]王松林,吴大正,李小平,等.电路基础(第三版)[M].西安:电子科技大学出版社,2008.

[2]杜瑞红.采用并联电容器提高功率因数的算法[J].中国电力教育,2010:263-268.

[3]陈俊章.用测电流法计算功率因数及其应用[J].电子报,2008:571.

作者简介:

陈姝(1983—),女,硕士研究生,讲师,主要研究方向:电路与系统。

刘景夏(1963—),男,硕士研究生,教授。

王青松(1982—),男,硕士研究生,讲师。

上一篇:基于IEC61850标准的变电站通讯平台库设计与实... 下一篇:关于风力发电机组优化检修的探讨