基于特征面的分层特征识别

时间:2022-09-03 11:27:07

基于特征面的分层特征识别

摘 要:为降低特征识别的复杂度,提出基于特征实体、特征实面和特征虚面概念的层次性特征分类方法. 通过构造2类神经网络输入矩阵,利用神经网络在特征识别中所具有的优势,实现基于特征面的分层特征识别方法. 实例表明:该方法在识别去除材料的特征时比较有效,但识别特征的范围受到一定限制.す丶词:特征面; 特征识别; 神经网络ぶ型挤掷嗪牛TH122; TP391.72 文献标志码:

A

Hierarchy feature recognition based on feature face

PENG Sizhen, HAO Yongtao

(CAD Research Center, Tongji Univ., Shanghai 200092, China)

Abstract: To decrease the complexity of feature recognition, a hierarchy feature classification method based on feature entity, feature concrete face and feature virtual face is proposed. A hierarchy feature recognition method based on feature face is implemented by constructing two kinds of neural network input matrixes, and taking advantage of neural network in feature recognition. The example demonstrates that the method is more effective in recognizing feature of which the material is removed, but the range of feature recognition is somewhat limited.Key words:feature face; feature recognition; neural network

な崭迦掌冢2010[KG*9〗07[KG*9〗12 修回日期:2010[KG*9〗09[KG*9〗16ぷ髡呒蚪椋 彭思桢(1986―),男,山东临沂人,硕士研究生,研究方向为智能CAD,(Email);ず掠咎(1973―),男,山东威海人,副教授,博士,研究方向为企业信息集成系统、知识处理与挖掘、智能设计、分布式智能系统和ば槟庀质导际醯龋(Email)0 引 言

虽然对产品生产的自动化、智能化研究很多,但在工业上的应用效果并不理想.当前产品数据主要以较低层次的形式存储为主,如CSG和Brep这2种产品数据表示方法并不适合直接应用到产品设计之后的加工和制造中,特征识别技术的提出正逐步解决这个问题.

[1]

当前已提出很多种特征识别方法,如基于规则的、基于图的、基于几何解释的和基于体积分解的,这些方法都通过与特征库中已定义的特征类型进行比较来识别特征.但是,特征库不可能包含所有的特征类型,也不可能为特征库中所有的特征类型添加约束信息.另外,这些方法还存在效率低和没有学习能力等缺陷.

[2]人工神经网络具有学习和反馈的能力,在分类和特征识别领域有极大优势.

[3]

特征的类型越来越多,对特征进行准确、有效的分类是特征识别的基础,利用层次性分类方法可缩小特征对应的范围,从一定程度上降低特征识别的复杂度.层次性特征分类必然要求多层次的人工神经网络输入表示.

本文提出层次性特征分类方法以及特征实体、特征实面、特征虚面的概念,构造2个人工神经网络输入表示矩阵,用人工神经网络识别不同层次的特征,并研究人工神经网络的结构和训练方法.特征识别框架见图1.ね 1 特征识别框架1 特征分类及表示1.1 特征分类

目前存在许多特征的分类方式,STEPAP224是被广泛应用的特征分类方法之一.在STEPAP224中,加工特征被定义为1种生成特征,这种生成特征识别出为获得最终几何形状需从初始块中移除的材料体积;定义16种加工特征,如洞和狭槽等.作为1种国际标准,STEPAP224在特征分类上存在一定优势,但仍有以下缺点

[4]:(1)分类不严密,存在某些重叠的情况;(2)分类不完整,未包含所有的基础加工实体;(3)加工特征的定义不准确,STEPAP224定义移除材料的加工特征,但不适合定义添加材料的特征.为克服上述缺点,提出产品层次特征分类,见图2.ね 2 产品层次特征分类じ梅椒ǘ陨产中各个角度的加工特征进行层次分类,本文重点研究产品内延特征,其在第1层中包含5种基本特征类型,详细的分类层次见表1. 基于层次的特征分类方法不仅可清晰地描述各类特征之间的关系,而且可通过层次性特征识别减少特征识别的复杂度.每层特征的数量较少,使每个特征类型具有1个输出神经元成为可能.表 1 内延特征层次分类原始层内延特征第1层圆孔圆锥孔槽袋阶梯第2层通孔盲孔通圆锥孔盲圆锥孔通槽盲槽封闭袋开口袋通阶梯盲阶梯1.2 特征表示方法

有效的特征表示是构造特征识别的基础,目前广泛使用的特征表示方法是AAM(Attributed Adjacency Matrix),其由AAG(Attributed Adjacency Graph)转化而来,主要描述特征模型的几何和拓扑信息.该方法存在以下缺点

[5]:(1)表达形式不唯一,对于不同的特征,AAG可能具有相同的表达;(2)随着组成特征的面的增加,矩阵的大小急剧增加;(3)不仅需要利用启发式方法将AAG分解成几个子图,而且需要通过询问1组关于AM(Adjacency Matrix)布局和子图面数量的12个问题将每个矩阵转换为表示向量;(4)可识别的特征的范围有限,不能识别涉及到第2特征面的特征,如T槽.

为解决表达形式不唯一的问题,提出1组新概念,用以形成新的输入表示构造方法.

特征实体 实体等价于为得到某个外部特征的轮廓而加载到原始材料上的体积.

特征实面 物理上包含模型外部特征的基本形状的面,属可见的特征面.

特征虚面 与特征实面一起构成特征实体的边界面,是为描述特征实体虚拟出来的1种不可见的特征实体面,在描述特征实体时使其具有可见性.

图3为特征实体、特征实面、特征虚面及特征拓扑结构.特征虚面、特征实面表达内延特征的拓扑结构也可扩展到外延特征中,此时的特征虚面以特征之间相交面的形式出现.

(a)零件中的特征(b)移除的特征实体(c)特征拓扑结构图 3 特征实体、特征实面、特征虚面及特征拓扑结构2 人工神经网络的输入

以图3的特征拓扑结构为基础,结合层次性特征分类方法,构造2类人工神经网络输入以识别不同层次的特征.2.1 第1层输入构造

为实现表达形式的唯一性,从特征实体面的类型与特征面之间的角度关系出发,对组成特征实体的特征实面进行有序化处理.首先构造1个特征实面权重函数,其作用是根据组成特征的各个面的类型及相互间连接关系,对各个特征面进行赋值,形成特征实面序列构造的基础,其形式为ИW=S×10-T+v×0.1И式中:S为与当前实面邻接的特征实面数量;T为与当前实面邻接的特征虚面数量;v为面类型值.以图3为例,实面1与实面2,3和4邻接,故S=3;与虚面1邻接,故其T=1.面类型与面值的对应关系见表2.け 2 面类型与面值的对应关系面类型柱形面部分柱形面圆锥面部分圆锥面半圆面平面面值123456采用深度搜索方法进行特征面序列构造.首先选中权重最小的面,从此面出发,优先选择与此面连接且权重最小的面作为序列的下一元素,否则选择具有较小相交角度的面作为序列的下一元素,直到所有特征实面都加入到序列中为止.图4为某特征面序列构造的过程.け嗪糯选特征面目标序列1{f1, f2, f3, f4}NULL2{f2, f3, f4}f13{f2, f3}f1, f44{f2}f1, f4, f35NULLf1, f4, f3, f2图 4 特征面序列构造的过程ひ酝4序列为基础,如果特征实面数量超过5,需进行简化处理:如图5(a)所示的包含7个特征实面的特征,根据其拓扑结构信息可简化为图5(b)中含有5个特征实面的形式,构造如图5(c)所示的特征实面邻接图. (a) 7个特征实面的特征(b) 5个特征实面的特征 ぃc)简化的特征实面邻接图ね 5 复杂特征的简化と绻特征面满足如下规则,则可进行简化处理.

规则1 如果面fi,f

ij

利用特征实面邻接矩阵可识别特征的5个基本类型,为方便CAPP(Computer Aided Process Planning)的应用,需更细化地识别特征类型.

[6]为此,构造特征虚面方向矩阵.特征虚面方向矩阵是个6×6的矩阵,它描述在+x,+y,+z,-x,-y和-z 6个方向上虚面的连接性,用V[i,i]表示在i方向是否存在特征虚面.如果i≠j,则V[i,j]表示在i方向上和j方向上的虚面是否存在连接性.类似地,特征虚面方向矩阵也是对称的.为简化输入,将21位的编码作为人工神经网络的输入.图7为特征虚面方向矩阵实例.ね 7 特征虚面方向矩阵实例3 人工神经网络的构造和训练

由于采用层次性特征分类方法,故构造如下的1个层次性特征识别网络.(1)第1层用于识别5个基础特征类.识别中用到特征实面邻接矩阵输入向量,且输出神经元代表特征类型.对于特征识别,同时激活2个类不可行,因此只有1个输出神经元被激活,即其值大于阈值

0.5.如果1个或更多的输出神经元被激活,代表网络的模式不属于1个已知类型.为确定人工神经网络的结构,须调整隐藏层的数量、每个隐藏层神经元的数量以及调整学习率.含有17个神经元的3层结构的隐藏层被证明最合适.(2)第2层基于第1层,方便CAPP应用程序更进一步的识别.第2层中识别的人工神经网络结构被设计成相同的步骤.如通过各种试验,狭槽或阶梯分类器以特征虚面方向矩阵为输入,输入层包含21个神经元,每个隐藏层包含18个神经元,输出层包含2个神经元.(3)最后,利用经常被用在特征识别系统中的BP算法进行网络训练.4 基于特征面的层次识别方法实例

以所构造的人工神经网络输入矩阵、人工神经网络拓扑结构以及训练为基础,用图6和7所示的实例验证该方法的有效性.

(1)构造特征实面邻接矩阵.输入层的输入序列为6 3 0 4 0 6 3 3 0 6 4 0 6 0 0,将其输入3层(15个神经元的输入层、7个神经元的隐藏层以及5个神经元的输出层)的人工神经网络中,得到的识别见表3.

表 3 袋特征识别结果特征类型圆孔圆锥孔一般孔槽/阶梯袋耦合度0.000 49.573E-60.009 320.015 120.981 9ぃ2)构造特征虚面方向矩阵.输入层的输入序列为1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0,将其输入3层人工神经网络(21个神经元的输入层、18个神经元的隐藏层以及2个神经元的输出层)中,得到的识别结果见表4.

表 4 开口袋特征识别结果特征类型封闭袋开口袋耦合度0.002 50.991 4び墒道可知,本文提出的方法可识别相对简单的特征.5 结束语

从层次性特征分类方法出发,借助特征的特征面构造用于层次性特征识别的2类人工神经网络表示矩阵.该方法在识别去除材料的特征时比较有效,可更好地应用到CAPP中,提高生产的自动化和智能化,但也限制该方法识别特征的范围.扩大特征识别的范围及对特征关系的识别是后续研究的重点.参考文献:

[1] DING Lian, YUE Yong. Novel ANNbased feature recognition incorporating design by features[J]. Computers Industry, 2004, 55(2): 197222.

[2] ZZTaRK N, ZZTaRK F. Neural network based nonstandard feature recognition to integrate CAD and CAM[J]. ComputersIndustry, 2001,

45(2): 123135.

[3] DING Lian, MATTHEWS J. A contemporary study into the application of neural network techniques employed to automate CAD/CAM integration for die manufacture[J]. Computers & Ind Eng, 2009, 57(4): 14571471.

[4] TSENG YuanJye. A modular modeling approach by integrating feature recognition and featurebased design[J]. Computers Industry, 1999,

39(2): 113125.ぃ5] 郝泳涛, 邱秀莲. 零件语义关系几何模型及其基因编码研究[J]. 计算机辅助工程, 2008, 21(3): 7074.

[6] ZHOU Xionghui, QIU Yanjie, HUA Guangru. A feasible approach to the integration of CAD and CAPP[J]. ComputerAided Des, 2007, 39(4): 324338.(编辑 于 杰)

上一篇:基于特征造型的重载货车辗钢整体车轮结构设计... 下一篇:用于不确定性分析的高斯过程响应面模型设计点...