第14讲 “代数与几何的综合问题”复习精讲

时间:2022-08-08 06:38:29

第14讲 “代数与几何的综合问题”复习精讲

专题精讲

代数与几何的综合问题是指代数知识与几何知识相互交融浑然一体的一类综合题.这类问题通常以几何图形(或将图形坐标化)及函数图象为背景,辅助于图形的运动与变换(平移、旋转、对称)手段,融人函数(包括锐角三角函数)、方程、不等式等代数的核心知识,来综合考查学生运用所学的基础知识和基本技能、掌握的数学思想方法进行分析问题、解决问题的能力.题型大致可分为:(1)数、式与几何图形的综合问题;(2)平面直角坐标系中的几何运算问题;(3)方程、不等式与几何图形的综合问题;(4)函数与几何图形的综合问题,

解决代数与几何综合问题的基本思路:第一,要认真审题弄清问题的条件与结论.尽可能分析转化问题中的显性条件,挖掘问题中的隐含条件.第二,充分关注几何图形的结构特征,发挥几何直观的导航作用.对复杂图形我们要学会识图,从中发现并分离出能够帮助解决问题的基本图形,或添加适当的辅助线构造基本图形,以便联想基本图形的性质去解决问题.第三,根据综合题设计的结论分步探究的特点,我们要学会从题目中寻找代数与几何这两部分知识的结合点,进行“肢解”.转化为简单的代数或几何问题,发现解决问题的突破口.从而“化整为零,各个击破”.最后,要充分发挥数学思想和方法的引领作用.分析与综合、分类讨论、函数、方程、数形结合、归纳与猜想等都是解决这类问题有效的数学思想和方法,特别是数形结合思想――由形导数、以数促形,可以架起连接代数与几何的桥梁,实现数与形之间的相互转化,帮助我们另辟蹊径,曲径通幽.

历年来,全国多数地区中考试卷的“代数与几何的综合问题”大部分是以“解答题”的形式出现在最后三、四道题,难度较大,从河南省的近三年试卷来看更是如此.2015年我们既要注意通过探究线段长度满足的数量关系判断构成的特殊形状的几何图形(如等腰三角形、矩形、菱形、正方形)的开放性问题或解决有关几何图形的周长与面积的计算问题,更要关注平面直角坐标系中几何图形的有关计算问题以及以三种函数图象为背景与几何图形融合于一体,判断点、等腰三角形、特殊四边形的存在性问题.

重点题型例析

一、数、式与几何图形的综合问题

这类问题通过给出一组具有某种特定关系的数、式、几何图形或给出与图形有关的操作变化过程,要求通过观察、分析、推理发现其中蕴涵的数学规律,进而归纳或猜想出一般性的结论.

解决与几何图形有关规律的问题,我们应从分析图形结构的形成过程人手,从特殊到一般、从简单到复杂进行归纳猜想从而获得隐含的数学规律,并用代数式描述出来,进而解决相关的问题.

例1 (2014.荆门)如图1,在第1个A1BC中,∠B=300,A 1 B=CB;在边A1B上任取一点D,延长CA1到

二、坐标系中的几何运算

由于新课标对逻辑推理能力的要求有所削弱,一些高难度的纯几何问题被命题专家摒弃,取而代之出现了一类“坐标几何问题”,这类题目巧妙地将几何图形置于平面直角坐标系中,将图形坐标化,通过点的坐标来体现图形中线段的长度,或给出图形中线段的长度来确定图形顶点的坐标或满足某种条件的特征点的坐标,并辅助于图形的折叠、平移、旋转等变换手段,巧妙地将几何和代数知识糅合在一起.解决这类问题要掌握图形变换的基本特征,关注动点与静点之间形成的特殊关系,挖掘几何图形的性质,进而利用直角三角形的勾股定理、锐角三角函数进行计算,或运用三角形的全等、相似构造方程求解.

例2(2014.攀枝花)如图2,以点P(-l,0)为圆心的圆,交x轴于B、C两点(B在C的左侧),交y轴于A、D两点(A在D的下方),A D=2、/3,将ABC绕点P旋转1800,得到MCB.

(1)求B、C两点的坐标.

(2)请在图中画出线段MB、MC,并判断四边形ACMB的形状(并说明理由),求出点M的坐标.

(3)动直线l从与BM重合的位置开始绕点B顺时针旋转,到与BC重合时停止,设直线2与CM的交点为E,点Q为BE的中点,过点E作EG BC于G,连接MQ、QC.在旋转过程中∠MQG的大小是否变化?若不变,求出∠MQG的度数:若变化,请说明理由.

反思:本题是将人教版九年级数学教材第24章“圆”复习题第122页第1题垂径定理的基本图形与第80页的例题1巧妙融合在一起,然后放到平面直角坐标系中,并通过给出圆心的坐标与弦长,改编成探究直径端点的坐标及中心对称图形顶点的坐标.第(3)问则是命题专家为考查同学们在运动变化的过程中探究问题的思维能力而利用直线旋转设计的一个角度“变与不变”的问题.

本题考查了垂径定理、勾股定理、全等三角形的判定与性质、直角三角形的性质、矩形的判定与性质、圆周角定理、特殊角的锐角三角函数、图形的旋转等知识点,其中渗透了中心对称的思想,证明四点共圆的方法.

解决本题的关键是能在较复杂的图形中识图,发现解决问题所需要的基本图形,如本题第(1)问垂径定理的基本图形及由圆心到弦的垂线段、半弦、圆的半径组成的RtPOA.

第(3)问探究∠MQG的大小是否变化,是本题的难点,难在直线l旋转导致∠MQG的顶点的位置始终在变化,干扰了同学们的解题视线,为突破这一难点我们应抓住变化中的不变量――两个直角三角形且有公共的斜边BE,从而利用“直角三角形斜边上的中线等于斜边的一半”获得点E、M、B、G到点Q的距离相等,进而发现圆心角∠MQC与圆周角∠MBG的关系,为定值的发现扫清了障碍.

三、方程、不等式与几何的综合问题

以几何图形为背景融人点的运动与图形变换的一类问题,巧妙把代数中的方程与不等式“镶嵌”其中构成了中考压轴题的另一道风景线.解决此类问题要学会辩证看待“运动”与“静止”的相互关系,利用运动过程中某一瞬间静止的位置,动中窥静,以静制动,抓住图形的特殊位置,明晰图形之间的内在联系.当探究有关图形中变量之间的关系时,可建立函数模型或不等式模型求解;当探究特殊位置关系或数值时,可建立方程模型求解.其中直角三角形的勾股定理、相似三角形中的比例线段、等腰三角形、特殊四边形的边之间的相等关系都为我们构建方程提供了有效的等量关系.

例3 (2013.苏州)如图6,点0为矩形ABCD的对称中心,AB=10 cm,BC=12 cm,点E.F、G分别从A、B、C三点同时出发,沿矩形的边按逆时针方向匀速运动,点E的运动速度为l cm/s,点F的运动速度为3 cm/s,点G的运动速度为1.5 cm/s,当点F到达点C(即点F与点C重合)时,三个点随之停止运动.在运动过程中,EBF关于直线EF的对称图形是EB’F设点E.F、G运动的时间为t(单位:s).

(1)当t=______ s时,四边形EBFB’为正方形.

(2)若以点E、B、F为顶点的三角形与以点F.C.G为顶点的三角形相似,求t的值.

(3)是否存在实数t,使得点B'与点0重合?若存在,求出£的值;若不存在,请说明理由.

反思:本题以矩形为载体设计了三个质点在三边上运动的情形,其中渗透了轴对称的思想、方程思想,融合了相似三角形的判定与性质、勾股定理、一元一次方程、一元二次方程的解法等知识点.第(1)问需要应试者实现从三角形到正方形的思维跨越,即只有等腰直角三角形沿斜边翻折才能构成正方形,从而顺利发现蕴涵的棚等关系.第(2)问由于给出的相似三角形的对应点顶点小确定,应分类求解,更应引起同学们注意的是动点运动的时问的取值范围不可忽视,这也是解决这类问题对求的结果进行取舍的一个重要依据,否则将会导致错误的结果,第(3)问是探索存在型问题,解决这类问题一般先假设满足条件的实数、图形(点、线等)存在,然后结合题目提供的条件与图形的性质,进行计算与推理,如果导出互相矛盾的结论,就可判定不存在,反之则成立.

四、函数与几何的综合问题

几何图形与函数巧妙地融合渗透的学科内综合问题,把“形”与“数”达到了完美结合,被推向中考压轴题的位置.

这种题型命制方向有两个:

其一,凶为几何图形中一些量可以度量,线段的长度之问、线段与图形的周长或面积的大小之间隐含着内在的对应变化关系,这个关系可用函数的解析式来表示.解决此类问题的关键是能够洞察图形特有的结构特征,充分挖掘几何图形所具有的性质,列出包含两个变量的相等关系式,再变形为相应的一次函数、二次函数及反比例函数,进而利用函数的性质求得问题的答案.

其二,几何图形常以函数图象间的交点、图象与横、纵坐标轴的交点、原点为顶点所构成,隐蔽性、迷惑性较强,但其几何图形所反映出的性质却对解决问题具有至关重要的作用,解决此类问题我们要学会识图适当添线使隐含的特殊三角形、四边形、圆等拨“云”见“日”,充分发挥儿何的直观作用,利用数形结合思想沟通函数与图形的性质,并辅助于方程思想,准确计算与推理、分析判断与取舍,进而达到问题的最终获解.

例4 (2014.绵阳)如图8,矩形ABCD中,AB=4,∠AD=3,把矩形沿直线AC折叠,使点B落在点E处,AE

反思:本题来源于人教版数学八年级上册第3章《轴对称》“等腰三角形”一节第79页的一道练习题及人教版九年级数学下册第27章《相似》“复习巩固”第58页“拓广探索”的第11题,同时将课本中锐角三角形变为直角三角形,将内接正方形拓展为内接矩形,巧妙地将两道习题拓展后的图形融合到一个矩形的折叠的情境中,改编成探究内接矩形面积的最值问题,

本题从纸片折叠的角度考查了轴对称,三角形全等的性质与判定,等腰三角形的判定,勾股定理、相似三角形的判定与性质及二次函数最值问题,解决问题的过程中渗透了方程思想、配方法、数形结合思想等,本题难点是图形复杂,严重干扰同学们由图形联想性质进行探究的思路,所以突破的关键是平时对所研究的一些重要的基本图形的结构与性质应烂熟于心,这样才能从较复杂的图形中分离出解决问题的基本图形,并利用其性质快速地获得问题的答案,本题求高EG时运用了“从不同视角求解同一个三角形的面积,利用面积的不变性列出方程”,这是常用的一种解题策略.本题的易错点是运用PE的长表示线段PN的长时,不能准确地利用“相似三角形对应高的比等于相似比”得出(),从而导致计

算失误.

上一篇:第5讲 “图形的变化”复习精讲 下一篇:“智造”化的未来工厂