高压变频器在300MW循环流化床机组引风机上的应用

时间:2022-10-09 12:22:44

高压变频器在300MW循环流化床机组引风机上的应用

摘要:本文简要介绍了高压变频器原理、现场安装调试情况,初步分析了高压变频器的节能效果,对认识了解高压变频器运行有一定的借鉴作用。关键词:循环流化床、引风机、高压变频调速装置、控制

中图分类号:TS737+.1 文献标识码:A 文章编号: 1.概 述某电厂地处陕西省府谷县,现有投产装机容量2×300MW循环流化床直接空冷机组。机组设计出力为300MW,每台锅炉配有两台AN31e6(u19-10)型静叶可调轴流式引风机,额定风量:321.4m3/h、全压为5452Pa,轴功率:2104kW;配用YKK800-8-W型电动机,额定功率2500kW、额定电压6kV、额定电流293A、功率因素:0.86、额定转速:746r/min,电动机无调速装置,靠改变风机静叶的角度来调节风量。发电厂的发电负荷根据电网要求,通常在额定负荷的50%~100%之间进行调整、变化,以满足电网运行的要求;随着发电机负荷的变化,锅炉的送风量、引风量相应变化,引风机出力调整采用通过改变风机叶片的角度来调节。通过改变风机静叶的角度来调节风量尽管比一般采用控制入口挡板开度来实现风量的调节有一定的节能效果,但是节流损失仍然很大,特别是在低负荷运行时,节流损失更大。其次静叶调节动作迟缓,造成机组负荷调整响应迟滞。异步电动机在启动时启动电流一般达到电动机额定电流的5-8倍,对电动机、动力电缆造成较大冲击,对厂用电系统稳定运行也有一定的影响,同时强大的冲击转矩和冲击电流,缩短了电动机和风机机械的使用寿命。通过大量应用表明,应用高压变频调速装置来改变电机转速,满足不同负载的工艺要求,是解决以上矛盾的有效手段。2.高压变频器调速节能原理2.1 高压变频调速的方法根据流体力学的基本定律可知:风机(或水泵)类设备均属平方转矩负载,其转速n与流量Q、压力(扬程)H以及轴功率P具有如下关系: Q1/ Q2=n1/n2 (1) H1/ H2=(n1/n2)2 (2) P1/ P2=(n1/n2)3 (3)式中:Q1、H1、P1—风机(或水泵)在n1转速时的流量、压力(或扬程)、轴功率; Q2、H2、P2—风机(或水泵)在n2转速时的相似工况条件下的流量、压力(或扬程)、轴功率。由公式(1)、(2)、(3)可知,风机(或水泵)的流量与其转速成正比,压力(或扬程)与其转速的平方成正比,轴功率与其转速的立方成正比。当风机转速降低后,其轴功率随转速的三次方降低,驱动风机的电机所需的电功率亦可相应降低。 从上述分析可见,调速是风机节能的重要途径。采用高压变频调速可以实现对引风机电机转速的线性调节,通过改变电动机转速使炉膛负压、锅炉氧量等指标与引风机风量维持一定的关系。3.高压变频调速系统应用情况3.1 高压变频器的组成该厂采用某公司生产的HARSVERT-A系列电压源型全数字控制高压变频器,高-高方式、采用H桥串联方案。额定容量:1600KVA、额定电压:6kV、额定电流:160A。高压变频器装置由变压器柜、功率柜、控制柜、刀闸切换柜四个部分组成,冷却方式采用:空水冷却系统。为单元串联多电平结构。3.2 高压变频器与现场接口方案该高压变频器的控制部分由高速单片机、人机界面和PLC共同构成。单片机实现PWM控制和功率单元的保护。人机界面提供友好的全中文监控界面,同时可以实现远程监控和网络化控制。内置PLC用于柜体内开关信号的逻辑处理,可以和用户现场灵活接口,满足用户的特殊需要。该高压变频器使用西门子S7-200系列PLC,具有较好的与DCS系统接口能力,根据风机的特性运行要求以及高压变频器控制的具体要求采取了相应控制方案。3.3高压变频器运行方式及控制逻辑引风机高压变频器电气一次系统接线方式采用“一拖一”手动切换方式。高压变频器可根据运行方式需要,进行运行方式的切换,如:一台变频一台工频的运行方式和两台工频的运行方式。缺点是在进行高压变频器运行方式切换时,需要将机组负荷进行调整,降低负荷后,停止#1(或#2)引风机运行,方可进行引风机运行方式的切换操作。正常情况下,2台引风机投入高压变频调速运行方式。3.4高压变频器运行方式控制

控制分为就地控制及远程控制两种。远程控制状态时,DCS输出的转速命令信号跟踪高压变频器转速反馈。就地控制时,对高压变频器远方操作无效。高压变频器受DCS控制时分自动和手动两种方式。手动状态时,运行人员通过改变DCS操作画面转速控制块控制高压变频器转速,实现锅炉负压的调节。3.4引风机高压变频器启动的允许条件

1) #1、2引风机的6kV高压侧部分的启动反馈为1;

2) #1、2引风机的高压变频器就地从其PLC送来的启动就绪开关为1;

3) #1、2引风机高压变频器的转速设定值的输出不得小于30%。

3.5引风机高压变频涉及相关跳闸保护方面

1)单侧风机的高压变频器跳闸后,需要联跳相应一侧的送风机。并联关相应挡板及静叶的逻辑不变。

2)#1、2风机的高压变频跳闸后由于相应的高压开关联跳,故保留原锅炉大连锁跳闸回路不变。

3)锅炉的安全运行是全厂动力的根本保证,虽然高压变频调速装置可靠,但一旦出现问题,必须确保锅炉安全运行,所以必须实现“工频—变频”运行的切换。一旦一台引风变频故障,无法在短时间内恢复,需要引风自动控制到原先的静叶来调整,在此背景和需要下,对一台引风变频停掉,用另一台引风变频运行;此时机炉负荷应保持在:180MW左右。4.经济综合测试评价4.1节能效益明显以下是#1机组#1、2引风机高压变频器运行后,对11月16日至20日生产数据进行初步比较。

通过上表数据对比,从节电率分析,#1机组在发电负荷相同情况时,#1机组两台引风机工频运行每天平均耗电量40761 kWh,#1机组两台引风机变频运行每天平均耗电量 22869kWh,节约电量17892kWh,节电率为43.8%。4.2 节能计算两台引风机节电费用,按全年运行7200小时的日负荷分布统计,使用两台高压变频调速引风机,与以往的静叶调节相比较,经计算,全年可以节省5367600kWh。按发电成本电价0.2553元/kW;h计算,5367600kW;h×0.2553元/kWh=1370348.28元。5.存在的问题#1、2炉引风机高压变频器投入运行,从现场情况分析,由于高压变频器与电动机之间的配置存在一些问题(高压变频器按照电机运行电流选型,造成高压变频器容量不足,导致高压变频器最高频率限制为42Hz),影响电机的出力,在机炉额定负荷下调节裕量不足。目前,引风机变频状态运行,机炉负荷只能运行在250MW左右。机炉满负荷运行在300MW时,高压变频器节能效果并不明显。6.结束语随着厂网分开,竞价上网日趋激烈,各发电企业竞争日趋白日化,努力提高发电设备的健康水平,满足系统要求;加强管理,进一步挖潜节能潜力,建立节能型企业,提高发电企业竞价上网的竞争能力,是发电厂发展的方向;采用高压变频技术对高能耗用电设备进行技术改造,不仅能直接收到降低厂用电、降低供电煤耗、增加上网电量带来的直接经济效益,而且对设备的安全、可靠运行,减少设备故障等都起到了积极的作用

参考文献

[1]刘辉,常胜.厂用电系统测控保智能单元及其与DCS融合模式的探讨[J].继电器. 20009(5)

[2]董仕毅.电解铝厂大型整流变电所综合自动化控制的开发应用[J].云南冶金.2011(23)

[3]李经升,叶曙光,黄德祥,唐平,沈建石.基于DSP的DL-201型高压开关设备的保护测控单元[J].高压电器.20008(61)

上一篇:浅谈如何加强建筑工地的火灾管理 下一篇:海上油气田开发工艺设计的节能减排措施