论我国高性能计算机发展现状及机遇到的问题

时间:2022-08-15 06:40:58

论我国高性能计算机发展现状及机遇到的问题

摘要:高性能计算机与我们生活息息相关,文章总结了国内外高性能计算机发展现状及发展趋势,并总结了我国目前发展高性能计算机面临的问题,最后作者提出了对如何解决这些问题的看法。

关键词:高性能计算机;计算速度;高端计算

高性能计算机是衡量一个国家综合国力的重要标志,是国家信息化建设的根本保证。发展高性能计算机,可以带动科学技术的进步,解决国民经济建设、社会发展进步、国防建设与国家安全等方面一系列的挑战性问题,促进我国相关产业的快速发展。

1高性能计算机与大众生活息息相关

高性能计算机一般都和科学研究联系在一起,小到原子结构的分析,大到宇宙起源模拟,到处都需要高性能计算机。但是,高性能计算机的应用决不仅限于此。在和人民大众生活息息相关的各个领域,我们都可以看到高性能计算机的身影:

1.1对新药研制的促进。

在与疾病作斗争的过程中,我们需要新的药品。研制一种新药从化合物筛选到临床试验,一般需要1O到15年的时间。在化合物筛选阶段,对于数十万种化合物,用传统的实验手段,筛选出有效的化合物需要花费大量资金购买化合物,需要几年的实验时间,而且筛选的范围受到金钱和时间限制,难以得到最佳的结果。现在使用高性能计算机这个工具,以计算机模拟的手段,科学家可以在较短的时间内从几十万甚至几百万种化合物中筛选出有效的药物化合物,这不仅节省了购买真实化合物的大量资金,而且大大缩短了药物研发的周期。

1.2对网络信息服务的影响。

在网络日益普及的今天,我们已经渐渐习惯于从网上获得信息和服务,但是同时也经常为服务响应速度的迟缓而烦恼。要面对数千万、数亿用户的访问请求,服务器必须有强大的数据吞吐和处理能力。这又是高性能计算机发挥作用的舞台。高性能服务器每秒种可以处理数千万乃至数亿次服务请求,及时提供用户所需要的信息和服务,保证服务质量。

1.3对制造业的推动。

我国是一个制造业大国,高性能计算在制造业的广泛使用,不仅可以帮助工程师在设计阶段更科学地计算材料强度,更合理地选择和使用材料,设计出更符合空气和流体动力学原理和人体工程的产品结构和外形,而且可以在仿真基础上全面规划整个制造过程,有效提高产品制造的质量和产量。高性能计算的全数字化设计制造环境在缩短产品设计周期、节能降耗、降低污染、提高产品质量方面的作用不可限量。

2国内外高端计算发展现状

2.1国内高端计算发展现状

我国高端计算机系统研制开始于20世纪70年代中后期,大体经历了3个主要发展阶段:第一阶段从70年代中后期到80年代中期,主要以研制大型向量系统为主(以银河I为代表);第二阶段从80年代中后期到90年代末,主要以研制大规模并行系统为主(以神威I为代表);第三阶段从90年代中期起,主要以研制大规模机群系统为主(以曙光机为代表)。目前,参与高端计算机研制的单位已经从科研院所发展到企业界。

进入新世纪,随着研制高端计算机系统的诸多关键技术被攻克(尤其是机群技术),我国自行研制的高端计算机系统已开始形成自己的品牌系列和一定的市场规模,其发展呈现星火燎原之势头。近两年,随着“神威”、“银河”、“曙光”、“深腾”、“天梭”等一批知名产品的出现,使我国成为继美、日之后第三个具备高端计算机系统研制能力的国家,被誉为世界未来高端计算市场的“第三股力量”。

根据中国软件行业协会数学软件分会20__年11月份公开的20__年中国高性能计算机TOP100排行榜最新统计,我国高端计算机系统的总计算能力在19.56TF/s峰值左右。

2.2国外高端计算发展现状

21世纪,高端计算技术已成为衡量一个国家经济技术综合实力的重要标志,它对国民经济、社会发展、国家安全和国防现代化建设具有重要意义。以美国和日本为代表的发达国家十分重视高端计算机系统的研制及其应用技术的开发。根据全球实用超级计算机500强最新排行榜的统计分析,目前国际上已经有242台系统的Linpack实测性能超过1万亿次/秒(20__年12月前只有131台);500强系统的总性能为813TF/(20__年12月前为528TF/s);排行榜中“最慢”系统(第500台机器)的速度为624GF/s(20__年12月前为40314GF/s);现在500强系统的主流结构是Cluster,Constellations和MPP三种结构类型。所有系统分布在世界上35个国家和地区,美、日、德、英等发达国家占了80的计算资源,其中仅美国就安装了255台,占总性能的56;并且500台系统中的91是由美国制造的,所有这些数据均表明美国在高端计算机的使用和生产方面仍然保持着绝对的领先优势。

3高端计算发展趋势

国外高端计算系统今后的开发热点是计算速度为十万亿次/秒左右的系统,中期目标是百万亿次秒,长期目标是千万亿次/秒甚至更高。未来国际高端计算的发展将呈现以下趋势:

3.1超级计算机和网格计算2种实现形态共存

高端计算应用的多样性导致了高端计算实现形态的多样性。居高端计算霸主地位的美国不断加大投入,研制面向科学研究应用的尖端超级计算机;受网络技术迅猛发展的推动,网格计算作为无缝集成的协同计算环境,又称虚拟超级计算机,会得到进一步重视。目前,美、日等国政府和研究单位在这两方向都有相应的资金投入和具体规划。未来高端计算系统一定是网格中的重要计算资源,它需要适应网格环境的计算模式、编程型、开发运行和管理系统等;网格技术也将是未获取高端计算能力的优良环境,二者将互为补充。

3.2从高性能计算走向高效能计算

随着高性能计算向高效能服务转变,超级计算机系统追求的目标也将从/高性能走向“高效能”。按美国DARP

AHPCS计划说明,Highproductivity的综合含义是指提高超级计算机系统的计算性能、可编程性、可移植性和鲁棒性,同时努力降低系统的开发、运行及维护成本。HPCS计划表明,超级计算机要想保持快速发展势头,必须要有本质的变化,即必须采用先进技术,平衡各项设计指标,实现系统的高可靠性、高可用性、高可维性、高安全性和低功耗。4高性能计算机发展任重道远

高性能计算机的制造是一项非常复杂的系统工程,提高计算机的性能有许多关键问题有待解决。尽管我国已经能够制造十万亿次级的高性能计算机,但是高性能计算的整体水平比起美国、日本和欧洲发达国家仍有较大的差距。当前制约我国高性能计算发展的主要因素有:

4.1核心技术不足

我国制造的高性能计算机在核心技术上虽有不少突破,但仍然在很大程度上依赖于国外。在高性能计算机体系结构和关键技术上投入的研究经费和研究力量不足,阻碍我国在该领域的创新。

4.2人才不足

高性能计算机的应用目标往往是解决综合性、系统性的复杂问题,涉及多个领域。开发一个好的高性能计算应用涉及应用问题抽象、模型建立、并行算法研究、并行程序实现、应用系统测试验证等多个阶段,需要熟悉应用和计算的多面手型人才,需要不同学科、不同技术背景的人员的密切合作。而我国高校目前的专业划分难以培养既熟悉先进计算机技术,又熟悉应用领域问题的人才,以至于这类人才奇缺。不同学科的科技人员之间的交流和合作机制又不健全,造成懂高性能计算机的人不懂应用,而了解应用的人又不知道如何用高性能计算的方法来解决问题的局面。

4.3应用软件匮乏

我国长期以来存在的重硬件、轻软件的现象在高性能计算领域格外突出,影响更大。对于高性能计算机而言,缺乏合适的应用软件就根本无法开展相应的应用,也无法吸引用户来使用高性能计算机。高性能计算机上运行的应用软件专业性强,价格昂贵,国内应用部门每年都花费大量经费,采购应用软件,但是这种采购一般是分散进行的,缺少相互协调,因此国家整体布局还不尽合理,有些软件多个部门重复采购,而另一些急需的软件又没人购买。

4.4资源分布不均匀

国内高性能计算机主要分布在科研院所、大学以及石油勘探、气象预报等应用部门,地域分布也不均匀。资源分布的不均匀和资源访问的困难,使得不少高性能计算的潜在用户放弃了应用的打算。在经济效益不够好的传统产业尤其如此。这种资源分布的不均匀性一方面使需要资源的用户难以获得资源,另一方面也造成宝贵资源的闲置和浪费。

我国的高性能计算事业必须走可持续均衡发展的道路。高性能计算是昂贵的,不仅有设备的初始投入,而且有场地条件、电力消耗、运行维护和人员队伍建设等多种费用。因此,一定要切实从应用需求出发,大力促进应用的进步,以此推动高性能计算的发展。强调应用需求牵引并不是忽视技术的推动作用。技术的进步可以创造新的应用,调动新的应用需求。网格以其资源共享、协同工作的固有能力和网格服务的形式,支持用户共享使用Internet中的各类资源;网格允许用户克服地理的障碍,更便捷地获得高性能计算的能力;网格简化高性能计算机的使用方式,使更多的普通用户能够利用高性能计算机的能力去解决过去难以解决的问题,扩大了高性能计算机的应用范围。需要强调的是,高性能计算的技术创新有赖于国家持续的支持,以保证足够的研究经费和一支高水平精干的研究队伍。高性能计算人才的培养是一项长期的艰巨任务,不仅要通过改革高校的学科划分和专业设置来加强高性能计算复合型人才的培养,还要通过应用系统的开发,培养和锻炼各个行业与领域熟悉高性能计算的人才,只有这样才能真正保证高性能计算及应用的可持续发展。

参考文献

[1]中国软件行业协会数学软件分会.中国TOP100制造商分析[EB/OL]..com/,20__,11.

[2]TOP500ListforJune20__[EB/OL]./lists,20__,06

[3]中国软件行业协会数学软件分会.中国TOP100行业领域分析[EB/OL]..com/20__,11.

上一篇:物流成本核算方法体系进行设计 下一篇:基于初三学生认知规律的化学式教学创新