心房重构与心房纤颤的病理学机制研究进展

时间:2022-08-25 02:41:15

心房重构与心房纤颤的病理学机制研究进展

摘要:目前,发生率最高的心率失常被认为是心房纤颤,且该病的发生率随着年龄的增长而上升伴随着我国人口年龄结构的变化,心房纤颤在我国的发病率逐渐增加。了解该病的发生和发展的机制十分迫切。已经证明,心房重构是该病的重要发生机制:随着研究的加深,研究人员对心房重构与该病的病理学机制有了更加深刻的了解。现就心房纤颤和重构在发病中的机制进行回顾。关键词:心房重构;心房纤颤;Connexin40; Kvl.5钟通道中图分类号:K541.75;R363.21 文献标识码:A文章编号:1007-7847(2015)02-0185-04Research Progresses of Pathological Mechanism in Atrial Remodeling and Atrial FibrillationHUANG Lei, ZHANG Fei(Nanshan People's Hospital, Shenzhen 518057, Guangdong, China)Abstract: Atrial fibrillation is one of the most common arrhythmia. The incidence and mortality increase wilh age growth. As China entered the aging era, the needs for diagnosis and treatment of this disease are urgent. The mechanism of atrial fibrillation is atrial remodeling, including atrial electrical remodeling and a- trial structural remodeling.Insight into the mechanism of atrial remodeling is necessary for the diagnosis and treatment of atrial fibrillation. With the rapid development of molecular biology, the realization about atrial remodeling has more profound understanding. The research progresses of pathological mechanism in atrial remodeling and atrial fibrillation are reviewed.Key words: atrial remodeling; atrial fibrillation; Connexin40; Kvl.5 potassium channels(Life Science Research,2015,19(2):185?188) 心房纤颤是当前临床上发病率最高的心率失常病变,通常也简称为房颤[1]。通常,该病变也可能会演变为一种长期性的心率失常,随着机体的衰老,发病率也会大大增加。随着中国进入老龄化,心房纤颤在公共卫生中将成为最主要的问题之一,该研究领域也成为心血管方向亟待解决的研究热点之一。虽然近年来心房纤颤的治疗手段已经取得了令人瞩目的进展,然而,药物治疗仍是最常规的治疗手段。其原理是通过控制心率和心律两条途径抑制心房纤颤的发生[2]。通常,利用各种手段控制心律,是治疗该病的重要策略。心律控制可以增加运动耐受力、减少症状发生及心房纤颤的死亡率[3]。根据目前临床上的调查结果,通过心率控制,对该病有一定的治疗效果。例如心房颤动节律管现随访调查(AFFIRM)、持续性房颤心率控制/电转律研究(RACE)、房颤治疗策略研究(STAF)都证明心率控制也可以同样降低症状发生及心房纤颤的死亡率。这些治疗手段还能够减少多种药物刺激所带来的各种附加反应[4-7]。以上两种不同的治疗策略在临床上各有其优势,只有深入了解其机制后才能正确地选择病患所需的治疗手段。与此同时,新型药物和各种治疗策略及手段也在研发当中,有望为治愈患者带来福首。根据心房纤颤病程的长短,一般可以分为偶发性、长期性和永久性的病变。在48小时以下的被定义为偶发性心房纤颤,而病程达到一周以上,则为长期性心房纤颤。永久性的病变则不能恢复正常心律这几种不同持续时间的心房纤颤病变,其发生机制都被认为是发病之初心房重构所引起的。心房纤颤出现后往往会伴随心房体积增大、心房壁变薄以及内壁血栓形成等结构变化。这些心房组织变化与该病的发生发展有关,了解该病的发生机制,必须从心房重构入手。本文通过回顾心房重构的两种发生机制,探讨了它们在心房纤颤这一常见病中的作用,以期为今后对该病的治疗提供理论参考。1心房电重构1995年,Wijffels提出心房电重构,为该研究心房纤颤开拓了新的领域其定义是在心房纤颤期间,心脏的有效不应期缩短,结果引起心房纤颤发生频率和发生时间延长。临床和动物模型的研究结果均证明,心房电重构确实能够引起心房纤颤的效应增强。当前,对心房电重构的研究尚处于起步阶段,仅限于各种基因水平的表达变化和Kvl.5钾离子在发病中的各种变化。1.1基因表达变化与心房电重构基于巳有的各项研究,在发病过程中,多种心房电重构的分子信号通路有所变化。目前最热门的是钾电流相关分子变化。已经报道的钾离子通道多种多样,在生物途径中发挥不同作用。在心肌细胞中,目前发现的这些通道电流包括瞬时性、持续性和ATP依赖的3种电流。有研究表明,在心房纤颤的病患中,瞬时性和持续性外向的钾电流在不同去极化电压下比窦性心律病人的电流明显减弱[12]。同时,有研究者报道,有心房纤颤的病患其心肌的钾离子电流密度明显下降,低于正常心律的人群[13]。对各种心房纤颤的病人的研究表明,Kv4.3的α亚基基因表达量在慢性患者中表达明显降低。因此,在电重构过程中导致的瞬时性外向钾电流密度下降是由Kv4.3通道中α基因表达下降所引发的。然而,α基因表达的异常是因何引起,目前还未有明确的证据。1.2Kvl.5钾离子通道与心房纤颤相关研究进展Kvl.5钾离子通道与心率相关最早的报道见于对大鼠的研究[14]。该结果显示,经过30min心动过速后的大鼠,Kvl.5的mRNA表达水平明显增加。而邓玉莲等研究发现,在接受了换瓣的风心病患者中,持续性心房纤颤的患者Kvl.5表达量明显下降[15]。与此矛盾的是,研究结果表明在阵发性心房纤颤患者中蛋白水平降低而mRNA水平则未见有变化[16]。在高血压中,由于心房壁压力的增加,内向延迟加电流相关基因表达量增加[17]。同样的,心力衰竭小鼠也表现为心肌细胞Kvl.5表达水平也降低[18]。基于不同的实验室,根据材料和研究方法的不同,也得到了不同的实验结果。然而,在心房纤颤中Kvl.5表达水平确有不同程度的下降。根据Kvl.5钾离子通道在该病中的表达失调,研究者也开发了多种干预该通道的药物。随着研究的深入,人们逐渐发现了很多新的Kvl.5阻抑物。这些药物可以通过特异性抑制心肌中的离子通道,从而对心律失常有较好治疗效果。在这些发现的药物中,化合物S9947被证实对人类Kvl.5有明显的抑制[19]。其半效抑制浓度为0.42mmol/L。新型的Kvl.5阻滞剂AVE0118可以对心房收缩力有较好的恢复作用[20]。而胞外Bertosamil对Kvl.5电流的抑制表现出剂量依赖性效应[21、22]。此外,NIP-142也能够抑制Kvl.5的钾离子通道,对心肌的不应期有明显的延续作用。有报道称苯唑卡因从细胞内抑制KW.5通道,且有时间和剂量依赖效应[23]。虽然,现有的胺碘酮、多非利特、氟卡尼、普罗帕酮等药物,已经应用于临床治疗,并获得了一定的疗效[24]。但也存在着疗效指数小、可能危及生命等严重不良反应。值得注意的是,这些药物对不同的个体也效应不一,需要对个性化的基因变异对药物反应的影响进行进一步的探讨。因此,进一步研究和开发针对Kvl.5钾离子通道阻滞剂的相关药物,可能为心房纤颤的治疗提供更加安全而高效的选择。2心房结构重构当发生心房纤颤时,能够引起心房电重构,并且诱导心肌细胞的结构发生变化,如心房的扩张和纤维化的改变,这些变化称为心房结构重构。心房结构重构表现出细胞膜稳定性的下降,心肌间质组织增生,以及细胞器的形态、数量等发生改变心房结构重构的分子生物学基础包括,离子通道蛋白变化、缝隙连接蛋白变化以及收缩蛋白和结构蛋白的变化。目前研究得最为深入的是缝隙连接蛋白变化,下面主要介绍心房结构重构的组织变化和缝隙连接蛋白Cx40变化。2.1心房结构重构的组织变化在研究快速心房起搏狗的过程中,首次对心房肌细胞的超微结构的改变进行了阐述,发现狗心肌细胞的变化与慢性心室肌缺血心肌的改变是一致的[25]。它们的细胞均有胚胎表型发展的倾向,表现出去分化的状态。心肌结构重构的变化特征包括有:细胞和组织的增厚;肌纤维的溶解;糖原在细胞核内的沉积;线粒体肿胀;肌浆网断裂等[26]。在这些变化中,细胞组织的增厚和肌纤维的溶解是最主要的变化特征心律失常发生的可能性随着心肌细胞的肥大而增加;由于心肌细胞体积的增大,心房内的电传导的各向异性增加,导致信号传导的空间离散程度增加,在高血压患者发生心房重构后,心房纤颤复发几率增加,心房肌肉的收缩能力降低,影响心脏功能的正常发挥。另外,心房结构重构导致了心房肌数量减少,心房的分泌活动减弱,心房分泌因子减少,最终影响心脏的生理活动。在心房重构中也发现,心房内径增大,分泌活动降低,活性因子在心房中的含量减少[27]。2.2缝隙连接蛋白Cx40在心房纤颤中的作用心肌细胞的电位在心房纤颤发生过程中发生变化细胞间电冲动传导的结构基础是细胞间隙连接连接蛋白(cormexin,Cx)是细胞缝隙连接的蛋白简称[28]。Cx40、Cx43和Cx45是存在于人体心肌细胞中的3种主要连接蛋白[29]。在心脏的4个心腔中都有Cx43的分布,心肌传导束及浦肯野纤维中分布的主要是Cx45[30]。作为心房中电冲动的结构基础,Cx40主要在心房肌中表达[31、32]。Cx40在心脏的心房和心室中有广泛的分布,并且在心房和心室间的表达呈现出差异性。Cx40在心肌细胞中表达丰富,而在心室细胞中的表达水平很低,几乎检测不到其表达[33、34]。缝隙连接蛋内的表达和分布受到心肌炎、纤维化以及坏死等心房内环境改变等的影响。作为电压的动态结构基础,缝隙连接的开关受到细胞膜电位的调节。因而,由房颤引起的细胞膜电位的变化能够影响缝隙连接的状态及其表达量[35]。已有研究对房颤发生过程中Cx40的表达水平进行了分析,但是研究结果却大相径庭。在电生理重塑诱发的慢性房颤中,房颤患者心房细胞细胞膜外的Cx的蛋白表达水平上升[36]。与对照组相比,房颤复发组Cx40的mRNA表达水平和蛋白质水平都显著上升[37]。同时,在人和鼠的房颤对比实验中也发现有类似的结果,Cx40的表达水平上升[38]。在房颤模型中,发现Cx40在心肌细胞中的表达比对照组中水平要低[39]。同样,在患有慢性房颤病人中,Cx40的mRNA表达水平也显暑降低,而丝氨酸磷酸化的Cx40的表达水平却上升[40]。接受迷宫手术的AF患者的右心耳中的Cx40的蛋白减少[41]。同样在术后新发阵的房颤中,Cx40蛋白的表达水平也是下降的[42]。以上这些结果表明,房颤的发生能够诱导Cx40的表达量与空间分布上发生变化。然而,关于Cx40对心房纤颤发生的机制以及预后过程中的影响还需要进一步的研究:1小结与展望总的来说,关于心房重构与心房纤颤的病现学机制的研究报道,近年来有了较大的进展。然而,对于心房重构的分子生物学机制研究,往往集中于单个基因的功能研究,并未考虑到多基因的相关性。在今后的研究中,应该着重对蛋白相互作用、转录因子调控基因表达、表观遗传学等网络信号调控进行研究,为治疗心房纤颤提供新的线索。参考文献(References):[1]SAVELIEVA I, KAKOUROS N, K0URL10UR0.S A, el al. Up-slream therapies for management of atrial fibrillation: review of clinical evidence and implications for European Society of Cardiology guidelines. Part I: primary prevention[J]. Europace. 2011,13(3):308-328.[2]FRASURE-SMITH N, LESP^KANCE F, TALAJK; M, ct d. Anxiety sensitivity moderates prognostic importance of rhythm-versus rate-control strategies in patienls wilh atrial fibrillation and congestive heart failure: insights from the AF- CHF trial[J]. Circulation: Heart Failure, 2012. 5(3): 322-330.[31 STEINBERG B A, HOI.MKS D N, EZEKOWITZ M D, el al. Rate versus rhythm control for management of atrial fibrillation in clinical practice: results from the outcomes registry for better informed treatment of atrial fibrillation (ORBIT-AF) reistry[Jl. American Heart Journal,2013,165(4):622-629.[4]ALAM M, BANDEAU S J,SHAHZAD S A, et al. Real-life global survey evaluating patients with atrial fibrillation (RK-ALISE-AF):results of an international observational registiy[J]. Expert Review of Cardiovascular Therapy,2012,10(3): 283-291.[5]HEIST E K, MANSOUR M, RUSKIN J N. Rate conlrol in atri?al fibrillation targets, methods, resynchronization consid era tions[J].Circulation,2011,124(24): 2746-2755.[6]TU§KAN -MOHAR L. Understanding the standard treatments and the treatment options of alrial fibrillation [J]. Ada Clinica Croatica,2011,50(Supplement 2):54-56.[7]CALDEIRA D, DAVID C, ET ALSAMPAIO C. Rate versus rhythm control in atrial fibrillation and clinical oulcomes: up?dated systematic review and meta-analysis of randomized controlled trials[J]. Archives of Cardiovascular Diseases,2012,105(2):226-238.[8]CHIANG C E, INADITCH-BROLEL, MURIN J, et al. Distri?bution and risk profile of paroxysmal, persistent, and permanent atrial fibrillation in routine clinical practice insight from the real-life global survey evaluating patients with atrial fibrillation international registry[J].Circulation:Arrhythmia and Electrophysiology,2012,5(4):632-639.[9]BALL J, CARRINGTON M, STEWART S. Mild cognitive impairment in high-risk patients with chronic atrial fibrillation:a forgotten component of clinical management?[J]. Heart,2013, 99(8):542-547.[10]NCHEZ C, BUENO-OROVIO A, WETTWER E, et al. Inter-subject variability in human atrial action potential in sinus rhythm versus chronic atrial fibrillation[J]. PLoS one,2014,9(8):el05897.[11]WIJFFELS M, KIRCHHOF C, DORLAND R, et al. Atrial fibrillation begets atrial fibrillation. A study in awake chronically instrumented goats[J]. Circulation, 1995, 92(7):1954-1968.[12] OOSTERHOFF P. The use of repolarization variability for arrhythmic risk monitoring[J]. Utrecht:Utrecht University, 2011.[13]STAUDACHER K, STAUDACHER I, FICKER E, et al. Carvedilol targets human K2p3.1 (TASK1) K+ leak channels[J].British Journal of Pharmacology,2011,163(5):1099-1110.[14]YAMASHITA T, SEKIGUCHI A, IWASAK1 Y K, et al. Ciben-zoline attenuates upregulation of Kvl. 5 channel gene expres?sion by experimental paroxysmal atrial fibrillation[J].Interna?tional Heart Journal,2005,46(2):279-288.[15]邓玉莲,高峰,许春萱,等.心房颤动患者心房组织延迟整流钾通道基因表达的研究[J]中华心律失常学杂志(DENG Yu-lian, GAO Feng, XU Chun-xuan, el al. Gene expression of atrial delayed rectifier potassium channeks in human atrial fib?rillation[J]. Chinese Journal of Cardiac Arrhythmias),2006,9(6):445-448.[16] BRUNDEL B J, VAN GELDER I C, HENNING R H, et al. Ion channel remodeling is related to intraoperative atrial effective refractory periods in patients with paroxysmal and persistent atrial fibrillationfj]. Circulation,2001,103(5):684-690.[17]JEPPS T, CHADHA P, DAVIS A, et al. Downregulation of Kv7.4 channel activity in primary and secondary hypertension[J]. Circulation,2011.124(5):602-611.[18]张晓伟,李广平.Kvl.5钾通道与心房颤动[J].中国心血管杂志(ZHANG Xiao-wei,LI Guang-ping. Kvl. 5 potassium channels and atrial fibrillation[J] Chinese Journal of Cardiovas?cular Medicine),2008,13(2):144-146.[19]FRIEDERICH P, PFIZENMAYER H. The novel Kvl.5 chan?nel blocker vernakalant for successful treatment of new-onset atrial fibrillation in a critically ill abdominal surgical patient[J]. British Journal of Anaesthesia,2011,107(4):644-645.[20]DECHER N, KUMAR P, GONZALEZ T, el al. Binding site of a novel Kvl. 5 blocker: a “foot in the door”against atrial fib-rillation[J]. Molecular Pharmacology, 2006,70(4):1204-1211.[21]LAGRUTl'A A, WANG J, FERMINI B, et al. Novel, potent in-hibitors of human Kvl. 5 K + channels and ultrarapidly acti vating delayed rectifier potassium current [J]. Journal of Pharmacology and Experimental Therapeutics,2006,317(3):1054-1063.[22]GODREAU D, VRANCKX R, ET ALHATEM S N. Mechanisms of action of anti arrhythmic agent bertosamil on hKvl.5 channels and outward potassium current in human atrial my-ocytes[J]. Journal of Pharmacology and Experimental Therapeutics,2002,300(2): 612-620.[23]WU H, WU W, SUN H, et al. Acacetin causes a frequency-and use-dependent blockade of hKvl .5 channels by binding to the S6 domain [J].Journal of Molecular and Cellular Cardiology,2011,51(6):966-973.[24]CALKTNS H, REYNOLDS M R, SPECTOR P, et al. Treatment of atrial fibrillation with antiarrhythmic drugs or radiofrequency ablation two systematic literature reviews and meta-analy-ses[J]. Circulation: Arrhythmia and Electrophysiology,2009,2(2):349-361.[25]IWASAKI Y, NISHIDA K, KATO T, et al. Atrial fibrillation pathophysiology implications for management[J].Circulation,2010,124:2264-2274.[26]OAKES R S, BADGER T J, KHOLMOVSKI E G, et al. Detec?tion and quantification of left atrial structural remodeling with delayed-enhancement magnetic resonance imaging in patients with atrial fibrillation[J]. Circulation,2009,119(13):1758- 1767.[20]ROSSI A, CICOIRA M, ZANOLLA L, et al. Determinants and prognostic value of left atrial volume in patients with dilated cardiomyopathy[J].Journal of the American College of Cardiology, 2002, 40(8): 1425-1430.[21]MYLVAGANAM S, RAMANI M, KRAWCZYK M, et cd. Roles of gap junctions, connexins, and pannexins in epilepsy[J]. Frontiers in Physiology,2014,5(1):172.[29]MEENS M, SABINE A, PETROVA T, et al. Connexins in lymphatic vessel physiology and disease[J].FEBS letters,2014,588(8):1271-1277.[30]SHIBATA Y, KUMAI M, NISHII K, et al. Diversity and molecular anatomy of gap j unctions[J]. Medical Electron Microscopy,2001,34(3):153-159.[31]COTTRELL G T, WU Y, ET ALBURT J M. Cx40 and Cx43 expression ratio influences heteromeric/heterotypic: gap junc tion channel properties[J]. American Journal of Physiology-Cell Physiology,2002,282(6):C1469-C1482.[32]KURTZ A. Connexins, renin cell displacement and hypertension[J].Current Opinion in Pharmacology,2015,21(1):1-6.[33]BASTIDE B, NEYSES L, GANTEN D, et al. Gap junction protein connexin40 is preferentially expressed in vascular endothelium and conductive bundles of rat myocardium and is increased under hypertensive conditions[J]. Circulation Research, 1993,73(6):1138-1149.[34]VEERARAGHAVAN R, GOURDIE R, POELZING S. Mechanisms of cardiac conduction: a history of revisions [J]. Ameri?can Journal of Physiology-Heart and Circulatory Physiology,2013,306(5): H619-H627.[35]HARRIS A L. Emerging issues of connexin channels: biophysics fills the gap[J]. Quarterly Reviews of Biophysics,2001,34(3):325-472.[36]POLONTCHOUK L, HAEFLIGER J A, EBELT B, et al. Effects of chronic atrial fibrillation on gap junction distribution in human and rat atriafj].Journal of the American College of Cardiology,2001,38(3):883-891.[37]KATO T, IWASAKI Y, NATTEL S. Connexins and atrial fibrillation filling in the gaps[J].Circulation.2012,125(2):203― 206.[38]MAEDA S, TSUKIHARA T. Structure of the gap junction channel and its implications for its biological functions [J]. Cellular and Molecular Life Sciences.2011,68(7): 1115-1129.[39]AUSMA J, VAN DER VELDEN H M, LENDERS M H, et al. Reverse structural and gap-junctional remodeling after prolonged atrial fibrillation in the goat[J]. Circulation,2003,107(15):2051 - 2058.[40]NAO T, OHKUSA T, HISAMATSU Y, et al. Comparison of expression of connexin in right atrial myocardium in patients with chronic atrial fibrillation versus those in sinus rhythm[J].The American Journal of Cardiology,2003,91(6):678-683.[41] KOSTIN S, KLEIN G, SZALAY Z,et al. Structural correlate of atrial fibrillation in human patients[J].Cardiovascular Research,2002,54(2):361-379.[42]WILHELM M, KIRSTE W, KULY S, et al. Atrial distribution of connexin 40 and 43 in patients with intermittent, persistent,and postoperative atrial fibrillation[J]. Heart, Lung and Circulation, 2006,15(1):30-37.

上一篇:短波通信频谱管理系统应用及发展探讨 下一篇:Ming Wong访谈