大跨网壳结构橡胶支座抗震分析

时间:2022-10-07 12:57:07

大跨网壳结构橡胶支座抗震分析

摘要:随着我国经济建设的发展对建筑行业有了更高的要求,网壳结构日趋向复杂化、大型化,形式多样化发展。橡胶支座基于自身特点具有构造简单、安装方便、节省钢材、造价较低等优点广泛应用于网架、网壳等网格结构,对大跨网壳橡胶支座进行抗震分析具有重要的实际意义。

摘要:随着我国经济建设的发展对建筑行业有了更高的要求,网壳结构日趋向复杂化、大型化,形式多样化发展。橡胶支座基于自身特点具有构造简单、安装方便、节省钢材、造价较低等优点广泛应用于网架、网壳等网格结构,对大跨网壳橡胶支座进行抗震分析具有重要的实际意义。

关键词:大跨度网壳结构; 橡胶支座; 抗震性能

关键词:大跨度网壳结构; 橡胶支座; 抗震性能

中图分类号:U442.5+5 文献标识码:A 文章编号:

中图分类号:U442.5+5 文献标识码:A 文章编号:

Abstract: with the development of our country's economic construction of construction industry had the higher request, net shell structure is complex, large-scale to, various form development. Based on the characteristics of their rubber bearing with simple structure, easy installation, save steel, and lower cost advantages are widely used in the rack, nets hulls grid structure of large span nets shell rubber bearings for seismic analysis has the important practical significance.

Abstract: with the development of our country's economic construction of construction industry had the higher request, net shell structure is complex, large-scale to, various form development. Based on the characteristics of their rubber bearing with simple structure, easy installation, save steel, and lower cost advantages are widely used in the rack, nets hulls grid structure of large span nets shell rubber bearings for seismic analysis has the important practical significance.

Keywords: big span net shell structure; Rubber support; Seismic performance

Keywords: big span net shell structure; Rubber support; Seismic performance

随着我国经济建设的发展对建筑行业有了更高的要求,网壳结构日趋向复杂化、大型化,形式多样化发展。我国多数大中城市处于地震区,因此网壳和拱形结构体系的分析和设计时,需要解决的一个关键问题就是网壳建筑的抗震能力。大跨网壳结构具有很大的水平推力,跨度的越大,结构重量也越大,下部结构往往难以承受。设计中可以通过寻找合适的支座形式以及调整支座的水平位移,来增加结构强度和抗震效果。橡胶支座基于自身特点具有构造简单、安装方便、节省钢材、造价较低等优点广泛应用于网架、网壳等网格结构。结构振动控制技术应用到大跨网壳结构的抗震研究中是一种新型的抗震理念。因此,对大跨网壳橡胶支座进行抗震分析具有重要的实际意义。

随着我国经济建设的发展对建筑行业有了更高的要求,网壳结构日趋向复杂化、大型化,形式多样化发展。我国多数大中城市处于地震区,因此网壳和拱形结构体系的分析和设计时,需要解决的一个关键问题就是网壳建筑的抗震能力。大跨网壳结构具有很大的水平推力,跨度的越大,结构重量也越大,下部结构往往难以承受。设计中可以通过寻找合适的支座形式以及调整支座的水平位移,来增加结构强度和抗震效果。橡胶支座基于自身特点具有构造简单、安装方便、节省钢材、造价较低等优点广泛应用于网架、网壳等网格结构。结构振动控制技术应用到大跨网壳结构的抗震研究中是一种新型的抗震理念。因此,对大跨网壳橡胶支座进行抗震分析具有重要的实际意义。

1大跨网壳结构的特点

1大跨网壳结构的特点

大跨度、大空间的建筑从20世界开始在世界各地得到迅猛的发展。构成空间网壳结构网架的基本单元有三角锥、三棱体、正方体、截头四角锥等。这些基本单元可组合成平面形状的三边形、四边形、六边形、圆形或其他任何形体;在在体育建筑、纪念性建筑、文化建筑领域得到了广泛的应用,具有工业化程度高、自重轻、稳定性好、外形美观的特点。

大跨度、大空间的建筑从20世界开始在世界各地得到迅猛的发展。构成空间网壳结构网架的基本单元有三角锥、三棱体、正方体、截头四角锥等。这些基本单元可组合成平面形状的三边形、四边形、六边形、圆形或其他任何形体;在在体育建筑、纪念性建筑、文化建筑领域得到了广泛的应用,具有工业化程度高、自重轻、稳定性好、外形美观的特点。

大跨度空间结构型式丰富多彩,结构形体与其受力性能之间存在紧密的内在联系,结构型式不断创新。网壳有单层网壳和双层网壳之分,材料可用钢、木材、钢筋混凝土等。网壳结构的形式主要有球面网壳、双曲面网壳、圆柱面网壳、双曲抛物面网壳等。网壳结构是源于薄壳并具有网架结构特点的一种空间结构,为大跨度建筑提供了创造各种平面空间形状和新颖独特建筑形象的有力手段。网壳结构兼有杆系结构和薄壳结构的固有特性。网壳结构中各个构件几乎均衡承受各类荷载的作用,内力分布比较均匀。结构轻型化使网壳结构可以跨越更大的空间。网壳结构具有标准化、规格化,安装方便的特征。网壳结构的杆件可以用型钢、铝材、木材、钢筋混凝土和玻璃钢等建材制成,容易实现建筑构件的大批量工业化生产,多种节点体系的发明及生产方法的高度自动化;网壳结构无论在平面还是立体型面都可以给建筑师充分的想象力和创作自由。钢筋混凝土薄壳结构不能实现的形态,网壳结构几乎均可实现。另外,由于网壳结构的曲面外形,还可以使其形成天然的排水功能。

大跨度空间结构型式丰富多彩,结构形体与其受力性能之间存在紧密的内在联系,结构型式不断创新。网壳有单层网壳和双层网壳之分,材料可用钢、木材、钢筋混凝土等。网壳结构的形式主要有球面网壳、双曲面网壳、圆柱面网壳、双曲抛物面网壳等。网壳结构是源于薄壳并具有网架结构特点的一种空间结构,为大跨度建筑提供了创造各种平面空间形状和新颖独特建筑形象的有力手段。网壳结构兼有杆系结构和薄壳结构的固有特性。网壳结构中各个构件几乎均衡承受各类荷载的作用,内力分布比较均匀。结构轻型化使网壳结构可以跨越更大的空间。网壳结构具有标准化、规格化,安装方便的特征。网壳结构的杆件可以用型钢、铝材、木材、钢筋混凝土和玻璃钢等建材制成,容易实现建筑构件的大批量工业化生产,多种节点体系的发明及生产方法的高度自动化;网壳结构无论在平面还是立体型面都可以给建筑师充分的想象力和创作自由。钢筋混凝土薄壳结构不能实现的形态,网壳结构几乎均可实现。另外,由于网壳结构的曲面外形,还可以使其形成天然的排水功能。

2 橡胶支座的抗震工作原理

2 橡胶支座的抗震工作原理

橡胶支座在防震中起到一个基础隔震的效果。它能将地面运动和结构或结构部件隔离,同时起到一个缓冲作用,将地震作用和能量在传递过程中减弱。当地面地震运动很强烈时,结构内部也只有中等程度的运动。橡胶支座基于其材料性质具有大变形的能力和自复位能力,有较强的竖向支撑建筑物的重力,还能提供一定的水平刚度。橡胶支座的刚度减小和阻尼增加都可使结构隔离较大的地震。橡胶底座优于传统的抗震设计,它只考虑结构本身而对被保护的结构无太多限制,不仅能保护结构本身同时对内部设备也能起到保护作用,并且检测修复方便。适用范围广,不仅可用于新建筑物的抗震设计而且在旧建筑的抗震改良中。

橡胶支座在防震中起到一个基础隔震的效果。它能将地面运动和结构或结构部件隔离,同时起到一个缓冲作用,将地震作用和能量在传递过程中减弱。当地面地震运动很强烈时,结构内部也只有中等程度的运动。橡胶支座基于其材料性质具有大变形的能力和自复位能力,有较强的竖向支撑建筑物的重力,还能提供一定的水平刚度。橡胶支座的刚度减小和阻尼增加都可使结构隔离较大的地震。橡胶底座优于传统的抗震设计,它只考虑结构本身而对被保护的结构无太多限制,不仅能保护结构本身同时对内部设备也能起到保护作用,并且检测修复方便。适用范围广,不仅可用于新建筑物的抗震设计而且在旧建筑的抗震改良中。

3、橡胶支座的构造

3、橡胶支座的构造

橡胶支座并非完全的橡胶,将橡胶和钢板配合适用。橡胶支座通常采用薄钢板(厚度为2mm、3mm、5mm等)和橡胶垫(厚度为5mm、8mm、11mm等)通过高温硫化粘结,层叠而成。支架竖向受力时钢板由于弹性高变形小,橡胶板在受压变形时受到钢板的约束,整个支架中心在受压下呈三轴状态,具有较高的竖向承载力。当横行作用力大时,支架则成为橡胶片的变形叠加,支座的水平变形较大。橡胶垫对任何水平方向的运动均呈柔性约束。当橡胶支座承受水平荷载时,其橡胶垫的相对侧移大大减小,使橡胶支座可达到很大的整体侧移而不失稳,而且保持较小的水平刚度(仅为竖向刚度的l/500_1/1500)。

橡胶支座并非完全的橡胶,将橡胶和钢板配合适用。橡胶支座通常采用薄钢板(厚度为2mm、3mm、5mm等)和橡胶垫(厚度为5mm、8mm、11mm等)通过高温硫化粘结,层叠而成。支架竖向受力时钢板由于弹性高变形小,橡胶板在受压变形时受到钢板的约束,整个支架中心在受压下呈三轴状态,具有较高的竖向承载力。当横行作用力大时,支架则成为橡胶片的变形叠加,支座的水平变形较大。橡胶垫对任何水平方向的运动均呈柔性约束。当橡胶支座承受水平荷载时,其橡胶垫的相对侧移大大减小,使橡胶支座可达到很大的整体侧移而不失稳,而且保持较小的水平刚度(仅为竖向刚度的l/500_1/1500)。

4、橡胶支座的特点

4、橡胶支座的特点

支座在建筑结构中因其受力集中,且需要活动,故相当于一个可动“关节”。作为受力复杂的运动部件,支座在理论上属于具有运动副的机构,不属于土建范畴的设计方法和规范,材料选择、设计、加工等应按照机械标准进行。在土建工程中使用时,还应考虑土建的功能,要满足土建的规范要求。支座制造使用的高分子橡胶材料又与“化学工业”相联系,因此具有相当复杂的物理、化学性能。橡胶具有“粘一弹一塑”性,各项参数依赖于变形和时间的变量,力学计算很难进行,设计参数也难以确定。

支座在建筑结构中因其受力集中,且需要活动,故相当于一个可动“关节”。作为受力复杂的运动部件,支座在理论上属于具有运动副的机构,不属于土建范畴的设计方法和规范,材料选择、设计、加工等应按照机械标准进行。在土建工程中使用时,还应考虑土建的功能,要满足土建的规范要求。支座制造使用的高分子橡胶材料又与“化学工业”相联系,因此具有相当复杂的物理、化学性能。橡胶具有“粘一弹一塑”性,各项参数依赖于变形和时间的变量,力学计算很难进行,设计参数也难以确定。

5、橡胶支座的抗震分析

5、橡胶支座的抗震分析

大跨度空间的网格结构及张力结构具有刚度低、阻力小等特点,对地震的震动荷载比较敏感,橡胶支座被广泛应用于各类大型网壳工程结构中。由于橡胶支座的竖向承载力大,用作建筑物的支撑垫非常安全,能将上部结构的内力包括压力、拔力、各方面剪力等传递到下部。橡胶的固定铰支座起到释放弯矩、水平剪力和温度应力的作用,并具有耐久性。在地震、风振、火车、汽车等动力荷载作用下支座具有抗震、减振甚至隔振的功能。由于橡胶底座的刚度和阻尼性能稳定,通过准确的设计计算能够控制较强地震时网壳结构的反应。并具有稳定的弹性复位功能,能在多次地震中自动瞬间复位。在使用中,多采用叠层橡胶支座建造隔震房屋,对地震的反应控制在1/2~1/12范围内,安全性比较高。此外,由于具有构造简单、安装方便等特点,可以安装在不同的标高位置,不容易受建筑物的地基不均匀沉降影响,因此在工程中具有现实可行性。

大跨度空间的网格结构及张力结构具有刚度低、阻力小等特点,对地震的震动荷载比较敏感,橡胶支座被广泛应用于各类大型网壳工程结构中。由于橡胶支座的竖向承载力大,用作建筑物的支撑垫非常安全,能将上部结构的内力包括压力、拔力、各方面剪力等传递到下部。橡胶的固定铰支座起到释放弯矩、水平剪力和温度应力的作用,并具有耐久性。在地震、风振、火车、汽车等动力荷载作用下支座具有抗震、减振甚至隔振的功能。由于橡胶底座的刚度和阻尼性能稳定,通过准确的设计计算能够控制较强地震时网壳结构的反应。并具有稳定的弹性复位功能,能在多次地震中自动瞬间复位。在使用中,多采用叠层橡胶支座建造隔震房屋,对地震的反应控制在1/2~1/12范围内,安全性比较高。此外,由于具有构造简单、安装方便等特点,可以安装在不同的标高位置,不容易受建筑物的地基不均匀沉降影响,因此在工程中具有现实可行性。

6、小结

6、小结

大跨网壳结构具有很大的水平推力,跨度越大,结构重量也越大,下部结构往往难以承受。结合我国城市多处于震区的特点,在网壳结构体系设计时,要解决网壳建筑的抗震能力。由于橡胶支座的竖向承载力大,基于构造简单、安装方便、节省钢材、造价较低等优点被广泛应用于网架、网壳等网格结构,对大跨网壳橡胶支座进行抗震分析具有重要的实际意义。

大跨网壳结构具有很大的水平推力,跨度越大,结构重量也越大,下部结构往往难以承受。结合我国城市多处于震区的特点,在网壳结构体系设计时,要解决网壳建筑的抗震能力。由于橡胶支座的竖向承载力大,基于构造简单、安装方便、节省钢材、造价较低等优点被广泛应用于网架、网壳等网格结构,对大跨网壳橡胶支座进行抗震分析具有重要的实际意义。

参考文献:

参考文献:

[1] 周乾. SMA―橡胶复合支座在大跨空间结构中的隔震研究[D]. 北京工业大学硕士学位论文,2003.

[1] 周乾. SMA―橡胶复合支座在大跨空间结构中的隔震研究[D]. 北京工业大学硕士学位论文,2003.

[2] 曾德民.橡胶隔震支座的刚度特征与隔震建筑的性能试验研究[D].中国建筑科学研究院博士学位论文,2007.

[2] 曾德民.橡胶隔震支座的刚度特征与隔震建筑的性能试验研究[D].中国建筑科学研究院博士学位论文,2007.

[3] 秦德生. 板式橡胶支座力学性能试验研究及数值模拟[D]. 大连理工大学硕士学位论文,2008.

[3] 秦德生. 板式橡胶支座力学性能试验研究及数值模拟[D]. 大连理工大学硕士学位论文,2008.

[4] 王秀丽,高月梅,高森等.大跨度双向张弦粱地震响应分析[J].甘肃科学学报,2007,19(3):123-126.

[4] 王秀丽,高月梅,高森等.大跨度双向张弦粱地震响应分析[J].甘肃科学学报,2007,19(3):123-126.

[5] 李旭东,鞠洪海.隔震橡胶支座力学性能研究综述[J].山西建筑,2007,33(2):86-87.

[5] 李旭东,鞠洪海.隔震橡胶支座力学性能研究综述[J].山西建筑,2007,33(2):86-87.

[6] 丁阳,张向荣,李忠献. 应用SMA复合橡胶支座的大跨度空间结构隔震研究[J]. 沈阳建筑大学学报(自然科学版), 2005,21(5):438-444.

[6] 丁阳,张向荣,李忠献. 应用SMA复合橡胶支座的大跨度空间结构隔震研究[J]. 沈阳建筑大学学报(自然科学版), 2005,21(5):438-444.

[7] 朱艳峰,刘峰,黄小清等.橡胶材料的本构模型[J].橡胶工业,2006,02(2):119-125.

[7] 朱艳峰,刘峰,黄小清等.橡胶材料的本构模型[J].橡胶工业,2006,02(2):119-125.

[8] 胥明,黄跃平,周明华.板式橡胶支座抗压弹性模量检测方法的研究[J].公路,2006,02(2):5-11.

[8] 胥明,黄跃平,周明华.板式橡胶支座抗压弹性模量检测方法的研究[J].公路,2006,02(2):5-11.

[9] 淳静,王伟,赵庭耀.橡胶支座在公路桥梁中的应用[J].黑龙江交通科技,2005,09(9):126-127.

[9] 淳静,王伟,赵庭耀.橡胶支座在公路桥梁中的应用[J].黑龙江交通科技,2005,09(9):126-127.

[10] 王秀丽,王磊.边界支承对复杂曲面罔壳结构性能的影响[A].刘锡良.第八届全国现代结构工程学术研讨会论文集[C].天津工业建筑杂志社,2008:711-715.

[10] 王秀丽,王磊.边界支承对复杂曲面罔壳结构性能的影响[A].刘锡良.第八届全国现代结构工程学术研讨会论文集[C].天津工业建筑杂志社,2008:711-715.

存入我的阅览室

上一篇:浅议事业单位人力资源人事绩效考核改革措施 下一篇:新时期关于沥青混凝土路面平整度控制措施的探...