全自动化学发光免疫分析仪取样平台运动控制器设计

时间:2022-09-22 09:32:25

全自动化学发光免疫分析仪取样平台运动控制器设计

摘要:本文设计了全自动化学发光免疫分析仪取样平台的运动控制器。单轴控制器采用速度内环、位置外环的双闭环结构。其中位置控制环采用模糊控制,并进行前馈补偿,构成复合控制。同时考虑两轴联动的动态配合,设计了变增益交叉耦合控制器,补偿轮廓误差。实验结果表明,采用此控制策略不仅有效的提高了系统的单轴跟踪性能,而且轮廓误差明显降低。

关键词:运动控制;轮廓误差;前馈复合控制;变增益交叉耦合控制

中图分类号:TP273文献标识码:Adoi: 10.3969/j.issn.1003-6970.2011.03.025

Design of a Motion Controller for the Sampling Platform of a Automated Chemiluminescence Immunoassay Analyzer

Qian Jun1, Zhang Xin2, Bai Zhi-hong3, Jia Zan-dong4, Xu Zhong4, Wang Bi-dou1

(1.Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163 China; 2. CIOM Medical Instrument Co., Ltd. Changchun 130033, China; 3. HYB Bio-Medical Engineering Co., Ltd. Suzhou 215163, China; 4. Changchun Institute of Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China; 5. Changchun University of Technology, Changchun 130012, China)

【Abstract】 In this paper, a motion controller for the sampling platform of a automated chemiluminescence immunoassay analyzer is developed. The single-axis controller has a double closed-loop structure, consisting of an inside velocity loop and an outside position loop. In the position loop, the fuzzy controller and the feedforward compound controller are used. In consideration of the dynamic cooperation of the two axes, a variant gain cross-coupling-controller is designed to minimize contour error. Experimental results indicates that, by using this control strategy, not only the single-axis tracking performance having been improved efficiently, but the contour error having been minimized significantly .

【Key words】 motion control; contour error; feedforward compound control; variant gain cross-coupling-control

0引言

化学发光免疫分析法是以标记发光剂为示踪物信号建立起来的一种非放射标记免疫分析法。它具有灵敏度高、线性范围宽、分析速度快等优点,已成为临床免疫学检验中的常用手段而获得了广泛应用[1-3]。相应的化学发光免疫分析仪器已成为临床免疫学检验中不可或缺的检测设备。全自动化学发光免疫分析仪一改过去依赖于手工加样,再交由仪器测量的半自动化技术局面,是近十年来免疫检验技术的一次飞跃。全自动化学发光免疫分析仪需要对大量的样本进行连续的处理,取样平台运动控制系统是设备实现自动化的基础。需要设计出响应速度快、重复定位精度高、按规定轨迹运动的取样平台运动控制系统。

本文讨论了全自动化学发光免疫分析仪取样平台X―Y轴运动控制器的设计,包括单轴运动控制器和两轴变增益交叉耦合控制器的设计,最后给出了相应的实验结果。

1取样平台运动系统硬件结构

三自由度机械臂是取样平台的主要部分,包括两根X轴平行导轨、X轴滑块、两根Y轴导轨、Y轴滑块、Z轴齿形针管、Z轴液面传感器模块等,具体结构如图1所示。三个自由度分别是X轴的左右滑动、Y轴的前后滑动、Z轴的上下传动。X、Y轴的运动由直流电机驱动,实现取样针在平面上的定位。取样针的行程为160cm(X轴方向)×60cm(Y轴方向)。本文主要讨论取样平台X-Y轴运动的控制。

图1机械臂机械模型

Fig.1 Model of the Mechanism Robot Arm

2取样平台运动控制器设计

取样平台X轴、Y轴的控制目标是完成精确的位置控制。不仅对单个轴的运动速度和定位精度有严格要求,而且要求双轴联动时两轴之间的动态配合要好。因此对单轴跟踪误差和位置轨迹轮廓误差都需要加以考虑;在连续运动控制过程中,不但要考虑单轴的控制策略,还要考虑双轴联动时的交叉耦合控制策略[4,5]。

2.1取样平台单轴运动控制器设计

提高每一个运动轴的控制跟踪精度能有效地减小系统轮廓误差。取样平台的单轴控制器采用传统的速度内环,位置外环双闭环结构[6]。

2.1.1取样平台单轴速度环数学模型

数字随动系统中必须有D/A、A/D转换器或相当于其功能的转换装置。在该系统中,起D/A作用的是数字脉宽调制装置。它把数字输出量转化为脉宽可调的方波电压,并保持一个采样周期Ts,相当于一个零阶保持器,其传递函数为:

(1)

起A/D作用的是数字测速装置。其基本原理是数值微分,可等效为一个纯延迟环节。用Tr表示纯延迟时间,得传递函数为:

(2)

数字计算机的传递函数也可等效为一纯延迟环节,设Td为计算延迟时间,则其传递函数为:

(3)

综上所述,数字计算机及转换装置的传递函数为:

(4)

则取样平台单轴控制系统动态结构图如图2所示。

图2单轴控制器动态结构图

Fig.2 Block diagram of the single-axis controller

图中:Go(s) ――计算机及转换装置等效传递函数;

Ks――数字脉宽调制装置功率放大倍数;

Ce――伺服电机反电动势;

Tm――电力拖动系统机电时间常数;

α――速度反馈系数。

增加速度环的作用是:

(1)减小系统固有部分的惯性,提高系统的快速性;

(2)削弱被转速反馈包围部分参数变化及非线性影响,提高系统刚度,扩展调速范围。

2.1.2取样平台单轴位置控制器设计

采用古典方法进行单轴位置控制器的设计,无法解决动态特性与稳态精度间的矛盾。为此,设计智能控制器来克服一些控制理论靠单纯的数学解析结构难以处理对象不确定性的弱点。在本系统中,采用非线性量化因子模糊控制器实现位置控制器的设计[7,8],其结构图如图3所示。

图3单轴位置环模糊控制器结构图

Fig.3 Block diagram of the fuzzy controller for the position loop

控制器输入为误差e及误差变化率ec。通过非线性量化因子Fe、Fec将e、ec从语言的基本论域映射到量化论域E、EC。模糊控制器输出u=kuU。

取非线性量化因子为

(5)

式中:ne、nec――误差及误差变化率的量化等级;

ae、aec――常数。

E=EC=U={-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6}。定义在量化论域上的模糊子集为{NB,NM,NS,ZE,PS,PM,PB},分别表示“负大”、“负中”、“负小”、“零”、“正小”、“正中”、“正大”。E、EC及U的 赋值见表1,模糊规则表见表2。模糊推理采用Mamdani准则,输出模糊量逆模糊化采用加权平均法。

为了进一步提高系统的控制精度,在该取样平台单轴控制系统中,利用输入量的一阶和二阶导数信号进行前馈补偿,构成前馈复合控制(Feedforward Compound Control)[9]。具体实现框图如图4所示。引入输入量一阶导数前馈信号可以补偿速度误差,引入输入量二阶导数前馈信号可以补偿加速度误差。

图4单轴前馈复合控制器结构图

Fig.4 Block diagram of the feedforward compound controller

图中:――位置回路线性部分等效传递函数,KV为等效放大倍数,TV为等效时间常数;

D(s) ――前馈环节传递函数。

根据完全不变性原理,取

(6)

2.2双轴变增益交叉耦合轮廓跟踪控制

根据各个运动轴的反馈信息和差补值,实时修正轮廓误差模型的增益,以寻求最佳的补偿律并反馈到各轴,从而达到补偿轮廓误差的目的,这就是变增益交叉耦合控制(Variant Gain Cross-coupling-control)[10-12]。根据上述单轴控制器设计及交叉耦合控制原理,得出取样平台双轴协调运动控制系统框图如图5所示。其中,rx、ry和ex、ey分别为X、Y轴的参考输入和跟踪误差;Cx为X轴的交叉耦合增益系数;Cy为Y轴的交叉耦合增益系数;ε为系统的轮廓误差;Cc为交叉耦合控制器,u为其输出。对于给定的系统,ex、ey作为交叉耦合控制器的输入量,交叉耦合控制器的输出再通过交叉耦合系数Cx、Cy分解到两个进给轴上,从而控制两轴的协调运动。

图5双轴变增益交叉耦合控制器结构框图

Fig.5 Block diagram of the two-axis variant gain cross-coupling-controller

交叉耦合控制器选择的是经典的PID控制策略[13],控制器的参数用实验方法得出。补偿量为

ε=-exCx+eyCy (7)

X、Y轴的补偿分量Ux、Uy分别为

(8)

Cx、Cy可以根据文献[14]所述方法求得。它们分别随着X、Y轴的跟踪误差ex、ey和参考轨迹的变化而取不同的值,即Cc为变增益交叉耦合控制器。

3实验结果与分析

以长春光机医疗仪器有限公司的CA-2000全自动化学发光免疫分析仪原理样机为平台,对本文所设计的运动控制器进行了实验研究。

图6是单轴S型曲线位置随动过程的实验曲线。可以看出,稳态误差变化范围是0.4%~0.9%,稳态误差的影响已经基本克服。非线性量化模糊控制在误差较小时采取的非线性处理结构是达到此控制效果的主要原因;动态跟踪误差也明显降低,这是是前馈控制的本质决定的。此外,实验发现在随动过程中电枢电流的平均值明显变小。这是因为:在稳态时,一方面该控制器不需要频繁做较大范围的调整输出,就不会造成速度环给定出现较大的变化;另一方面,该控制方法抑制扰动能力也优于基本模糊控制;在动态跟踪过程中,前馈控制能够依据给定和系统前向通道的变化产生提前的控制量,克服偏差控制量产生的滞后,因此,速度超调就被有效地克服了。

为了验证双轴变增益交叉耦合轨迹跟踪的实际效果,按照取样臂的运行范围,以图7的路径为例进行实验研究,以加样系统Z轴的垂直中心M为研究对象。采用NURBS插值方法[14]进行路径规划,其中参考进给速度为400mm/s。图8对实际速度与理论速度进行了比较,实验中通过局部放大可以看出实际速度相对于理论速度约有60ms的滞后,曲线基本重合。根据编码器反馈的实际值和M点在平面某附近点的X、Y轴的参考坐标,就可以获得M点的实际轮廓曲线和理论轮廓曲线。M点实际运动轨迹与参考轨迹之间的轮廓误差可以通过轮廓误差计算公式得到,如图9所示。结果表明,曲线在曲率较大处的误差较平坦处大,但是能够控制在要求范围内。

图7轨迹跟踪曲线

Fig.7 Curve of the trajectory tracking

图8实验速度曲线

Fig.8 Experimental speed curve

图9变增益交叉耦合轮廓误差

Fig. 9 Coupling error of variant gain cross-counpling control

4结论

本文针对取样平台运动系统的要求,进行了单轴速度环与位置环控制器的设计;为了进一步提高单轴的跟踪精度,利用输入量的一阶、二阶导数信号进行前馈控制,构成前馈控制和反馈控制相结合的复合控制系统;基于观测跟踪误差和轮廓误差两种误差,进行了变增益交叉耦合控制器的设计。在硬件不变的情况下有效地提高了系统的跟踪精度,使系统的轮廓误差明显降低,同时响应时间也满足设计要求。实验结果表明,此控制策略满足了取样平台的高精度、高速度的定位的工作要求。

参考文献

[1] D.S. Hage. Immunoassays [J]. Anal.Chem., 1999, 71: 294-304.

[2] 王栩, 林金明. 化学发光免疫分析技术新进展[J]. 分析实验室, 2007, 19(6): 329-331.

[3] LJ Kricka. Chemiluminescence and Bioluminescence [J].Anal. Chem., 1999, 71: 305-308.

[4] Masory O, Xiu D. Contour errors in a new class of CNC machine tools [C]. The 1998 World Automation Congress. Alaska, 1998.

[5] 张崇巍等. 运动控制系统[M]. 武汉: 武汉理工大学出版社, 2002: 12-20.

[6] 孙旭. 计算机控制系统设计方法[J]. 舰船科学技术, 2000(1): 33-36.

[7] 诸静等. 模糊控制原理与应用[M]. 机械工业出版社, 1995: 240-268.

[8] 余永权,曾碧. 单片机模糊逻辑控制[M]. 北京航空航天大学出版社,1995: 289-297.

[9] 张坚. 跟踪雷达大闭环控制系统复合控制模拟综合设计实验[J]. 火控雷达技术,1996,20(1): 1-9.

[10] Y. Keron, C. C. Lo. Advanced Controller for Feed Drivers[J]. Annals of CIRP, 1992, Vol. 41: 689-698.

[11] Y. Keron, C. C. Lo. Variable-gain Cross-Coupled Controller for Contouring[J]. Annals of CIPR, 1991, Vol. 104: 371-374.

[12] 王治平等. 多轴伺服机构高精度路径控制[C]. 中国机械工程学会(台湾)第十三届学术研讨会(控制),1997.

[13] 乔治中,陈拯中,王银添. 两轴运动机构精密运动控制[C]. 八十七年度机械人与自动化研讨会(台湾),明志工专, 1998.

[14] 王侃夫. 机床数控技术基础[M]. 机械工业出版社,2001: 166-187.

注:本文中所涉及到的图表、注解、公式等内容请以PDF格式阅读原文

上一篇:随机振动多窗口谱分析法模型建立及统计分析 下一篇:ZigBee无线传感器网络在瓦斯监测系统中的应用