煤化工污水处理技术及设备运行分析

时间:2022-09-21 04:49:54

煤化工污水处理技术及设备运行分析

中图分类号:F270 文献标识:A 文章编号:1009-4202(2014)02-000-02

摘 要 在对煤化工污水对环境的污染进行论述的基础上,分析了煤化工污水特点及主要处理技术措施。同时,从煤化工污水处理设备的实际运行角度出发,解决了运行过程中设备存在的主要故障。

关键词 煤化工 污水 水处理

一、我国煤化工行业消耗水资源的现状

发展煤化工将耗费大量的水资源并有可能污染环境,而其能源转化效率也存在提高的空间。 煤炭资源和水资源呈逆向分布。

水资源是煤化工产业发展的重要制约因素,由于地理、气候等客观因素,我国水资源分布严重不均,煤炭资源和水资源呈逆向分布。

据统计,目前我国煤制烯烃耗水量为32吨/万元产值,煤制乙二醇为45吨/万元产值,煤制油耗水量为0.214吨/吉焦,煤制天然气为0.229吨/吉焦。

煤炭深加工也将不可避免地释放二氧化碳,如煤制天然气的二氧化碳排放量约为0.137吨/吉焦,煤制烯烃为12吨/万元产值。我国近年来二氧化碳排放量的快速增长将使我国不得不面临越来越大的国际压力。

煤制燃料的能源利用率同样存在提升的空间,据统计,煤制油的能量利用率为59%,煤制天然气为47%,煤制二甲醚仅为40%。

即使能够解决上述问题,即将实行的碳税亦将蚕食煤化工产业的利润率,据财政部“中国碳税税制框架设计”,在碳税征收初期的税率为10元/吨二氧化碳,以后逐渐上升至70元/吨,碳税制度或将对我国的煤化工行业带来深刻影响。

二、煤化工污水对环境的污染

首先,污水当中主要包含油、酚、氰、苯及相关的衍生物污染物质,这部分污染物质在分解过程中将会大量消耗水中的氧气,而且这部分污染物还会对水体当中的生物产生直接的毒害作用,随着其在水体当中的持续蓄积,人、动物直接施用之后将会污染生物体,造成蓄积、中毒,同时对生物的正常生长造成危害。

其次,由于煤化工污水中的COD浓度较高,在排入周围环境之后,将会消耗水体当中的氧气,降低水体中溶解氧的含量,使得其中的水生生物不能生存。

再次,因为污水中所包含的氨氮类物质浓度较高,将会导致其中的藻类等出现异常繁殖,引发起水体富营养化等,一旦产生藻类在水体中积聚,将使得水体中的光线透射程度下降,光合作用所产生的氧气含量下降,随着消耗的氧气量增加,会造成藻类的大量死亡,从而使得水体中的氧气含量进一步下降,使得鱼类大量死亡。

2、煤化工污水特点及主要处理技术措施

煤化工废水的特点是高氨氮,采用物理吹脱法时处理效率低,不能直接实现达标排放,其后仍需生化处理,且生化处理难度未有效降低,同时氨氮进入大气将造成恶臭气体的二次污染问题。采用化学分解法运行费用太高,自动化控制程度要求很高,总体上技术尚未成熟,风险很高。由于氨氮含量高,采用常规A/O工艺难以实现达标排放。

煤化工企业所排放的污水中主要是煤气化过程中所产生的污水,在高温高压洗涤煤气之后的洗涤水回收之后,通过絮凝沉淀会排放部分污水,其中主要的污染物质是氨氮、COD、BOD、硫化物和SS 等物质,而且水体的温度、硬度、SS以及氨氮含量都较高。

当前,国内对煤化工所采取的污水处理技术主要以生化法为主,该方法对废水中有机污染物有良好的去除作用。但是,因为污水中所包含的污水中含有浓度较高的氰化物,将对后续生物处理系统中的微生物造成了对应的抑制与毒害作用。所以,通过适当的物化方法将其中的氰化物等有毒物质去除之后,通过生化法清除污水中的有机物是一个理想的途径。但是,在实际的污水处理过程中,因为煤化工污水处理设施在运行过程中需要进行及时的维护,这需要企业基建部门做好对应的工作,确保整个环保设施能够正常工作。

三、煤化工企业运行过程中的水污染处理工作

3.1 预防微孔曝气器老化,确保O池溶氧充足

溶解氧是整个生化处理系统的核心,而污水处理曝气池大部分采用的是微孔曝气器,虽然这种设备的氧利用效率较高,而且具有较高的节能效果,但是其在日常的运行过程中容易出现老化、堵塞等问题,影响整个设备的运行效果。

对于微孔曝气系统存在的堵塞老化问题,根据污染源的不同可以分为两种:其一,因为鼓风机中不洁净空气使得孔内出现堵塞,设备部门必须定期对这些设备进行清理、更换,尤其是对入口前的空气过滤器,要避免灰尘、尘埃等进入曝气系统。同时,要保证通风顺畅、减少进风的阻力,例如适当增加进风截面面积与连接鼓风机截面的面积等,这样可以有效降低进风的速度。同时,在开停机之前要将阀门放空,及时的将管网中的积水排除,使得系统阻力下降。其二,对于污水侧导致的堵塞问题,在曝气持续一段时间之后,曝气器的表面将会生长生物膜,或者因为水过硬而产生碳酸钙的沉淀,使得曝气器形成外堵。针对这种问题主要爱用人工方式或者高压水对设备进行清理。

3.2 污水处理设备结垢问题分析

污水生化处理系统投入运行之后,通常会存在着离心鼓风机的出口压力逐步增加,风机出口压力逐步上涨至0.085MPa,导致鼓风机转速出现报警。而且随后还出现了O 池曝气管的损坏数量增加, O池曝气不均匀,最终造成污水处理质量下降的问题。在处理过程中,先将A/O 池中的污水抽空,发现池壁上结垢较为明显,直接将曝气管中的微孔堵塞。通过对这些结垢物质进行分析,发现其中钙镁含量达到40.57 %,碳酸根含量达到58.77 %,这表明结垢物质主要是碳酸盐垢。

通过对应的停工维修处理,将O池中的所有曝气管膜片进行及时的更换和清理,但是在持续运行3~5 个月之后,O 池中的曝气器膜片再次出现了结垢现象,使得O 池中的DO含量下降。另外,池中的水下推进器的电机、叶片和滑动导轨上都存在结垢问题,使得水下推进器也出现了对应的故障。

考虑到A/O 池必须持续满负荷的运行,不能对之进行停工检修。为了能够增加O池中的DO,采取了在O池增加悬挂链曝气器的方式,在设备运行的过程中加装。投入使用之后使得污水出口处COD含量以及氨氮物质的含量总体下降。

3.3 保证生化系统设备运行稳定

水下的推进设备需要具有适应污水的特性,尤其是能够抗腐蚀、防结垢,这对于生化系统设备而言尤为重要。但是,这些设备长期在水中工作,其出现故障时不易发现。从而导致故障发生的主要原因来看,主要是因为电机上结垢以及污水温度过高造成的。因此,通过利用水上导杆顶端的刻度盘来对左右的角度进行调节,不但能够确保死角周围水域被充分搅动,而且减少了粘附在电机表层的污垢类物质,给电机形成了良好的散热条件。

3.4污水的深度处理法

煤化工污水经生化处理后,出水的COD、氨氮等浓度虽有极大的下降,但由于难降解有机物的存在使得出水的COD、色度等指标仍未达到排放标准。因此,生化处理后的出水仍需进一步的处理。深度处理的方法主要有混凝沉淀、固定化生物技术、吸附法催化氧化法及反渗透等膜处理技术。如王俊洁等人研究了高效混凝沉淀技术应用在煤化工的悬浮物处理中的应用,并达到了很好的处理效果。此方案采用高效混凝沉淀技术,出水浊度可达到3度以下,远远低于传统工艺中的混凝沉淀出水的指标,对后续滤池的压力大大减小,反冲洗时间延长1倍以上,上升流速增加1倍,处理水量可达到传统设计的2倍。因此,高效混凝沉淀技术在煤化工的悬浮物处理的应用中具有可观的技术、占地和投资优势。

3.5序批式活性污泥法

这是一种按间歇曝气方式来运行的活性污泥污水处理技术。主要特征是在运行上的有序和间歇操作,该池集均化、初沉、生物降解、二沉等功能于一池,无污泥回流系统。该方法使生化反应推动力增大,煤化工废水处理效率提高,池内厌氧、好氧处于交替状态,净化效果好,耐冲击负荷,池内有滞留的处理水,对污水有稀释、缓冲作用,有效抵抗水量和有机污物的冲击。若出水水质仍不达标,也可以在SBR生化池内投加少量粉末活性炭以提高处理效率。

四、结语

污水处理设备是整个煤化工环保设备的重要构成部分,只要针对设备运行过程中存在的主要问题提出对应的解决方案才能提高设备的整体处理效果,保证系统整体顺利运行。

随着煤化工技术的发展和国际石油形势的日趋紧张,煤化工产业已成为我国国民经济持续发展的重要保障。要发展煤化工,必需解决由此所产生的污染问题。煤化工的发展应该把污染、能耗降到最低限度.控制在生态、环境可承载的能力范围内。煤化工与石油化工、天然气化工相比较,污染程度高、效益较低,所以我们一方面必须延伸产业链,生产高附加值的有机化工产品;另一方面,必须提高资源利益效率,减少废物排放,尤其是提高高含盐废水的处理能力以确保煤化工的经济效益和环保水平。我们应积极向世界先进的煤化工企业学习,增强产业的市场竞争能力。煤化工的发展决不能以资源、牺牲环境和破坏生态为代价。以节能降耗、减排治污为突破口进行转变,把煤化工建设成为资源节约型、环境友好型行业。

参考文献:

[1]潘亮,党小龙,张博兰.煤化工污水处理技术研究.城市建设理论研究.2013(18).

[2]卢亚琴.关于提高煤化工污水生化系统处理效率的探讨.神华科技.2012(4).

[3]李青革.煤化工污水治理技术研究.轻工设计.2011(5).

上一篇:浅析民营企业内部控制体系的建立 下一篇:畜牧业投资项目管理应注意的问题