基于路谱频域的车身疲劳分析

时间:2022-08-22 06:42:46

基于路谱频域的车身疲劳分析

摘要: 针对车身疲劳分析中静载法无法考虑结构动力学响应,瞬态分析法无法求解过长时间域的问题,将这2种方法与频域法进行比较,发现用频域法对大规模有限元模型进行动态疲劳分析相对容易,并能完全描述动力学响应过程.根据频域法进行振动疲劳分析的理论和计算过程,给出基于路谱频域的车身疲劳分析流程.基于功率谱密度(Power Spectral Density, PSD)载荷谱的传递函数法求解某车关键部件的疲劳寿命,求解结果与疲劳试验结果比较一致.结果表明基于路谱频域的振动疲劳分析方法在汽车结构疲劳计算中的应用可行.

关键词:

整备车身; 振动疲劳; 功率谱密度; 路谱; 频域

中图分类号: U463.821;TB115.1

文献标志码: B

Vehicle body fatigue analysis based on frequency domain of road spectrum

WU Tao, MAO Hanhu, DAI Yi

(Technical Center, SAIC MOTOR Co., Ltd., Shanghai 201804, China)

Abstract: As to vehicle body fatigue analysis, a structure dynamics response can not be considered in static loading method, and transient analysis method can not be applied on the solution with an overlong time domain. The comparison of the two methods with the frequency domain method shows, that it is relatively easy to use frequency domain method to perform dynamic fatigue analysis on large scale finite element models, and dynamics response process can be described completely. According to the vibration fatigue analysis theory and analysis process using frequency domain analysis method, the vehicle body fatigue analysis process based on road spectrum frequency domain is proposed. Based on the transfer function method of load spectrum of Power Spectral Density(PSD), the fatigue life of some critical parts is solved for a vehicle body, and the results are relatively consistent with fatigue test results. It is feasible to use vibration fatigue analysis method based on road spectrum to calculate automobile structure fatigue.

Key words: trimmed body; vibration fatigue; power spectral density; road spectrum; frequency domain

0 引 言

汽车市场竞争日趋激烈,各厂家越来越重视汽车的疲劳寿命问题,随着科学技术的进步,汽车设计部门可以在设计阶段就考虑产品的疲劳寿命问题,摆脱以往只能在产品验证阶段通过试验对产品寿命进行评估的单一手段.有限元法在设计中的应用极大地提高设计手段:最初,设计师通过模拟汽车在最差路面上的一些极限工况(如Potholes, 3g Bumper和Kerbing等)进行静力学的极限强度计算,观察车辆在这些极限工况条件下是否断裂,从而评估结构的疲劳情况;后来,通过有限元法得到车辆结构的全场应力和应变历史来计算全场疲劳情况的方法逐渐成为主流.

1 时域法和频域法

金属材料由于受交变应力和应变的作用而发生疲劳失效,计算疲劳的理论基础,无论是名义应力寿命法,还是局部应变寿命法,都需要计算结构各部分受到的应力和应变历史.采用有限元法计算应力和应变历史的方法有准静态法和瞬态法,这2种方法都可用于求解结构在时域的应力和应变场,但也都有各自适用的范围.当激励载荷频率远小于所分析结构的自然频率时,结构不具有动力学响应,其应力状态可通过线性缩放,多通道地通过线性叠加的方法进行准静态法求解.反之,如果施加的载荷频率接近结构的固有频率,结构具有动力学响应,同时各载荷作用相互耦合,更宜选择瞬态法求解.

对于具有几十万单元白车身级别的疲劳分析,即使只对线性系统进行几十秒的瞬态分析也很难完成,工程中常采用准静态法线性缩放结构的应力和应变场.对于一般的疲劳试验路面,波长和车速已知,来自路面的载荷频率通常小于6 Hz,远小于白车身的固有频率,因此准静态法适用.当疲劳路面为激励共振路面(如鹅卵石和搓板路面)时,路面波长短,在车辆达到一定速度时加载频率显著提高,有必要考虑其动力学响应.此时,使用频域法具有优势,频率响应(传递函数)分析获取功率谱密度的应力信号通常比获取时域的应力信号容易得多.

2 振动疲劳分析理论和计算过程

对于振动疲劳分析,输入载荷的频域表述(载荷的功率谱密度(Power Spectral Density, PSD))是时域信号的一种有效表达方式,也可通过一系列转换用频域对固定的随机过程做出统计性描述,这种统计得到每个应力幅值在一定时间范围内发生的概率分布,同样可根据传统疲劳计算方法由Miner累计损伤法则求得疲劳损伤.因此,在频域中进行振动疲劳分析,同样需要材料的S-N曲线.[1]

2.1 时域信号向频域信号的转化

输入载荷y=y(t)是关于时间的函数,可将其描述成一系列变幅、频率和相位的正弦波总和,即傅里叶展开式.用复数理论表达傅里叶展开式:计算复数因数时将因数规格化,规格化的因数采用不同频率下的密度函数形式进行表达;从Δf(各因数间的频率间隔)范围内密度函数下的区域获得傅里叶因数;通过傅里叶因数并根据一系列转换可得到傅里叶变换y(f),记为FFT.

2.2 PSD的矩

PSD下的区域代表正弦曲线波组分(时间历程)的均方值,将其与FFT谱计算的均方值相等,可确定PSD与FFT之间的转换.

PSD的矩

Mn=∫∞0G(f)df=mk=1fnkGk(fk)df

表示PSD函数的第n个积率,一些非常重要的统计学特性(如每秒的零交叉点和峰值)可以从PSD的矩中得到,并可由这些特性计算不规则因数.这些特性在时域信号中很容易通过计数得到.这样就建立PSD信号与时域信号在统计学上的联系.

2.3 概率密度函数

频域中评估疲劳需要得到某种应力幅值的概率分布,根据时域信号和PSD的矩所描述的一些统计学上的共性,可推导出概率分布.[2]相关理论中应用较广泛的有窄带假设和Dirlik求解:窄带假设理论假设所有函数值为正的波峰后跟着一个对应的、数值相等的波谷,不考虑实际中是否构成应力循环,比较保守;Dirlik求解的应用更广泛 [3],它也根据PSD的矩表示概率密度函数.

3 基于路谱频域求解车身疲劳

基于载荷谱的结构疲劳分析方法主要有静载法、瞬态应变分析法和振动疲劳分析法等.对于白车身疲劳分析,最简单和常用的方法是静载法:建立车辆的整备车身模型,在车身与底盘的连接点处分别施加单位载荷,然后应用惯性释放的方法求解多种工况下的应力分布.将每个通道单位载荷的应力分布与相关载荷(时间历程)进行简单的线性组合,获取应力场的时域分布,计算流程见图1中的静载法,静载法无法考虑结构的动力学响应.对于瞬态分析法,在面对白车身这种大模型时,用其求解过长的时间域也不现实,基于PSD载荷谱的振动疲劳频域分析方法是较好的选择,其计算流程见图1中的频域法.

基于PSD载荷谱进行振动疲劳分析的方法有传递函数法和随机振动分析法.传递函数法利用模型应力传递函数和PSD表示的输入载荷,通过疲劳

分析软件求得模型的振动疲劳特性,即先对有限元模型载荷输入点的各个自由度分别施加单位激励,输出车身钣金件的应力传递函数;传递函数是模型的基本特性,与输入载荷无关;试验所得载荷通常为时域的加速度载荷,可将其转化为用频域PSD表示的动态载荷;将这2个主要参数和材料疲劳特性曲线一起输入到振动疲劳分析模块,即可进行响应的损伤寿命分析.随机振动分析法将动载的PSD作为输入载荷,通过有限元软件进行随机振动分析,直接求得应力PSD[4],然后将应力PSD和材料特性直接输入到振动疲劳分析模块,分析模型的疲劳寿命.

本文针对某整备车身和底盘的有限元模型(见图2),采用基于PSD载荷谱的传递函数法进行疲劳求解.由图2可知,整备车身主要包括带前后玻璃的车身模型,车身上具有附件的质量和惯量信息;附件包括车门、前舱盖、行李箱盖、散热器、车灯、电池、备胎、座椅、转向系统、仪表台和车身非结构质量附件等.模型的建立方法与车身模态计算模型一致.输入点为车轮轮心位置,每个输入点对应整车坐标3个方向的力和力矩,通道数目为24个.输入载荷采用疲劳试验中直接测得的车轮轮心处的六分力.由于目前的疲劳软件仅支持20个通道的耦合分析,简化掉4个通道以满足软件计算要求.在4个轮心处分别施加5个单位的激励(另外一个被简化掉),利用MD Nastran进行传递函数分析,每个传递函数对应一个PSD动态载荷谱.激励输入到振动疲劳分析模块后,结合材料S-N特性进行模型的损伤和寿命分析.

由于20个通道的载荷同时作用,应设置20个载荷同时作用的多载荷分析,构建PSD载荷矩阵进行计算.如需考虑每个载荷的相关性,可通过MSC Fatigue中的MFRA考虑各载荷的相关性以构建PSD载荷相关性矩阵.[5-6]受计算机能力限制,输出时可只考虑一些重点关注的零件寿命.一些关键零件的疲劳寿命云图见图4,可知,危险区域多在承重和底盘接附点位置附近,最小寿命为0.85 h,位于后悬架扭转梁左前接附点安装位置.在疲劳耐久试验中,该处在路试15 h后检查已经出现破裂,见图5.

4 结束语

分别介绍有限元计算疲劳问题的时域法和频域法,简介用频域法计算疲劳的理论和计算过程.通过

基于PSD载荷谱的传递函数法分析汽车道路谱振动疲劳寿命,分析结果与实际疲劳试验结果比较一致,证明基于路谱频域进行汽车结构疲劳计算可行.

参考文献:

[1] 武秀根, 郑百林, 杨青, 等. 柴油机曲轴的多柔体动力学仿真与疲劳分析[J]. 计算机辅助工程, 2007, 16(2): 1-4.

WU Xiugen, ZHENG Bailin, YANG Qing, et al. Multi-flexible body dynamics simulation and fatigue analysis on diesel engine crankshaft[J]. Comput Aided Eng, 2007, 16(2): 1-4.

[2] 隋允康. MSC Nastran有限元动力分析与优化设计实用教程[M]. 北京: 科学出版社, 2004: 18-80.

[3] HALFPENNY A. 基于功率谱密度信号的疲劳寿命估计[J]. 中国机械工程, 1998, 9(11): 16-19.

HALFPENNY A. A frequency domain approach for fatigue life estimation[J]. China Mech Eng, 1998, 9(11): 16-19.

[4] 林晓斌. 一套完整的疲劳分析设计试验管理系统nSoft[J]. 中国机械工程, 1998, 9(11): 8-11.

LIN Xiaobin. An integrated software system for fatigue analysis, design, test and management-nSoft[J]. China Mech Eng, 1998, 9(11): 8-11.

[5] HEYES P J. 基于有限元的疲劳设计分析系统MSC Fatigue[J]. 中国机械工程, 1998, 9(11): 12-16.

HEYES P J. Finite element based fatigue design and analysis system-MSC Fatigue[J]. China Mech Eng, 1998, 9(11): 12-16.

[6] 周传月, 郑红霞, 罗慧强, 等. MSC Fatigue疲劳分析应用与实例[M]. 北京: 科学出版社, 2005: 27-70.

[7] BENDAT J S. Probability functions for random responses, NASA-5-4590[R]. 1964.

上一篇:空间薄壁梁单元面向对象程序的实现 下一篇:颠覆传统商业模式Salesforce挑战软件行业巨头