工业废气中丙酮处理工艺研究进展

时间:2022-08-30 06:14:36

工业废气中丙酮处理工艺研究进展

摘要:工业废气中丙酮回收的问题,是当前工业废气处理的难点、热点问题。本文介绍了几种常用的工业废气中丙酮的处理工艺,并就现有的丙酮处理工艺施工中的问题进行分析探讨。

关键词:丙酮;研究展;回收

中图分类号:TE08文献标识码: A

引言

丙酮是现在医药化工企业中一种常见的溶剂。它是一种无色液体,沸点较低,极易挥发,有特殊的辛辣味,能与水、乙醇、氯仿、N,N一二甲基甲酰胺、乙醚及大多数油类混溶。目前工业上常用的回收丙酮的方法是活性炭吸附法,但活性炭吸附工艺的操作稳定性较差,解吸过程不完全可能会引起活性炭着火,存在一定的安全隐患;而吸收法安全性和稳定性都比较好,是目前比较好的一种替代工艺。

一、吸附法

吸附法是回收工业废气中丙酮常采用的一种方法,其工艺成熟,有较高的效益。目前常见的吸附剂有活性炭、硅胶、离子交换树脂等。活性炭细孔结构密集、内表面积较大、吸收性能好、不易破碎、化学性质非常稳定等良好性能。按照结构不同,活性炭分纤维状和粒状。纤维状活性炭的孔径分布比较均匀,多是 2.3 nm 左右的微孔,其特点是孔径小,小孔指向向外,仍而使气体的扩散距离较短,吸附速度快;粒状活性炭除小孔外,还有中孔(10~100 nm)和大孔(1.5~5 μm),气孔分布均匀,废气扩散方向由外向内,扩散距离长,吸附速度慢,因此最适用于有机废气净化。丙酮回收采用的活性炭孔径主要集中在 1 nm 左右,微孔容积在0.40~0.50 cm3/g。美国 EPA 指出,活性炭吸附是去除丙酮气“可采用的最好技术”。目前在国内伴有丙酮和空气的混合气的化工生产工艺中,常用的回收方法是用活性炭吸附丙酮空气混合气中的丙酮气,达到饱和后再用蒸汽行解吸得到稀丙酮溶液,然后再行蒸馏提纯得到可重新用于生产的高纯度丙酮。

活性炭吸附工艺主要包括变压吸附工艺(PSA)、变温吸附工艺(TSA)和变温变压吸附工艺(TPSA)三种。变压吸附工艺是一种主要通过改变压力使吸附剂在吸附床上行净化和分离的工艺,在加压条件下完成吸附过程,减压条件下完成脱附过程。德国 Bayer 公司采用 D47/4 活性炭变压吸附分离丙酮和空气的混合气,回收率达到 95%以上。王晓刚等人对脱附过程床层中的丙酮浓度分布行了实验和模拟研究,证明了真空脱附对丙酮的脱附有很好的效果。变温吸附工艺是一种通过改变温度使吸附剂在吸附床上行净化和分离的工艺,在低温条件下完成吸附,在高温条件下完成解吸。变温吸附又可以分为固定床吸附、移动床吸附和流化床吸附。Waël Yazbek 等人通过建立温度梯度模型研究流化床质量、能量传递机制,证明了丙酮和空气的混合气的吸附―解吸过程在活性炭流化床上实现的可行性

二、吸收法

吸收法通过选择挥发性较低的溶剂为吸收剂,利用丙酮在溶剂中的溶解度来实现。目前吸收法回收丙酮的工艺一般都为连续工艺,其过程为:丙酮和空气的混合气从吸收塔底部进入塔内,吸收剂从吸收塔顶部进入,大量丙酮被吸收剂吸收,在塔内完成气液传质,得到塔底液为吸收富液,从吸收塔底部流出,再将吸收液送入解吸塔进行精馏,在塔顶得到纯度较高的丙酮。由于吸收单元需要大量吸收剂,解吸单元精馏后得到大量的纯度较高的吸收剂,因此可将这部分液体循环利用,用解吸工艺的塔釜液做吸收工艺的吸收剂,只需补充少量的新鲜吸收剂即可。这样,既能节约吸收剂,又可以通过换热网络将塔釜液中的热量加热吸收富液,回收釜残液的余热,降低吸收剂的温度,节约能耗。吸收法的工艺流程图如图1所示。

图1吸收法工艺流程图

由于吸收过程能耗较低,后续的解吸是耗能的主要部分,因此提高吸收液的浓度、提高解吸塔的分离效率是目前吸收法研究的主要方向。RobertoNasserd等提出将吸收法中的筛板塔更换为规整填料塔,大大的提高了吸收效率。李秋元等提出将吸收了丙酮的吸收液先进行间歇闪蒸,将其浓缩后再精馏解吸使丙酮能够回收再利用。高前进用吸收法对烟用二醋酸纤维素丝束生产过程中产生的丙酮和空气的混合气进行了数学模拟。马杰发明的从真空系统排出的挥发混合气中回收丙酮的方法,将真空系统排放的丙酮和空气的混合气通过两次气液分离、换热吸收和丙酮回收后,回收后的气体可以直接排放,吸收液达到一定浓度后,通过解吸塔解吸得到丙酮,这种工艺极大地提高了吸收液的浓度,降低了后续解吸的能耗,节约了回收成本。动力波洗涤器是目前一种比较新颖的高效湿法洗涤设备。因为技术安全性等因素,国外很少有关于动力波洗涤的基础理论研究信息,主要是一些关于工业应用情况的介绍。近年来,我国已经在动力波洗涤器吸收效率等领域取得了一定的进步,动力波洗涤器逐渐被应用到回收工业废气中。王飞扬等将动力波洗涤器应用到回收废气中的丙酮,其净化效率比喷淋塔、填料塔等传统的洗涤设备更高。

吸收法流程简单,工艺比较稳定,净化效率较高,吸收过程中不需要消耗蒸气,能耗较活性炭吸附法低,是目前一种比较理想的丙酮回收工艺。

三、冷凝法

处理丙酮和空气的混合气的原理是利用丙酮气不同的蒸汽压,通过压力和温度的调节使丙酮过饱和仍而发生凝结作用,使丙酮空气的混合气得到很高程度的净化,丙酮也得到回收,但通常情况下在室温条件下的冷却水满足不了混合气较高的净化要求。英国 APV 公司开发出的一种对丙酮和空气的混合气回收处理的冷冻法,效果甚佳。该法采用低温冷冻技术的溶剂回收塔并融合不少已申请专利的新技术。通过塔内装有的一系列盘管,逐步对丙酮和空气混合气行冷却,并用塔顶的热交换盘管对出口气体行加热。贮槽内的回收溶剂经泵打通过热交换盘管冷却后仍底部成雾状喷出以达到有利的自由冷却。盘管上面的低温管在上,高温管在下的巧妙布置,显著地降低了冷冻负荷。冯岩岩等人整理设计出一台有自动控制系统的管壳式换热器的样机。姚秀林发明了一种新型丙酮回收冷凝系统,使丙酮和空气的混合气直接冷却分离。冷凝法有时需要辅以压缩过程来提高其回收率。

通常,净化要求愈高,需要的冷公用工程的量就越高,所需冷却的温度越低,甚至增大压力来提高净化率,这样就大大增加了处理的难度和费用。

四、燃烧法

燃烧法也称为热破坏法,也是目前比较常用的一种处理有机废气的方法。燃烧法主要分为直接火焰燃烧法和催化燃烧法。它利用直接氧化和催化氧化分解破坏废气中的有机分子,使其生成低毒或无毒的物质,从而实现挥发性有机物直接排放的目的。直接燃烧法使丙酮和空气的混合气在气流中直接燃烧,由于该法需要较高的热量才能维持该体系继续氧化所需的温度来保证燃烧过程持续进行,因此比较适合丙酮浓度较高的废气的处理。由于在多数情况下有机物浓度较低,且焚化炉的设计依赖于挥发性有机溶剂的组成,需要进一步处理。这些因素限制了它的应用,催化燃烧能够克服它的某些局限而成为一种很好的选择。催化燃烧法是借助催化剂在较低燃烧温度下进行的无火焰燃烧,将丙酮氧化为二氧化碳和水的方法,它比直接燃烧法需要更低的温度和更少的停留时间。燃烧法净化效率高,设备构造简单,使用范围广。但是催化燃烧时,催化剂成本高,易造成催化剂中毒;经济效益小,易造成二次污染。

五、膜分离法

膜分离法的是依据丙酮气和空气透过膜的能力不同,利用膜的选择性和膜微孔的毛细管冷凝作用将废气中的丙酮气富集分离的方法,是近年来开发出来的新技术。E.Marki等人通过采用吸收-渗透汽化方法回收丙酮,得到了较高的回收效率。仍现在研究展来看,无机多孔膜较适合回收空气中的丙酮。然而,我国膜分离法的相关研究刚刚起步,相关研究然停留在实验室研究阶段,离实现工业化应用还有一段距离,因而大力发展膜分离法、提高分离效率对我国有机废气回收处理技术的发展具有重要的战略意义。

结束语

随着经济的高速发展,化工医药企业排放的丙酮尾气量日益增长,经济有效的处理好尾气的排放才能够实现经济效益和环境效益的双赢。要选择一种合适的处理方法,必须综合的考虑尾气的浓度、生产情况、净化要求和经济性等因素。在工业上除了需要改现有工艺外,还应该采用多种方法的集成技术,例如冷凝―吸附法,冷凝―吸收法,膜分离-变压吸附法,燃烧法―吸附法等。因此,根据实际情况集成不同的分离技术、降低生产成本、实现达标排放,将是我们今后研究的主要方向。

参考文献

[1]唐琳.吸附及变压吸附分离回收丙酮蒸气的数学模拟[D].湖南大学,2007.

[2]YangRT,王树森,曾美云,等.吸附法气体分离[J].1991.1―24

[3]刘军利,韩学文,施荫锐.丙酮回收用活性炭微结构的研究[J].林产化学与工业,2003,24(1):55-58.

上一篇:基于以太网的电厂DCS控制系统研究 下一篇:浅谈高层建筑消防给排水设计